xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_win.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16 
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
23 
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
30 
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 //  Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41                              (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42                               0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
46 
47 // For WaitOnAddress
48 #  pragma comment(lib, "synchronization.lib")
49 
50 // A macro to tell the compiler that this part of the code cannot be reached,
51 // if the compiler supports this feature. Since we're using this in
52 // code that is called when terminating the process, the expansion of the
53 // macro should not terminate the process to avoid infinite recursion.
54 #if defined(__clang__)
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(__GNUC__) && \
57     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
58 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
59 #elif defined(_MSC_VER)
60 # define BUILTIN_UNREACHABLE() __assume(0)
61 #else
62 # define BUILTIN_UNREACHABLE()
63 #endif
64 
65 namespace __sanitizer {
66 
67 #include "sanitizer_syscall_generic.inc"
68 
69 // --------------------- sanitizer_common.h
70 uptr GetPageSize() {
71   SYSTEM_INFO si;
72   GetSystemInfo(&si);
73   return si.dwPageSize;
74 }
75 
76 uptr GetMmapGranularity() {
77   SYSTEM_INFO si;
78   GetSystemInfo(&si);
79   return si.dwAllocationGranularity;
80 }
81 
82 uptr GetMaxUserVirtualAddress() {
83   SYSTEM_INFO si;
84   GetSystemInfo(&si);
85   return (uptr)si.lpMaximumApplicationAddress;
86 }
87 
88 uptr GetMaxVirtualAddress() {
89   return GetMaxUserVirtualAddress();
90 }
91 
92 bool FileExists(const char *filename) {
93   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
94 }
95 
96 bool DirExists(const char *path) {
97   auto attr = ::GetFileAttributesA(path);
98   return (attr != INVALID_FILE_ATTRIBUTES) && (attr & FILE_ATTRIBUTE_DIRECTORY);
99 }
100 
101 uptr internal_getpid() {
102   return GetProcessId(GetCurrentProcess());
103 }
104 
105 int internal_dlinfo(void *handle, int request, void *p) {
106   UNIMPLEMENTED();
107 }
108 
109 // In contrast to POSIX, on Windows GetCurrentThreadId()
110 // returns a system-unique identifier.
111 tid_t GetTid() {
112   return GetCurrentThreadId();
113 }
114 
115 uptr GetThreadSelf() {
116   return GetTid();
117 }
118 
119 #if !SANITIZER_GO
120 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
121                                 uptr *stack_bottom) {
122   CHECK(stack_top);
123   CHECK(stack_bottom);
124   MEMORY_BASIC_INFORMATION mbi;
125   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
126   // FIXME: is it possible for the stack to not be a single allocation?
127   // Are these values what ASan expects to get (reserved, not committed;
128   // including stack guard page) ?
129   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
130   *stack_bottom = (uptr)mbi.AllocationBase;
131 }
132 #endif  // #if !SANITIZER_GO
133 
134 bool ErrorIsOOM(error_t err) {
135   // TODO: This should check which `err`s correspond to OOM.
136   return false;
137 }
138 
139 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
140   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
141   if (rv == 0)
142     ReportMmapFailureAndDie(size, mem_type, "allocate",
143                             GetLastError(), raw_report);
144   return rv;
145 }
146 
147 void UnmapOrDie(void *addr, uptr size) {
148   if (!size || !addr)
149     return;
150 
151   MEMORY_BASIC_INFORMATION mbi;
152   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
153 
154   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
155   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
156   // fails try MEM_DECOMMIT.
157   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
158     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
159       Report("ERROR: %s failed to "
160              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
161              SanitizerToolName, size, size, addr, GetLastError());
162       CHECK("unable to unmap" && 0);
163     }
164   }
165 }
166 
167 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
168                                      const char *mmap_type) {
169   error_t last_error = GetLastError();
170   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
171     return nullptr;
172   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
173 }
174 
175 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
176   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
177   if (rv == 0)
178     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
179   return rv;
180 }
181 
182 // We want to map a chunk of address space aligned to 'alignment'.
183 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
184                                    const char *mem_type) {
185   CHECK(IsPowerOfTwo(size));
186   CHECK(IsPowerOfTwo(alignment));
187 
188   // Windows will align our allocations to at least 64K.
189   alignment = Max(alignment, GetMmapGranularity());
190 
191   uptr mapped_addr =
192       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
193   if (!mapped_addr)
194     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
195 
196   // If we got it right on the first try, return. Otherwise, unmap it and go to
197   // the slow path.
198   if (IsAligned(mapped_addr, alignment))
199     return (void*)mapped_addr;
200   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
201     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
202 
203   // If we didn't get an aligned address, overallocate, find an aligned address,
204   // unmap, and try to allocate at that aligned address.
205   int retries = 0;
206   const int kMaxRetries = 10;
207   for (; retries < kMaxRetries &&
208          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
209        retries++) {
210     // Overallocate size + alignment bytes.
211     mapped_addr =
212         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
213     if (!mapped_addr)
214       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
215 
216     // Find the aligned address.
217     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
218 
219     // Free the overallocation.
220     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
221       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
222 
223     // Attempt to allocate exactly the number of bytes we need at the aligned
224     // address. This may fail for a number of reasons, in which case we continue
225     // the loop.
226     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
227                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
228   }
229 
230   // Fail if we can't make this work quickly.
231   if (retries == kMaxRetries && mapped_addr == 0)
232     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
233 
234   return (void *)mapped_addr;
235 }
236 
237 // ZeroMmapFixedRegion zero's out a region of memory previously returned from a
238 // call to one of the MmapFixed* helpers. On non-windows systems this would be
239 // done with another mmap, but on windows remapping is not an option.
240 // VirtualFree(DECOMMIT)+VirtualAlloc(RECOMMIT) would also be a way to zero the
241 // memory, but we can't do this atomically, so instead we fall back to using
242 // internal_memset.
243 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) {
244   internal_memset((void*) fixed_addr, 0, size);
245   return true;
246 }
247 
248 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
249   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
250   // but on Win64 it does.
251   (void)name;  // unsupported
252 #if !SANITIZER_GO && SANITIZER_WINDOWS64
253   // On asan/Windows64, use MEM_COMMIT would result in error
254   // 1455:ERROR_COMMITMENT_LIMIT.
255   // Asan uses exception handler to commit page on demand.
256   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
257 #else
258   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
259                          PAGE_READWRITE);
260 #endif
261   if (p == 0) {
262     Report("ERROR: %s failed to "
263            "allocate %p (%zd) bytes at %p (error code: %d)\n",
264            SanitizerToolName, size, size, fixed_addr, GetLastError());
265     return false;
266   }
267   return true;
268 }
269 
270 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
271   // FIXME: Windows support large pages too. Might be worth checking
272   return MmapFixedNoReserve(fixed_addr, size, name);
273 }
274 
275 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
276 // 'MmapFixedNoAccess'.
277 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
278   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
279       MEM_COMMIT, PAGE_READWRITE);
280   if (p == 0) {
281     char mem_type[30];
282     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
283                       fixed_addr);
284     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
285   }
286   return p;
287 }
288 
289 // Uses fixed_addr for now.
290 // Will use offset instead once we've implemented this function for real.
291 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
292   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
293 }
294 
295 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
296                                     const char *name) {
297   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
298 }
299 
300 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
301   // Only unmap if it covers the entire range.
302   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
303   // We unmap the whole range, just null out the base.
304   base_ = nullptr;
305   size_ = 0;
306   UnmapOrDie(reinterpret_cast<void*>(addr), size);
307 }
308 
309 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
310   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
311       MEM_COMMIT, PAGE_READWRITE);
312   if (p == 0) {
313     char mem_type[30];
314     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
315                       fixed_addr);
316     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
317   }
318   return p;
319 }
320 
321 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
322   // FIXME: make this really NoReserve?
323   return MmapOrDie(size, mem_type);
324 }
325 
326 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
327   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
328   size_ = size;
329   name_ = name;
330   (void)os_handle_;  // unsupported
331   return reinterpret_cast<uptr>(base_);
332 }
333 
334 
335 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
336   (void)name; // unsupported
337   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
338                            MEM_RESERVE, PAGE_NOACCESS);
339   if (res == 0)
340     Report("WARNING: %s failed to "
341            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
342            SanitizerToolName, size, size, fixed_addr, GetLastError());
343   return res;
344 }
345 
346 void *MmapNoAccess(uptr size) {
347   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
348   if (res == 0)
349     Report("WARNING: %s failed to "
350            "mprotect %p (%zd) bytes (error code: %d)\n",
351            SanitizerToolName, size, size, GetLastError());
352   return res;
353 }
354 
355 bool MprotectNoAccess(uptr addr, uptr size) {
356   DWORD old_protection;
357   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
358 }
359 
360 bool MprotectReadOnly(uptr addr, uptr size) {
361   DWORD old_protection;
362   return VirtualProtect((LPVOID)addr, size, PAGE_READONLY, &old_protection);
363 }
364 
365 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
366   uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
367        end_aligned = RoundDownTo(end, GetPageSizeCached());
368   CHECK(beg < end);                // make sure the region is sane
369   if (beg_aligned == end_aligned)  // make sure we're freeing at least 1 page;
370     return;
371   UnmapOrDie((void *)beg, end_aligned - beg_aligned);
372 }
373 
374 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
375   // FIXME: probably similar to ReleaseMemoryToOS.
376 }
377 
378 bool DontDumpShadowMemory(uptr addr, uptr length) {
379   // This is almost useless on 32-bits.
380   // FIXME: add madvise-analog when we move to 64-bits.
381   return true;
382 }
383 
384 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
385                       uptr min_shadow_base_alignment,
386                       UNUSED uptr &high_mem_end) {
387   const uptr granularity = GetMmapGranularity();
388   const uptr alignment =
389       Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
390   const uptr left_padding =
391       Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
392   uptr space_size = shadow_size_bytes + left_padding;
393   uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
394                                                granularity, nullptr, nullptr);
395   CHECK_NE((uptr)0, shadow_start);
396   CHECK(IsAligned(shadow_start, alignment));
397   return shadow_start;
398 }
399 
400 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
401                               uptr *largest_gap_found,
402                               uptr *max_occupied_addr) {
403   uptr address = 0;
404   while (true) {
405     MEMORY_BASIC_INFORMATION info;
406     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
407       return 0;
408 
409     if (info.State == MEM_FREE) {
410       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
411                                       alignment);
412       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
413         return shadow_address;
414     }
415 
416     // Move to the next region.
417     address = (uptr)info.BaseAddress + info.RegionSize;
418   }
419   return 0;
420 }
421 
422 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
423                                 uptr num_aliases, uptr ring_buffer_size) {
424   CHECK(false && "HWASan aliasing is unimplemented on Windows");
425   return 0;
426 }
427 
428 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
429   MEMORY_BASIC_INFORMATION mbi;
430   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
431   return mbi.Protect == PAGE_NOACCESS &&
432          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
433 }
434 
435 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
436   UNIMPLEMENTED();
437 }
438 
439 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
440   UNIMPLEMENTED();
441 }
442 
443 static const int kMaxEnvNameLength = 128;
444 static const DWORD kMaxEnvValueLength = 32767;
445 
446 namespace {
447 
448 struct EnvVariable {
449   char name[kMaxEnvNameLength];
450   char value[kMaxEnvValueLength];
451 };
452 
453 }  // namespace
454 
455 static const int kEnvVariables = 5;
456 static EnvVariable env_vars[kEnvVariables];
457 static int num_env_vars;
458 
459 const char *GetEnv(const char *name) {
460   // Note: this implementation caches the values of the environment variables
461   // and limits their quantity.
462   for (int i = 0; i < num_env_vars; i++) {
463     if (0 == internal_strcmp(name, env_vars[i].name))
464       return env_vars[i].value;
465   }
466   CHECK_LT(num_env_vars, kEnvVariables);
467   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
468                                      kMaxEnvValueLength);
469   if (rv > 0 && rv < kMaxEnvValueLength) {
470     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
471     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
472     num_env_vars++;
473     return env_vars[num_env_vars - 1].value;
474   }
475   return 0;
476 }
477 
478 const char *GetPwd() {
479   UNIMPLEMENTED();
480 }
481 
482 u32 GetUid() {
483   UNIMPLEMENTED();
484 }
485 
486 namespace {
487 struct ModuleInfo {
488   const char *filepath;
489   uptr base_address;
490   uptr end_address;
491 };
492 
493 #if !SANITIZER_GO
494 int CompareModulesBase(const void *pl, const void *pr) {
495   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
496   if (l->base_address < r->base_address)
497     return -1;
498   return l->base_address > r->base_address;
499 }
500 #endif
501 }  // namespace
502 
503 #if !SANITIZER_GO
504 void DumpProcessMap() {
505   Report("Dumping process modules:\n");
506   ListOfModules modules;
507   modules.init();
508   uptr num_modules = modules.size();
509 
510   InternalMmapVector<ModuleInfo> module_infos(num_modules);
511   for (size_t i = 0; i < num_modules; ++i) {
512     module_infos[i].filepath = modules[i].full_name();
513     module_infos[i].base_address = modules[i].ranges().front()->beg;
514     module_infos[i].end_address = modules[i].ranges().back()->end;
515   }
516   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
517         CompareModulesBase);
518 
519   for (size_t i = 0; i < num_modules; ++i) {
520     const ModuleInfo &mi = module_infos[i];
521     if (mi.end_address != 0) {
522       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
523              mi.filepath[0] ? mi.filepath : "[no name]");
524     } else if (mi.filepath[0]) {
525       Printf("\t??\?-??? %s\n", mi.filepath);
526     } else {
527       Printf("\t???\n");
528     }
529   }
530 }
531 #endif
532 
533 void DisableCoreDumperIfNecessary() {
534   // Do nothing.
535 }
536 
537 void ReExec() {
538   UNIMPLEMENTED();
539 }
540 
541 void PlatformPrepareForSandboxing(void *args) {}
542 
543 bool StackSizeIsUnlimited() {
544   UNIMPLEMENTED();
545 }
546 
547 void SetStackSizeLimitInBytes(uptr limit) {
548   UNIMPLEMENTED();
549 }
550 
551 bool AddressSpaceIsUnlimited() {
552   UNIMPLEMENTED();
553 }
554 
555 void SetAddressSpaceUnlimited() {
556   UNIMPLEMENTED();
557 }
558 
559 bool IsPathSeparator(const char c) {
560   return c == '\\' || c == '/';
561 }
562 
563 static bool IsAlpha(char c) {
564   c = ToLower(c);
565   return c >= 'a' && c <= 'z';
566 }
567 
568 bool IsAbsolutePath(const char *path) {
569   return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
570          IsPathSeparator(path[2]);
571 }
572 
573 void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
574 
575 u64 NanoTime() {
576   static LARGE_INTEGER frequency = {};
577   LARGE_INTEGER counter;
578   if (UNLIKELY(frequency.QuadPart == 0)) {
579     QueryPerformanceFrequency(&frequency);
580     CHECK_NE(frequency.QuadPart, 0);
581   }
582   QueryPerformanceCounter(&counter);
583   counter.QuadPart *= 1000ULL * 1000000ULL;
584   counter.QuadPart /= frequency.QuadPart;
585   return counter.QuadPart;
586 }
587 
588 u64 MonotonicNanoTime() { return NanoTime(); }
589 
590 void Abort() {
591   internal__exit(3);
592 }
593 
594 bool CreateDir(const char *pathname) {
595   return CreateDirectoryA(pathname, nullptr) != 0;
596 }
597 
598 #if !SANITIZER_GO
599 // Read the file to extract the ImageBase field from the PE header. If ASLR is
600 // disabled and this virtual address is available, the loader will typically
601 // load the image at this address. Therefore, we call it the preferred base. Any
602 // addresses in the DWARF typically assume that the object has been loaded at
603 // this address.
604 static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
605   fd_t fd = OpenFile(modname, RdOnly, nullptr);
606   if (fd == kInvalidFd)
607     return 0;
608   FileCloser closer(fd);
609 
610   // Read just the DOS header.
611   IMAGE_DOS_HEADER dos_header;
612   uptr bytes_read;
613   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
614       bytes_read != sizeof(dos_header))
615     return 0;
616 
617   // The file should start with the right signature.
618   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
619     return 0;
620 
621   // The layout at e_lfanew is:
622   // "PE\0\0"
623   // IMAGE_FILE_HEADER
624   // IMAGE_OPTIONAL_HEADER
625   // Seek to e_lfanew and read all that data.
626   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
627       INVALID_SET_FILE_POINTER)
628     return 0;
629   if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
630     return 0;
631 
632   // Check for "PE\0\0" before the PE header.
633   char *pe_sig = &buf[0];
634   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
635     return 0;
636 
637   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
638   IMAGE_OPTIONAL_HEADER *pe_header =
639       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
640 
641   // Check for more magic in the PE header.
642   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
643     return 0;
644 
645   // Finally, return the ImageBase.
646   return (uptr)pe_header->ImageBase;
647 }
648 
649 void ListOfModules::init() {
650   clearOrInit();
651   HANDLE cur_process = GetCurrentProcess();
652 
653   // Query the list of modules.  Start by assuming there are no more than 256
654   // modules and retry if that's not sufficient.
655   HMODULE *hmodules = 0;
656   uptr modules_buffer_size = sizeof(HMODULE) * 256;
657   DWORD bytes_required;
658   while (!hmodules) {
659     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
660     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
661                              &bytes_required));
662     if (bytes_required > modules_buffer_size) {
663       // Either there turned out to be more than 256 hmodules, or new hmodules
664       // could have loaded since the last try.  Retry.
665       UnmapOrDie(hmodules, modules_buffer_size);
666       hmodules = 0;
667       modules_buffer_size = bytes_required;
668     }
669   }
670 
671   InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
672                                sizeof(IMAGE_OPTIONAL_HEADER));
673   InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
674   InternalMmapVector<char> module_name(kMaxPathLength);
675   // |num_modules| is the number of modules actually present,
676   size_t num_modules = bytes_required / sizeof(HMODULE);
677   for (size_t i = 0; i < num_modules; ++i) {
678     HMODULE handle = hmodules[i];
679     MODULEINFO mi;
680     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
681       continue;
682 
683     // Get the UTF-16 path and convert to UTF-8.
684     int modname_utf16_len =
685         GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
686     if (modname_utf16_len == 0)
687       modname_utf16[0] = '\0';
688     int module_name_len = ::WideCharToMultiByte(
689         CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
690         kMaxPathLength, NULL, NULL);
691     module_name[module_name_len] = '\0';
692 
693     uptr base_address = (uptr)mi.lpBaseOfDll;
694     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
695 
696     // Adjust the base address of the module so that we get a VA instead of an
697     // RVA when computing the module offset. This helps llvm-symbolizer find the
698     // right DWARF CU. In the common case that the image is loaded at it's
699     // preferred address, we will now print normal virtual addresses.
700     uptr preferred_base =
701         GetPreferredBase(&module_name[0], &buf[0], buf.size());
702     uptr adjusted_base = base_address - preferred_base;
703 
704     modules_.push_back(LoadedModule());
705     LoadedModule &cur_module = modules_.back();
706     cur_module.set(&module_name[0], adjusted_base);
707     // We add the whole module as one single address range.
708     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
709                                /*writable*/ true);
710   }
711   UnmapOrDie(hmodules, modules_buffer_size);
712 }
713 
714 void ListOfModules::fallbackInit() { clear(); }
715 
716 // We can't use atexit() directly at __asan_init time as the CRT is not fully
717 // initialized at this point.  Place the functions into a vector and use
718 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
719 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
720 
721 int Atexit(void (*function)(void)) {
722   atexit_functions.push_back(function);
723   return 0;
724 }
725 
726 static int RunAtexit() {
727   TraceLoggingUnregister(g_asan_provider);
728   int ret = 0;
729   for (uptr i = 0; i < atexit_functions.size(); ++i) {
730     ret |= atexit(atexit_functions[i]);
731   }
732   return ret;
733 }
734 
735 #pragma section(".CRT$XID", long, read)
736 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
737 #endif
738 
739 // ------------------ sanitizer_libc.h
740 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
741   // FIXME: Use the wide variants to handle Unicode filenames.
742   fd_t res;
743   if (mode == RdOnly) {
744     res = CreateFileA(filename, GENERIC_READ,
745                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
746                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
747   } else if (mode == WrOnly) {
748     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
749                       FILE_ATTRIBUTE_NORMAL, nullptr);
750   } else {
751     UNIMPLEMENTED();
752   }
753   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
754   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
755   if (res == kInvalidFd && last_error)
756     *last_error = GetLastError();
757   return res;
758 }
759 
760 void CloseFile(fd_t fd) {
761   CloseHandle(fd);
762 }
763 
764 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
765                   error_t *error_p) {
766   CHECK(fd != kInvalidFd);
767 
768   // bytes_read can't be passed directly to ReadFile:
769   // uptr is unsigned long long on 64-bit Windows.
770   unsigned long num_read_long;
771 
772   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
773   if (!success && error_p)
774     *error_p = GetLastError();
775   if (bytes_read)
776     *bytes_read = num_read_long;
777   return success;
778 }
779 
780 bool SupportsColoredOutput(fd_t fd) {
781   // FIXME: support colored output.
782   return false;
783 }
784 
785 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
786                  error_t *error_p) {
787   CHECK(fd != kInvalidFd);
788 
789   // Handle null optional parameters.
790   error_t dummy_error;
791   error_p = error_p ? error_p : &dummy_error;
792   uptr dummy_bytes_written;
793   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
794 
795   // Initialize output parameters in case we fail.
796   *error_p = 0;
797   *bytes_written = 0;
798 
799   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
800   // closed, in which case this will fail.
801   if (fd == kStdoutFd || fd == kStderrFd) {
802     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
803     if (fd == 0) {
804       *error_p = ERROR_INVALID_HANDLE;
805       return false;
806     }
807   }
808 
809   DWORD bytes_written_32;
810   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
811     *error_p = GetLastError();
812     return false;
813   } else {
814     *bytes_written = bytes_written_32;
815     return true;
816   }
817 }
818 
819 uptr internal_sched_yield() {
820   Sleep(0);
821   return 0;
822 }
823 
824 void internal__exit(int exitcode) {
825   TraceLoggingUnregister(g_asan_provider);
826   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
827   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
828   // so add our own breakpoint here.
829   if (::IsDebuggerPresent())
830     __debugbreak();
831   TerminateProcess(GetCurrentProcess(), exitcode);
832   BUILTIN_UNREACHABLE();
833 }
834 
835 uptr internal_ftruncate(fd_t fd, uptr size) {
836   UNIMPLEMENTED();
837 }
838 
839 uptr GetRSS() {
840   PROCESS_MEMORY_COUNTERS counters;
841   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
842     return 0;
843   return counters.WorkingSetSize;
844 }
845 
846 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
847 void internal_join_thread(void *th) { }
848 
849 void FutexWait(atomic_uint32_t *p, u32 cmp) {
850   WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
851 }
852 
853 void FutexWake(atomic_uint32_t *p, u32 count) {
854   if (count == 1)
855     WakeByAddressSingle(p);
856   else
857     WakeByAddressAll(p);
858 }
859 
860 uptr GetTlsSize() {
861   return 0;
862 }
863 
864 void InitTlsSize() {
865 }
866 
867 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
868                           uptr *tls_addr, uptr *tls_size) {
869 #if SANITIZER_GO
870   *stk_addr = 0;
871   *stk_size = 0;
872   *tls_addr = 0;
873   *tls_size = 0;
874 #else
875   uptr stack_top, stack_bottom;
876   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
877   *stk_addr = stack_bottom;
878   *stk_size = stack_top - stack_bottom;
879   *tls_addr = 0;
880   *tls_size = 0;
881 #endif
882 }
883 
884 void ReportFile::Write(const char *buffer, uptr length) {
885   SpinMutexLock l(mu);
886   ReopenIfNecessary();
887   if (!WriteToFile(fd, buffer, length)) {
888     // stderr may be closed, but we may be able to print to the debugger
889     // instead.  This is the case when launching a program from Visual Studio,
890     // and the following routine should write to its console.
891     OutputDebugStringA(buffer);
892   }
893 }
894 
895 void SetAlternateSignalStack() {
896   // FIXME: Decide what to do on Windows.
897 }
898 
899 void UnsetAlternateSignalStack() {
900   // FIXME: Decide what to do on Windows.
901 }
902 
903 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
904   (void)handler;
905   // FIXME: Decide what to do on Windows.
906 }
907 
908 HandleSignalMode GetHandleSignalMode(int signum) {
909   // FIXME: Decide what to do on Windows.
910   return kHandleSignalNo;
911 }
912 
913 // Check based on flags if we should handle this exception.
914 bool IsHandledDeadlyException(DWORD exceptionCode) {
915   switch (exceptionCode) {
916     case EXCEPTION_ACCESS_VIOLATION:
917     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
918     case EXCEPTION_STACK_OVERFLOW:
919     case EXCEPTION_DATATYPE_MISALIGNMENT:
920     case EXCEPTION_IN_PAGE_ERROR:
921       return common_flags()->handle_segv;
922     case EXCEPTION_ILLEGAL_INSTRUCTION:
923     case EXCEPTION_PRIV_INSTRUCTION:
924     case EXCEPTION_BREAKPOINT:
925       return common_flags()->handle_sigill;
926     case EXCEPTION_FLT_DENORMAL_OPERAND:
927     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
928     case EXCEPTION_FLT_INEXACT_RESULT:
929     case EXCEPTION_FLT_INVALID_OPERATION:
930     case EXCEPTION_FLT_OVERFLOW:
931     case EXCEPTION_FLT_STACK_CHECK:
932     case EXCEPTION_FLT_UNDERFLOW:
933     case EXCEPTION_INT_DIVIDE_BY_ZERO:
934     case EXCEPTION_INT_OVERFLOW:
935       return common_flags()->handle_sigfpe;
936   }
937   return false;
938 }
939 
940 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
941   SYSTEM_INFO si;
942   GetNativeSystemInfo(&si);
943   uptr page_size = si.dwPageSize;
944   uptr page_mask = ~(page_size - 1);
945 
946   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
947        page <= end;) {
948     MEMORY_BASIC_INFORMATION info;
949     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
950       return false;
951 
952     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
953         info.Protect == PAGE_EXECUTE)
954       return false;
955 
956     if (info.RegionSize == 0)
957       return false;
958 
959     page += info.RegionSize;
960   }
961 
962   return true;
963 }
964 
965 bool SignalContext::IsStackOverflow() const {
966   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
967 }
968 
969 void SignalContext::InitPcSpBp() {
970   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
971   CONTEXT *context_record = (CONTEXT *)context;
972 
973   pc = (uptr)exception_record->ExceptionAddress;
974 #  if SANITIZER_WINDOWS64
975 #    if SANITIZER_ARM64
976   bp = (uptr)context_record->Fp;
977   sp = (uptr)context_record->Sp;
978 #    else
979   bp = (uptr)context_record->Rbp;
980   sp = (uptr)context_record->Rsp;
981 #    endif
982 #  else
983   bp = (uptr)context_record->Ebp;
984   sp = (uptr)context_record->Esp;
985 #  endif
986 }
987 
988 uptr SignalContext::GetAddress() const {
989   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
990   if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
991     return exception_record->ExceptionInformation[1];
992   return (uptr)exception_record->ExceptionAddress;
993 }
994 
995 bool SignalContext::IsMemoryAccess() const {
996   return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
997          EXCEPTION_ACCESS_VIOLATION;
998 }
999 
1000 bool SignalContext::IsTrueFaultingAddress() const { return true; }
1001 
1002 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1003   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
1004 
1005   // The write flag is only available for access violation exceptions.
1006   if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
1007     return SignalContext::Unknown;
1008 
1009   // The contents of this array are documented at
1010   // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
1011   // The first element indicates read as 0, write as 1, or execute as 8.  The
1012   // second element is the faulting address.
1013   switch (exception_record->ExceptionInformation[0]) {
1014     case 0:
1015       return SignalContext::Read;
1016     case 1:
1017       return SignalContext::Write;
1018     case 8:
1019       return SignalContext::Unknown;
1020   }
1021   return SignalContext::Unknown;
1022 }
1023 
1024 void SignalContext::DumpAllRegisters(void *context) {
1025   // FIXME: Implement this.
1026 }
1027 
1028 int SignalContext::GetType() const {
1029   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
1030 }
1031 
1032 const char *SignalContext::Describe() const {
1033   unsigned code = GetType();
1034   // Get the string description of the exception if this is a known deadly
1035   // exception.
1036   switch (code) {
1037     case EXCEPTION_ACCESS_VIOLATION:
1038       return "access-violation";
1039     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1040       return "array-bounds-exceeded";
1041     case EXCEPTION_STACK_OVERFLOW:
1042       return "stack-overflow";
1043     case EXCEPTION_DATATYPE_MISALIGNMENT:
1044       return "datatype-misalignment";
1045     case EXCEPTION_IN_PAGE_ERROR:
1046       return "in-page-error";
1047     case EXCEPTION_ILLEGAL_INSTRUCTION:
1048       return "illegal-instruction";
1049     case EXCEPTION_PRIV_INSTRUCTION:
1050       return "priv-instruction";
1051     case EXCEPTION_BREAKPOINT:
1052       return "breakpoint";
1053     case EXCEPTION_FLT_DENORMAL_OPERAND:
1054       return "flt-denormal-operand";
1055     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1056       return "flt-divide-by-zero";
1057     case EXCEPTION_FLT_INEXACT_RESULT:
1058       return "flt-inexact-result";
1059     case EXCEPTION_FLT_INVALID_OPERATION:
1060       return "flt-invalid-operation";
1061     case EXCEPTION_FLT_OVERFLOW:
1062       return "flt-overflow";
1063     case EXCEPTION_FLT_STACK_CHECK:
1064       return "flt-stack-check";
1065     case EXCEPTION_FLT_UNDERFLOW:
1066       return "flt-underflow";
1067     case EXCEPTION_INT_DIVIDE_BY_ZERO:
1068       return "int-divide-by-zero";
1069     case EXCEPTION_INT_OVERFLOW:
1070       return "int-overflow";
1071   }
1072   return "unknown exception";
1073 }
1074 
1075 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1076   if (buf_len == 0)
1077     return 0;
1078 
1079   // Get the UTF-16 path and convert to UTF-8.
1080   InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1081   int binname_utf16_len =
1082       GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1083   if (binname_utf16_len == 0) {
1084     buf[0] = '\0';
1085     return 0;
1086   }
1087   int binary_name_len =
1088       ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1089                             buf, buf_len, NULL, NULL);
1090   if ((unsigned)binary_name_len == buf_len)
1091     --binary_name_len;
1092   buf[binary_name_len] = '\0';
1093   return binary_name_len;
1094 }
1095 
1096 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1097   return ReadBinaryName(buf, buf_len);
1098 }
1099 
1100 void CheckVMASize() {
1101   // Do nothing.
1102 }
1103 
1104 void InitializePlatformEarly() {
1105   // Do nothing.
1106 }
1107 
1108 void CheckASLR() {
1109   // Do nothing
1110 }
1111 
1112 void CheckMPROTECT() {
1113   // Do nothing
1114 }
1115 
1116 char **GetArgv() {
1117   // FIXME: Actually implement this function.
1118   return 0;
1119 }
1120 
1121 char **GetEnviron() {
1122   // FIXME: Actually implement this function.
1123   return 0;
1124 }
1125 
1126 pid_t StartSubprocess(const char *program, const char *const argv[],
1127                       const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1128                       fd_t stderr_fd) {
1129   // FIXME: implement on this platform
1130   // Should be implemented based on
1131   // SymbolizerProcess::StarAtSymbolizerSubprocess
1132   // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1133   return -1;
1134 }
1135 
1136 bool IsProcessRunning(pid_t pid) {
1137   // FIXME: implement on this platform.
1138   return false;
1139 }
1140 
1141 int WaitForProcess(pid_t pid) { return -1; }
1142 
1143 // FIXME implement on this platform.
1144 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1145 
1146 void CheckNoDeepBind(const char *filename, int flag) {
1147   // Do nothing.
1148 }
1149 
1150 // FIXME: implement on this platform.
1151 bool GetRandom(void *buffer, uptr length, bool blocking) {
1152   UNIMPLEMENTED();
1153 }
1154 
1155 u32 GetNumberOfCPUs() {
1156   SYSTEM_INFO sysinfo = {};
1157   GetNativeSystemInfo(&sysinfo);
1158   return sysinfo.dwNumberOfProcessors;
1159 }
1160 
1161 #if SANITIZER_WIN_TRACE
1162 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1163 void AndroidLogInit(void) {
1164   HRESULT hr = TraceLoggingRegister(g_asan_provider);
1165   if (!SUCCEEDED(hr))
1166     return;
1167 }
1168 
1169 void SetAbortMessage(const char *) {}
1170 
1171 void LogFullErrorReport(const char *buffer) {
1172   if (common_flags()->log_to_syslog) {
1173     InternalMmapVector<wchar_t> filename;
1174     DWORD filename_length = 0;
1175     do {
1176       filename.resize(filename.size() + 0x100);
1177       filename_length =
1178           GetModuleFileNameW(NULL, filename.begin(), filename.size());
1179     } while (filename_length >= filename.size());
1180     TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1181                       TraceLoggingValue(filename.begin(), "ExecutableName"),
1182                       TraceLoggingValue(buffer, "AsanReportContents"));
1183   }
1184 }
1185 #endif // SANITIZER_WIN_TRACE
1186 
1187 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1188 
1189 }  // namespace __sanitizer
1190 
1191 #endif  // _WIN32
1192