xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_win.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
16 
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <direct.h>
20 #include <windows.h>
21 #include <io.h>
22 #include <psapi.h>
23 #include <stdlib.h>
24 
25 #include "sanitizer_common.h"
26 #include "sanitizer_file.h"
27 #include "sanitizer_libc.h"
28 #include "sanitizer_mutex.h"
29 #include "sanitizer_placement_new.h"
30 #include "sanitizer_win_defs.h"
31 
32 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
33 #pragma comment(lib, "psapi")
34 #endif
35 #if SANITIZER_WIN_TRACE
36 #include <traceloggingprovider.h>
37 //  Windows trace logging provider init
38 #pragma comment(lib, "advapi32.lib")
39 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
40 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
41 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
42                              (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
43                               0x53, 0x0b, 0xd0, 0xf3, 0xfa));
44 #else
45 #define TraceLoggingUnregister(x)
46 #endif
47 
48 // For WaitOnAddress
49 #  pragma comment(lib, "synchronization.lib")
50 
51 // A macro to tell the compiler that this part of the code cannot be reached,
52 // if the compiler supports this feature. Since we're using this in
53 // code that is called when terminating the process, the expansion of the
54 // macro should not terminate the process to avoid infinite recursion.
55 #if defined(__clang__)
56 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
57 #elif defined(__GNUC__) && \
58     (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
59 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
60 #elif defined(_MSC_VER)
61 # define BUILTIN_UNREACHABLE() __assume(0)
62 #else
63 # define BUILTIN_UNREACHABLE()
64 #endif
65 
66 namespace __sanitizer {
67 
68 #include "sanitizer_syscall_generic.inc"
69 
70 // --------------------- sanitizer_common.h
71 uptr GetPageSize() {
72   SYSTEM_INFO si;
73   GetSystemInfo(&si);
74   return si.dwPageSize;
75 }
76 
77 uptr GetMmapGranularity() {
78   SYSTEM_INFO si;
79   GetSystemInfo(&si);
80   return si.dwAllocationGranularity;
81 }
82 
83 uptr GetMaxUserVirtualAddress() {
84   SYSTEM_INFO si;
85   GetSystemInfo(&si);
86   return (uptr)si.lpMaximumApplicationAddress;
87 }
88 
89 uptr GetMaxVirtualAddress() {
90   return GetMaxUserVirtualAddress();
91 }
92 
93 bool FileExists(const char *filename) {
94   return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
95 }
96 
97 uptr internal_getpid() {
98   return GetProcessId(GetCurrentProcess());
99 }
100 
101 int internal_dlinfo(void *handle, int request, void *p) {
102   UNIMPLEMENTED();
103 }
104 
105 // In contrast to POSIX, on Windows GetCurrentThreadId()
106 // returns a system-unique identifier.
107 tid_t GetTid() {
108   return GetCurrentThreadId();
109 }
110 
111 uptr GetThreadSelf() {
112   return GetTid();
113 }
114 
115 #if !SANITIZER_GO
116 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
117                                 uptr *stack_bottom) {
118   CHECK(stack_top);
119   CHECK(stack_bottom);
120   MEMORY_BASIC_INFORMATION mbi;
121   CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
122   // FIXME: is it possible for the stack to not be a single allocation?
123   // Are these values what ASan expects to get (reserved, not committed;
124   // including stack guard page) ?
125   *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
126   *stack_bottom = (uptr)mbi.AllocationBase;
127 }
128 #endif  // #if !SANITIZER_GO
129 
130 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
131   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
132   if (rv == 0)
133     ReportMmapFailureAndDie(size, mem_type, "allocate",
134                             GetLastError(), raw_report);
135   return rv;
136 }
137 
138 void UnmapOrDie(void *addr, uptr size) {
139   if (!size || !addr)
140     return;
141 
142   MEMORY_BASIC_INFORMATION mbi;
143   CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
144 
145   // MEM_RELEASE can only be used to unmap whole regions previously mapped with
146   // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
147   // fails try MEM_DECOMMIT.
148   if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
149     if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
150       Report("ERROR: %s failed to "
151              "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
152              SanitizerToolName, size, size, addr, GetLastError());
153       CHECK("unable to unmap" && 0);
154     }
155   }
156 }
157 
158 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
159                                      const char *mmap_type) {
160   error_t last_error = GetLastError();
161   if (last_error == ERROR_NOT_ENOUGH_MEMORY)
162     return nullptr;
163   ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
164 }
165 
166 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
167   void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
168   if (rv == 0)
169     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
170   return rv;
171 }
172 
173 // We want to map a chunk of address space aligned to 'alignment'.
174 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
175                                    const char *mem_type) {
176   CHECK(IsPowerOfTwo(size));
177   CHECK(IsPowerOfTwo(alignment));
178 
179   // Windows will align our allocations to at least 64K.
180   alignment = Max(alignment, GetMmapGranularity());
181 
182   uptr mapped_addr =
183       (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
184   if (!mapped_addr)
185     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
186 
187   // If we got it right on the first try, return. Otherwise, unmap it and go to
188   // the slow path.
189   if (IsAligned(mapped_addr, alignment))
190     return (void*)mapped_addr;
191   if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
192     ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
193 
194   // If we didn't get an aligned address, overallocate, find an aligned address,
195   // unmap, and try to allocate at that aligned address.
196   int retries = 0;
197   const int kMaxRetries = 10;
198   for (; retries < kMaxRetries &&
199          (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
200        retries++) {
201     // Overallocate size + alignment bytes.
202     mapped_addr =
203         (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
204     if (!mapped_addr)
205       return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
206 
207     // Find the aligned address.
208     uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
209 
210     // Free the overallocation.
211     if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
212       ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
213 
214     // Attempt to allocate exactly the number of bytes we need at the aligned
215     // address. This may fail for a number of reasons, in which case we continue
216     // the loop.
217     mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
218                                      MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
219   }
220 
221   // Fail if we can't make this work quickly.
222   if (retries == kMaxRetries && mapped_addr == 0)
223     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
224 
225   return (void *)mapped_addr;
226 }
227 
228 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
229   // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
230   // but on Win64 it does.
231   (void)name;  // unsupported
232 #if !SANITIZER_GO && SANITIZER_WINDOWS64
233   // On asan/Windows64, use MEM_COMMIT would result in error
234   // 1455:ERROR_COMMITMENT_LIMIT.
235   // Asan uses exception handler to commit page on demand.
236   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
237 #else
238   void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
239                          PAGE_READWRITE);
240 #endif
241   if (p == 0) {
242     Report("ERROR: %s failed to "
243            "allocate %p (%zd) bytes at %p (error code: %d)\n",
244            SanitizerToolName, size, size, fixed_addr, GetLastError());
245     return false;
246   }
247   return true;
248 }
249 
250 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
251   // FIXME: Windows support large pages too. Might be worth checking
252   return MmapFixedNoReserve(fixed_addr, size, name);
253 }
254 
255 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
256 // 'MmapFixedNoAccess'.
257 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
258   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
259       MEM_COMMIT, PAGE_READWRITE);
260   if (p == 0) {
261     char mem_type[30];
262     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
263                       fixed_addr);
264     ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
265   }
266   return p;
267 }
268 
269 // Uses fixed_addr for now.
270 // Will use offset instead once we've implemented this function for real.
271 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
272   return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
273 }
274 
275 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
276                                     const char *name) {
277   return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
278 }
279 
280 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
281   // Only unmap if it covers the entire range.
282   CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
283   // We unmap the whole range, just null out the base.
284   base_ = nullptr;
285   size_ = 0;
286   UnmapOrDie(reinterpret_cast<void*>(addr), size);
287 }
288 
289 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
290   void *p = VirtualAlloc((LPVOID)fixed_addr, size,
291       MEM_COMMIT, PAGE_READWRITE);
292   if (p == 0) {
293     char mem_type[30];
294     internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
295                       fixed_addr);
296     return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
297   }
298   return p;
299 }
300 
301 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
302   // FIXME: make this really NoReserve?
303   return MmapOrDie(size, mem_type);
304 }
305 
306 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
307   base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
308   size_ = size;
309   name_ = name;
310   (void)os_handle_;  // unsupported
311   return reinterpret_cast<uptr>(base_);
312 }
313 
314 
315 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
316   (void)name; // unsupported
317   void *res = VirtualAlloc((LPVOID)fixed_addr, size,
318                            MEM_RESERVE, PAGE_NOACCESS);
319   if (res == 0)
320     Report("WARNING: %s failed to "
321            "mprotect %p (%zd) bytes at %p (error code: %d)\n",
322            SanitizerToolName, size, size, fixed_addr, GetLastError());
323   return res;
324 }
325 
326 void *MmapNoAccess(uptr size) {
327   void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
328   if (res == 0)
329     Report("WARNING: %s failed to "
330            "mprotect %p (%zd) bytes (error code: %d)\n",
331            SanitizerToolName, size, size, GetLastError());
332   return res;
333 }
334 
335 bool MprotectNoAccess(uptr addr, uptr size) {
336   DWORD old_protection;
337   return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
338 }
339 
340 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
341   uptr beg_aligned = RoundDownTo(beg, GetPageSizeCached()),
342        end_aligned = RoundDownTo(end, GetPageSizeCached());
343   CHECK(beg < end);                // make sure the region is sane
344   if (beg_aligned == end_aligned)  // make sure we're freeing at least 1 page;
345     return;
346   UnmapOrDie((void *)beg, end_aligned - beg_aligned);
347 }
348 
349 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
350   // FIXME: probably similar to ReleaseMemoryToOS.
351 }
352 
353 bool DontDumpShadowMemory(uptr addr, uptr length) {
354   // This is almost useless on 32-bits.
355   // FIXME: add madvise-analog when we move to 64-bits.
356   return true;
357 }
358 
359 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
360                       uptr min_shadow_base_alignment,
361                       UNUSED uptr &high_mem_end) {
362   const uptr granularity = GetMmapGranularity();
363   const uptr alignment =
364       Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
365   const uptr left_padding =
366       Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
367   uptr space_size = shadow_size_bytes + left_padding;
368   uptr shadow_start = FindAvailableMemoryRange(space_size, alignment,
369                                                granularity, nullptr, nullptr);
370   CHECK_NE((uptr)0, shadow_start);
371   CHECK(IsAligned(shadow_start, alignment));
372   return shadow_start;
373 }
374 
375 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
376                               uptr *largest_gap_found,
377                               uptr *max_occupied_addr) {
378   uptr address = 0;
379   while (true) {
380     MEMORY_BASIC_INFORMATION info;
381     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
382       return 0;
383 
384     if (info.State == MEM_FREE) {
385       uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
386                                       alignment);
387       if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
388         return shadow_address;
389     }
390 
391     // Move to the next region.
392     address = (uptr)info.BaseAddress + info.RegionSize;
393   }
394   return 0;
395 }
396 
397 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
398                                 uptr num_aliases, uptr ring_buffer_size) {
399   CHECK(false && "HWASan aliasing is unimplemented on Windows");
400   return 0;
401 }
402 
403 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
404   MEMORY_BASIC_INFORMATION mbi;
405   CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
406   return mbi.Protect == PAGE_NOACCESS &&
407          (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
408 }
409 
410 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
411   UNIMPLEMENTED();
412 }
413 
414 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
415   UNIMPLEMENTED();
416 }
417 
418 static const int kMaxEnvNameLength = 128;
419 static const DWORD kMaxEnvValueLength = 32767;
420 
421 namespace {
422 
423 struct EnvVariable {
424   char name[kMaxEnvNameLength];
425   char value[kMaxEnvValueLength];
426 };
427 
428 }  // namespace
429 
430 static const int kEnvVariables = 5;
431 static EnvVariable env_vars[kEnvVariables];
432 static int num_env_vars;
433 
434 const char *GetEnv(const char *name) {
435   // Note: this implementation caches the values of the environment variables
436   // and limits their quantity.
437   for (int i = 0; i < num_env_vars; i++) {
438     if (0 == internal_strcmp(name, env_vars[i].name))
439       return env_vars[i].value;
440   }
441   CHECK_LT(num_env_vars, kEnvVariables);
442   DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
443                                      kMaxEnvValueLength);
444   if (rv > 0 && rv < kMaxEnvValueLength) {
445     CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
446     internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
447     num_env_vars++;
448     return env_vars[num_env_vars - 1].value;
449   }
450   return 0;
451 }
452 
453 const char *GetPwd() {
454   UNIMPLEMENTED();
455 }
456 
457 u32 GetUid() {
458   UNIMPLEMENTED();
459 }
460 
461 namespace {
462 struct ModuleInfo {
463   const char *filepath;
464   uptr base_address;
465   uptr end_address;
466 };
467 
468 #if !SANITIZER_GO
469 int CompareModulesBase(const void *pl, const void *pr) {
470   const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
471   if (l->base_address < r->base_address)
472     return -1;
473   return l->base_address > r->base_address;
474 }
475 #endif
476 }  // namespace
477 
478 #if !SANITIZER_GO
479 void DumpProcessMap() {
480   Report("Dumping process modules:\n");
481   ListOfModules modules;
482   modules.init();
483   uptr num_modules = modules.size();
484 
485   InternalMmapVector<ModuleInfo> module_infos(num_modules);
486   for (size_t i = 0; i < num_modules; ++i) {
487     module_infos[i].filepath = modules[i].full_name();
488     module_infos[i].base_address = modules[i].ranges().front()->beg;
489     module_infos[i].end_address = modules[i].ranges().back()->end;
490   }
491   qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
492         CompareModulesBase);
493 
494   for (size_t i = 0; i < num_modules; ++i) {
495     const ModuleInfo &mi = module_infos[i];
496     if (mi.end_address != 0) {
497       Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
498              mi.filepath[0] ? mi.filepath : "[no name]");
499     } else if (mi.filepath[0]) {
500       Printf("\t??\?-??? %s\n", mi.filepath);
501     } else {
502       Printf("\t???\n");
503     }
504   }
505 }
506 #endif
507 
508 void DisableCoreDumperIfNecessary() {
509   // Do nothing.
510 }
511 
512 void ReExec() {
513   UNIMPLEMENTED();
514 }
515 
516 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
517 
518 bool StackSizeIsUnlimited() {
519   UNIMPLEMENTED();
520 }
521 
522 void SetStackSizeLimitInBytes(uptr limit) {
523   UNIMPLEMENTED();
524 }
525 
526 bool AddressSpaceIsUnlimited() {
527   UNIMPLEMENTED();
528 }
529 
530 void SetAddressSpaceUnlimited() {
531   UNIMPLEMENTED();
532 }
533 
534 bool IsPathSeparator(const char c) {
535   return c == '\\' || c == '/';
536 }
537 
538 static bool IsAlpha(char c) {
539   c = ToLower(c);
540   return c >= 'a' && c <= 'z';
541 }
542 
543 bool IsAbsolutePath(const char *path) {
544   return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
545          IsPathSeparator(path[2]);
546 }
547 
548 void internal_usleep(u64 useconds) { Sleep(useconds / 1000); }
549 
550 u64 NanoTime() {
551   static LARGE_INTEGER frequency = {};
552   LARGE_INTEGER counter;
553   if (UNLIKELY(frequency.QuadPart == 0)) {
554     QueryPerformanceFrequency(&frequency);
555     CHECK_NE(frequency.QuadPart, 0);
556   }
557   QueryPerformanceCounter(&counter);
558   counter.QuadPart *= 1000ULL * 1000000ULL;
559   counter.QuadPart /= frequency.QuadPart;
560   return counter.QuadPart;
561 }
562 
563 u64 MonotonicNanoTime() { return NanoTime(); }
564 
565 void Abort() {
566   internal__exit(3);
567 }
568 
569 bool CreateDir(const char *pathname) { return _mkdir(pathname) == 0; }
570 
571 #if !SANITIZER_GO
572 // Read the file to extract the ImageBase field from the PE header. If ASLR is
573 // disabled and this virtual address is available, the loader will typically
574 // load the image at this address. Therefore, we call it the preferred base. Any
575 // addresses in the DWARF typically assume that the object has been loaded at
576 // this address.
577 static uptr GetPreferredBase(const char *modname, char *buf, size_t buf_size) {
578   fd_t fd = OpenFile(modname, RdOnly, nullptr);
579   if (fd == kInvalidFd)
580     return 0;
581   FileCloser closer(fd);
582 
583   // Read just the DOS header.
584   IMAGE_DOS_HEADER dos_header;
585   uptr bytes_read;
586   if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
587       bytes_read != sizeof(dos_header))
588     return 0;
589 
590   // The file should start with the right signature.
591   if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
592     return 0;
593 
594   // The layout at e_lfanew is:
595   // "PE\0\0"
596   // IMAGE_FILE_HEADER
597   // IMAGE_OPTIONAL_HEADER
598   // Seek to e_lfanew and read all that data.
599   if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
600       INVALID_SET_FILE_POINTER)
601     return 0;
602   if (!ReadFromFile(fd, buf, buf_size, &bytes_read) || bytes_read != buf_size)
603     return 0;
604 
605   // Check for "PE\0\0" before the PE header.
606   char *pe_sig = &buf[0];
607   if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
608     return 0;
609 
610   // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
611   IMAGE_OPTIONAL_HEADER *pe_header =
612       (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
613 
614   // Check for more magic in the PE header.
615   if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
616     return 0;
617 
618   // Finally, return the ImageBase.
619   return (uptr)pe_header->ImageBase;
620 }
621 
622 void ListOfModules::init() {
623   clearOrInit();
624   HANDLE cur_process = GetCurrentProcess();
625 
626   // Query the list of modules.  Start by assuming there are no more than 256
627   // modules and retry if that's not sufficient.
628   HMODULE *hmodules = 0;
629   uptr modules_buffer_size = sizeof(HMODULE) * 256;
630   DWORD bytes_required;
631   while (!hmodules) {
632     hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
633     CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
634                              &bytes_required));
635     if (bytes_required > modules_buffer_size) {
636       // Either there turned out to be more than 256 hmodules, or new hmodules
637       // could have loaded since the last try.  Retry.
638       UnmapOrDie(hmodules, modules_buffer_size);
639       hmodules = 0;
640       modules_buffer_size = bytes_required;
641     }
642   }
643 
644   InternalMmapVector<char> buf(4 + sizeof(IMAGE_FILE_HEADER) +
645                                sizeof(IMAGE_OPTIONAL_HEADER));
646   InternalMmapVector<wchar_t> modname_utf16(kMaxPathLength);
647   InternalMmapVector<char> module_name(kMaxPathLength);
648   // |num_modules| is the number of modules actually present,
649   size_t num_modules = bytes_required / sizeof(HMODULE);
650   for (size_t i = 0; i < num_modules; ++i) {
651     HMODULE handle = hmodules[i];
652     MODULEINFO mi;
653     if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
654       continue;
655 
656     // Get the UTF-16 path and convert to UTF-8.
657     int modname_utf16_len =
658         GetModuleFileNameW(handle, &modname_utf16[0], kMaxPathLength);
659     if (modname_utf16_len == 0)
660       modname_utf16[0] = '\0';
661     int module_name_len = ::WideCharToMultiByte(
662         CP_UTF8, 0, &modname_utf16[0], modname_utf16_len + 1, &module_name[0],
663         kMaxPathLength, NULL, NULL);
664     module_name[module_name_len] = '\0';
665 
666     uptr base_address = (uptr)mi.lpBaseOfDll;
667     uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
668 
669     // Adjust the base address of the module so that we get a VA instead of an
670     // RVA when computing the module offset. This helps llvm-symbolizer find the
671     // right DWARF CU. In the common case that the image is loaded at it's
672     // preferred address, we will now print normal virtual addresses.
673     uptr preferred_base =
674         GetPreferredBase(&module_name[0], &buf[0], buf.size());
675     uptr adjusted_base = base_address - preferred_base;
676 
677     modules_.push_back(LoadedModule());
678     LoadedModule &cur_module = modules_.back();
679     cur_module.set(&module_name[0], adjusted_base);
680     // We add the whole module as one single address range.
681     cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
682                                /*writable*/ true);
683   }
684   UnmapOrDie(hmodules, modules_buffer_size);
685 }
686 
687 void ListOfModules::fallbackInit() { clear(); }
688 
689 // We can't use atexit() directly at __asan_init time as the CRT is not fully
690 // initialized at this point.  Place the functions into a vector and use
691 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
692 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
693 
694 int Atexit(void (*function)(void)) {
695   atexit_functions.push_back(function);
696   return 0;
697 }
698 
699 static int RunAtexit() {
700   TraceLoggingUnregister(g_asan_provider);
701   int ret = 0;
702   for (uptr i = 0; i < atexit_functions.size(); ++i) {
703     ret |= atexit(atexit_functions[i]);
704   }
705   return ret;
706 }
707 
708 #pragma section(".CRT$XID", long, read)
709 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
710 #endif
711 
712 // ------------------ sanitizer_libc.h
713 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
714   // FIXME: Use the wide variants to handle Unicode filenames.
715   fd_t res;
716   if (mode == RdOnly) {
717     res = CreateFileA(filename, GENERIC_READ,
718                       FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
719                       nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
720   } else if (mode == WrOnly) {
721     res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
722                       FILE_ATTRIBUTE_NORMAL, nullptr);
723   } else {
724     UNIMPLEMENTED();
725   }
726   CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
727   CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
728   if (res == kInvalidFd && last_error)
729     *last_error = GetLastError();
730   return res;
731 }
732 
733 void CloseFile(fd_t fd) {
734   CloseHandle(fd);
735 }
736 
737 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
738                   error_t *error_p) {
739   CHECK(fd != kInvalidFd);
740 
741   // bytes_read can't be passed directly to ReadFile:
742   // uptr is unsigned long long on 64-bit Windows.
743   unsigned long num_read_long;
744 
745   bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
746   if (!success && error_p)
747     *error_p = GetLastError();
748   if (bytes_read)
749     *bytes_read = num_read_long;
750   return success;
751 }
752 
753 bool SupportsColoredOutput(fd_t fd) {
754   // FIXME: support colored output.
755   return false;
756 }
757 
758 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
759                  error_t *error_p) {
760   CHECK(fd != kInvalidFd);
761 
762   // Handle null optional parameters.
763   error_t dummy_error;
764   error_p = error_p ? error_p : &dummy_error;
765   uptr dummy_bytes_written;
766   bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
767 
768   // Initialize output parameters in case we fail.
769   *error_p = 0;
770   *bytes_written = 0;
771 
772   // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
773   // closed, in which case this will fail.
774   if (fd == kStdoutFd || fd == kStderrFd) {
775     fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
776     if (fd == 0) {
777       *error_p = ERROR_INVALID_HANDLE;
778       return false;
779     }
780   }
781 
782   DWORD bytes_written_32;
783   if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
784     *error_p = GetLastError();
785     return false;
786   } else {
787     *bytes_written = bytes_written_32;
788     return true;
789   }
790 }
791 
792 uptr internal_sched_yield() {
793   Sleep(0);
794   return 0;
795 }
796 
797 void internal__exit(int exitcode) {
798   TraceLoggingUnregister(g_asan_provider);
799   // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
800   // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
801   // so add our own breakpoint here.
802   if (::IsDebuggerPresent())
803     __debugbreak();
804   TerminateProcess(GetCurrentProcess(), exitcode);
805   BUILTIN_UNREACHABLE();
806 }
807 
808 uptr internal_ftruncate(fd_t fd, uptr size) {
809   UNIMPLEMENTED();
810 }
811 
812 uptr GetRSS() {
813   PROCESS_MEMORY_COUNTERS counters;
814   if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
815     return 0;
816   return counters.WorkingSetSize;
817 }
818 
819 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
820 void internal_join_thread(void *th) { }
821 
822 void FutexWait(atomic_uint32_t *p, u32 cmp) {
823   WaitOnAddress(p, &cmp, sizeof(cmp), INFINITE);
824 }
825 
826 void FutexWake(atomic_uint32_t *p, u32 count) {
827   if (count == 1)
828     WakeByAddressSingle(p);
829   else
830     WakeByAddressAll(p);
831 }
832 
833 uptr GetTlsSize() {
834   return 0;
835 }
836 
837 void InitTlsSize() {
838 }
839 
840 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
841                           uptr *tls_addr, uptr *tls_size) {
842 #if SANITIZER_GO
843   *stk_addr = 0;
844   *stk_size = 0;
845   *tls_addr = 0;
846   *tls_size = 0;
847 #else
848   uptr stack_top, stack_bottom;
849   GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
850   *stk_addr = stack_bottom;
851   *stk_size = stack_top - stack_bottom;
852   *tls_addr = 0;
853   *tls_size = 0;
854 #endif
855 }
856 
857 void ReportFile::Write(const char *buffer, uptr length) {
858   SpinMutexLock l(mu);
859   ReopenIfNecessary();
860   if (!WriteToFile(fd, buffer, length)) {
861     // stderr may be closed, but we may be able to print to the debugger
862     // instead.  This is the case when launching a program from Visual Studio,
863     // and the following routine should write to its console.
864     OutputDebugStringA(buffer);
865   }
866 }
867 
868 void SetAlternateSignalStack() {
869   // FIXME: Decide what to do on Windows.
870 }
871 
872 void UnsetAlternateSignalStack() {
873   // FIXME: Decide what to do on Windows.
874 }
875 
876 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
877   (void)handler;
878   // FIXME: Decide what to do on Windows.
879 }
880 
881 HandleSignalMode GetHandleSignalMode(int signum) {
882   // FIXME: Decide what to do on Windows.
883   return kHandleSignalNo;
884 }
885 
886 // Check based on flags if we should handle this exception.
887 bool IsHandledDeadlyException(DWORD exceptionCode) {
888   switch (exceptionCode) {
889     case EXCEPTION_ACCESS_VIOLATION:
890     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
891     case EXCEPTION_STACK_OVERFLOW:
892     case EXCEPTION_DATATYPE_MISALIGNMENT:
893     case EXCEPTION_IN_PAGE_ERROR:
894       return common_flags()->handle_segv;
895     case EXCEPTION_ILLEGAL_INSTRUCTION:
896     case EXCEPTION_PRIV_INSTRUCTION:
897     case EXCEPTION_BREAKPOINT:
898       return common_flags()->handle_sigill;
899     case EXCEPTION_FLT_DENORMAL_OPERAND:
900     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
901     case EXCEPTION_FLT_INEXACT_RESULT:
902     case EXCEPTION_FLT_INVALID_OPERATION:
903     case EXCEPTION_FLT_OVERFLOW:
904     case EXCEPTION_FLT_STACK_CHECK:
905     case EXCEPTION_FLT_UNDERFLOW:
906     case EXCEPTION_INT_DIVIDE_BY_ZERO:
907     case EXCEPTION_INT_OVERFLOW:
908       return common_flags()->handle_sigfpe;
909   }
910   return false;
911 }
912 
913 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
914   SYSTEM_INFO si;
915   GetNativeSystemInfo(&si);
916   uptr page_size = si.dwPageSize;
917   uptr page_mask = ~(page_size - 1);
918 
919   for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
920        page <= end;) {
921     MEMORY_BASIC_INFORMATION info;
922     if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
923       return false;
924 
925     if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
926         info.Protect == PAGE_EXECUTE)
927       return false;
928 
929     if (info.RegionSize == 0)
930       return false;
931 
932     page += info.RegionSize;
933   }
934 
935   return true;
936 }
937 
938 bool SignalContext::IsStackOverflow() const {
939   return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
940 }
941 
942 void SignalContext::InitPcSpBp() {
943   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
944   CONTEXT *context_record = (CONTEXT *)context;
945 
946   pc = (uptr)exception_record->ExceptionAddress;
947 #ifdef _WIN64
948   bp = (uptr)context_record->Rbp;
949   sp = (uptr)context_record->Rsp;
950 #else
951   bp = (uptr)context_record->Ebp;
952   sp = (uptr)context_record->Esp;
953 #endif
954 }
955 
956 uptr SignalContext::GetAddress() const {
957   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
958   if (exception_record->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
959     return exception_record->ExceptionInformation[1];
960   return (uptr)exception_record->ExceptionAddress;
961 }
962 
963 bool SignalContext::IsMemoryAccess() const {
964   return ((EXCEPTION_RECORD *)siginfo)->ExceptionCode ==
965          EXCEPTION_ACCESS_VIOLATION;
966 }
967 
968 bool SignalContext::IsTrueFaultingAddress() const { return true; }
969 
970 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
971   EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
972 
973   // The write flag is only available for access violation exceptions.
974   if (exception_record->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
975     return SignalContext::UNKNOWN;
976 
977   // The contents of this array are documented at
978   // https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
979   // The first element indicates read as 0, write as 1, or execute as 8.  The
980   // second element is the faulting address.
981   switch (exception_record->ExceptionInformation[0]) {
982     case 0:
983       return SignalContext::READ;
984     case 1:
985       return SignalContext::WRITE;
986     case 8:
987       return SignalContext::UNKNOWN;
988   }
989   return SignalContext::UNKNOWN;
990 }
991 
992 void SignalContext::DumpAllRegisters(void *context) {
993   // FIXME: Implement this.
994 }
995 
996 int SignalContext::GetType() const {
997   return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
998 }
999 
1000 const char *SignalContext::Describe() const {
1001   unsigned code = GetType();
1002   // Get the string description of the exception if this is a known deadly
1003   // exception.
1004   switch (code) {
1005     case EXCEPTION_ACCESS_VIOLATION:
1006       return "access-violation";
1007     case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
1008       return "array-bounds-exceeded";
1009     case EXCEPTION_STACK_OVERFLOW:
1010       return "stack-overflow";
1011     case EXCEPTION_DATATYPE_MISALIGNMENT:
1012       return "datatype-misalignment";
1013     case EXCEPTION_IN_PAGE_ERROR:
1014       return "in-page-error";
1015     case EXCEPTION_ILLEGAL_INSTRUCTION:
1016       return "illegal-instruction";
1017     case EXCEPTION_PRIV_INSTRUCTION:
1018       return "priv-instruction";
1019     case EXCEPTION_BREAKPOINT:
1020       return "breakpoint";
1021     case EXCEPTION_FLT_DENORMAL_OPERAND:
1022       return "flt-denormal-operand";
1023     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1024       return "flt-divide-by-zero";
1025     case EXCEPTION_FLT_INEXACT_RESULT:
1026       return "flt-inexact-result";
1027     case EXCEPTION_FLT_INVALID_OPERATION:
1028       return "flt-invalid-operation";
1029     case EXCEPTION_FLT_OVERFLOW:
1030       return "flt-overflow";
1031     case EXCEPTION_FLT_STACK_CHECK:
1032       return "flt-stack-check";
1033     case EXCEPTION_FLT_UNDERFLOW:
1034       return "flt-underflow";
1035     case EXCEPTION_INT_DIVIDE_BY_ZERO:
1036       return "int-divide-by-zero";
1037     case EXCEPTION_INT_OVERFLOW:
1038       return "int-overflow";
1039   }
1040   return "unknown exception";
1041 }
1042 
1043 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1044   if (buf_len == 0)
1045     return 0;
1046 
1047   // Get the UTF-16 path and convert to UTF-8.
1048   InternalMmapVector<wchar_t> binname_utf16(kMaxPathLength);
1049   int binname_utf16_len =
1050       GetModuleFileNameW(NULL, &binname_utf16[0], kMaxPathLength);
1051   if (binname_utf16_len == 0) {
1052     buf[0] = '\0';
1053     return 0;
1054   }
1055   int binary_name_len =
1056       ::WideCharToMultiByte(CP_UTF8, 0, &binname_utf16[0], binname_utf16_len,
1057                             buf, buf_len, NULL, NULL);
1058   if ((unsigned)binary_name_len == buf_len)
1059     --binary_name_len;
1060   buf[binary_name_len] = '\0';
1061   return binary_name_len;
1062 }
1063 
1064 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1065   return ReadBinaryName(buf, buf_len);
1066 }
1067 
1068 void CheckVMASize() {
1069   // Do nothing.
1070 }
1071 
1072 void InitializePlatformEarly() {
1073   // Do nothing.
1074 }
1075 
1076 void MaybeReexec() {
1077   // No need to re-exec on Windows.
1078 }
1079 
1080 void CheckASLR() {
1081   // Do nothing
1082 }
1083 
1084 void CheckMPROTECT() {
1085   // Do nothing
1086 }
1087 
1088 char **GetArgv() {
1089   // FIXME: Actually implement this function.
1090   return 0;
1091 }
1092 
1093 char **GetEnviron() {
1094   // FIXME: Actually implement this function.
1095   return 0;
1096 }
1097 
1098 pid_t StartSubprocess(const char *program, const char *const argv[],
1099                       const char *const envp[], fd_t stdin_fd, fd_t stdout_fd,
1100                       fd_t stderr_fd) {
1101   // FIXME: implement on this platform
1102   // Should be implemented based on
1103   // SymbolizerProcess::StarAtSymbolizerSubprocess
1104   // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1105   return -1;
1106 }
1107 
1108 bool IsProcessRunning(pid_t pid) {
1109   // FIXME: implement on this platform.
1110   return false;
1111 }
1112 
1113 int WaitForProcess(pid_t pid) { return -1; }
1114 
1115 // FIXME implement on this platform.
1116 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
1117 
1118 void CheckNoDeepBind(const char *filename, int flag) {
1119   // Do nothing.
1120 }
1121 
1122 // FIXME: implement on this platform.
1123 bool GetRandom(void *buffer, uptr length, bool blocking) {
1124   UNIMPLEMENTED();
1125 }
1126 
1127 u32 GetNumberOfCPUs() {
1128   SYSTEM_INFO sysinfo = {};
1129   GetNativeSystemInfo(&sysinfo);
1130   return sysinfo.dwNumberOfProcessors;
1131 }
1132 
1133 #if SANITIZER_WIN_TRACE
1134 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1135 void AndroidLogInit(void) {
1136   HRESULT hr = TraceLoggingRegister(g_asan_provider);
1137   if (!SUCCEEDED(hr))
1138     return;
1139 }
1140 
1141 void SetAbortMessage(const char *) {}
1142 
1143 void LogFullErrorReport(const char *buffer) {
1144   if (common_flags()->log_to_syslog) {
1145     InternalMmapVector<wchar_t> filename;
1146     DWORD filename_length = 0;
1147     do {
1148       filename.resize(filename.size() + 0x100);
1149       filename_length =
1150           GetModuleFileNameW(NULL, filename.begin(), filename.size());
1151     } while (filename_length >= filename.size());
1152     TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1153                       TraceLoggingValue(filename.begin(), "ExecutableName"),
1154                       TraceLoggingValue(buffer, "AsanReportContents"));
1155   }
1156 }
1157 #endif // SANITIZER_WIN_TRACE
1158 
1159 void InitializePlatformCommonFlags(CommonFlags *cf) {}
1160 
1161 }  // namespace __sanitizer
1162 
1163 #endif  // _WIN32
1164