xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_quarantine.h (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===-- sanitizer_quarantine.h ----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Memory quarantine for AddressSanitizer and potentially other tools.
10 // Quarantine caches some specified amount of memory in per-thread caches,
11 // then evicts to global FIFO queue. When the queue reaches specified threshold,
12 // oldest memory is recycled.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef SANITIZER_QUARANTINE_H
17 #define SANITIZER_QUARANTINE_H
18 
19 #include "sanitizer_internal_defs.h"
20 #include "sanitizer_mutex.h"
21 #include "sanitizer_list.h"
22 
23 namespace __sanitizer {
24 
25 template<typename Node> class QuarantineCache;
26 
27 struct QuarantineBatch {
28   static const uptr kSize = 1021;
29   QuarantineBatch *next;
30   uptr size;
31   uptr count;
32   void *batch[kSize];
33 
34   void init(void *ptr, uptr size) {
35     count = 1;
36     batch[0] = ptr;
37     this->size = size + sizeof(QuarantineBatch);  // Account for the batch size.
38   }
39 
40   // The total size of quarantined nodes recorded in this batch.
41   uptr quarantined_size() const {
42     return size - sizeof(QuarantineBatch);
43   }
44 
45   void push_back(void *ptr, uptr size) {
46     CHECK_LT(count, kSize);
47     batch[count++] = ptr;
48     this->size += size;
49   }
50 
51   bool can_merge(const QuarantineBatch* const from) const {
52     return count + from->count <= kSize;
53   }
54 
55   void merge(QuarantineBatch* const from) {
56     CHECK_LE(count + from->count, kSize);
57     CHECK_GE(size, sizeof(QuarantineBatch));
58 
59     for (uptr i = 0; i < from->count; ++i)
60       batch[count + i] = from->batch[i];
61     count += from->count;
62     size += from->quarantined_size();
63 
64     from->count = 0;
65     from->size = sizeof(QuarantineBatch);
66   }
67 };
68 
69 COMPILER_CHECK(sizeof(QuarantineBatch) <= (1 << 13));  // 8Kb.
70 
71 // The callback interface is:
72 // void Callback::Recycle(Node *ptr);
73 // void *cb.Allocate(uptr size);
74 // void cb.Deallocate(void *ptr);
75 template<typename Callback, typename Node>
76 class Quarantine {
77  public:
78   typedef QuarantineCache<Callback> Cache;
79 
80   explicit Quarantine(LinkerInitialized)
81       : cache_(LINKER_INITIALIZED) {
82   }
83 
84   void Init(uptr size, uptr cache_size) {
85     // Thread local quarantine size can be zero only when global quarantine size
86     // is zero (it allows us to perform just one atomic read per Put() call).
87     CHECK((size == 0 && cache_size == 0) || cache_size != 0);
88 
89     atomic_store_relaxed(&max_size_, size);
90     atomic_store_relaxed(&min_size_, size / 10 * 9);  // 90% of max size.
91     atomic_store_relaxed(&max_cache_size_, cache_size);
92 
93     cache_mutex_.Init();
94     recycle_mutex_.Init();
95   }
96 
97   uptr GetSize() const { return atomic_load_relaxed(&max_size_); }
98   uptr GetCacheSize() const {
99     return atomic_load_relaxed(&max_cache_size_);
100   }
101 
102   void Put(Cache *c, Callback cb, Node *ptr, uptr size) {
103     uptr cache_size = GetCacheSize();
104     if (cache_size) {
105       c->Enqueue(cb, ptr, size);
106     } else {
107       // GetCacheSize() == 0 only when GetSize() == 0 (see Init).
108       cb.Recycle(ptr);
109     }
110     // Check cache size anyway to accommodate for runtime cache_size change.
111     if (c->Size() > cache_size)
112       Drain(c, cb);
113   }
114 
115   void NOINLINE Drain(Cache *c, Callback cb) {
116     {
117       SpinMutexLock l(&cache_mutex_);
118       cache_.Transfer(c);
119     }
120     if (cache_.Size() > GetSize() && recycle_mutex_.TryLock())
121       Recycle(atomic_load_relaxed(&min_size_), cb);
122   }
123 
124   void NOINLINE DrainAndRecycle(Cache *c, Callback cb) {
125     {
126       SpinMutexLock l(&cache_mutex_);
127       cache_.Transfer(c);
128     }
129     recycle_mutex_.Lock();
130     Recycle(0, cb);
131   }
132 
133   void PrintStats() const {
134     // It assumes that the world is stopped, just as the allocator's PrintStats.
135     Printf("Quarantine limits: global: %zdMb; thread local: %zdKb\n",
136            GetSize() >> 20, GetCacheSize() >> 10);
137     cache_.PrintStats();
138   }
139 
140  private:
141   // Read-only data.
142   char pad0_[kCacheLineSize];
143   atomic_uintptr_t max_size_;
144   atomic_uintptr_t min_size_;
145   atomic_uintptr_t max_cache_size_;
146   char pad1_[kCacheLineSize];
147   StaticSpinMutex cache_mutex_;
148   StaticSpinMutex recycle_mutex_;
149   Cache cache_;
150   char pad2_[kCacheLineSize];
151 
152   void NOINLINE Recycle(uptr min_size, Callback cb) {
153     Cache tmp;
154     {
155       SpinMutexLock l(&cache_mutex_);
156       // Go over the batches and merge partially filled ones to
157       // save some memory, otherwise batches themselves (since the memory used
158       // by them is counted against quarantine limit) can overcome the actual
159       // user's quarantined chunks, which diminishes the purpose of the
160       // quarantine.
161       uptr cache_size = cache_.Size();
162       uptr overhead_size = cache_.OverheadSize();
163       CHECK_GE(cache_size, overhead_size);
164       // Do the merge only when overhead exceeds this predefined limit (might
165       // require some tuning). It saves us merge attempt when the batch list
166       // quarantine is unlikely to contain batches suitable for merge.
167       const uptr kOverheadThresholdPercents = 100;
168       if (cache_size > overhead_size &&
169           overhead_size * (100 + kOverheadThresholdPercents) >
170               cache_size * kOverheadThresholdPercents) {
171         cache_.MergeBatches(&tmp);
172       }
173       // Extract enough chunks from the quarantine to get below the max
174       // quarantine size and leave some leeway for the newly quarantined chunks.
175       while (cache_.Size() > min_size) {
176         tmp.EnqueueBatch(cache_.DequeueBatch());
177       }
178     }
179     recycle_mutex_.Unlock();
180     DoRecycle(&tmp, cb);
181   }
182 
183   void NOINLINE DoRecycle(Cache *c, Callback cb) {
184     while (QuarantineBatch *b = c->DequeueBatch()) {
185       const uptr kPrefetch = 16;
186       CHECK(kPrefetch <= ARRAY_SIZE(b->batch));
187       for (uptr i = 0; i < kPrefetch; i++)
188         PREFETCH(b->batch[i]);
189       for (uptr i = 0, count = b->count; i < count; i++) {
190         if (i + kPrefetch < count)
191           PREFETCH(b->batch[i + kPrefetch]);
192         cb.Recycle((Node*)b->batch[i]);
193       }
194       cb.Deallocate(b);
195     }
196   }
197 };
198 
199 // Per-thread cache of memory blocks.
200 template<typename Callback>
201 class QuarantineCache {
202  public:
203   explicit QuarantineCache(LinkerInitialized) {
204   }
205 
206   QuarantineCache()
207       : size_() {
208     list_.clear();
209   }
210 
211   // Total memory used, including internal accounting.
212   uptr Size() const {
213     return atomic_load_relaxed(&size_);
214   }
215 
216   // Memory used for internal accounting.
217   uptr OverheadSize() const {
218     return list_.size() * sizeof(QuarantineBatch);
219   }
220 
221   void Enqueue(Callback cb, void *ptr, uptr size) {
222     if (list_.empty() || list_.back()->count == QuarantineBatch::kSize) {
223       QuarantineBatch *b = (QuarantineBatch *)cb.Allocate(sizeof(*b));
224       CHECK(b);
225       b->init(ptr, size);
226       EnqueueBatch(b);
227     } else {
228       list_.back()->push_back(ptr, size);
229       SizeAdd(size);
230     }
231   }
232 
233   void Transfer(QuarantineCache *from_cache) {
234     list_.append_back(&from_cache->list_);
235     SizeAdd(from_cache->Size());
236 
237     atomic_store_relaxed(&from_cache->size_, 0);
238   }
239 
240   void EnqueueBatch(QuarantineBatch *b) {
241     list_.push_back(b);
242     SizeAdd(b->size);
243   }
244 
245   QuarantineBatch *DequeueBatch() {
246     if (list_.empty())
247       return nullptr;
248     QuarantineBatch *b = list_.front();
249     list_.pop_front();
250     SizeSub(b->size);
251     return b;
252   }
253 
254   void MergeBatches(QuarantineCache *to_deallocate) {
255     uptr extracted_size = 0;
256     QuarantineBatch *current = list_.front();
257     while (current && current->next) {
258       if (current->can_merge(current->next)) {
259         QuarantineBatch *extracted = current->next;
260         // Move all the chunks into the current batch.
261         current->merge(extracted);
262         CHECK_EQ(extracted->count, 0);
263         CHECK_EQ(extracted->size, sizeof(QuarantineBatch));
264         // Remove the next batch from the list and account for its size.
265         list_.extract(current, extracted);
266         extracted_size += extracted->size;
267         // Add it to deallocation list.
268         to_deallocate->EnqueueBatch(extracted);
269       } else {
270         current = current->next;
271       }
272     }
273     SizeSub(extracted_size);
274   }
275 
276   void PrintStats() const {
277     uptr batch_count = 0;
278     uptr total_overhead_bytes = 0;
279     uptr total_bytes = 0;
280     uptr total_quarantine_chunks = 0;
281     for (List::ConstIterator it = list_.begin(); it != list_.end(); ++it) {
282       batch_count++;
283       total_bytes += (*it).size;
284       total_overhead_bytes += (*it).size - (*it).quarantined_size();
285       total_quarantine_chunks += (*it).count;
286     }
287     uptr quarantine_chunks_capacity = batch_count * QuarantineBatch::kSize;
288     int chunks_usage_percent = quarantine_chunks_capacity == 0 ?
289         0 : total_quarantine_chunks * 100 / quarantine_chunks_capacity;
290     uptr total_quarantined_bytes = total_bytes - total_overhead_bytes;
291     int memory_overhead_percent = total_quarantined_bytes == 0 ?
292         0 : total_overhead_bytes * 100 / total_quarantined_bytes;
293     Printf("Global quarantine stats: batches: %zd; bytes: %zd (user: %zd); "
294            "chunks: %zd (capacity: %zd); %d%% chunks used; %d%% memory overhead"
295            "\n",
296            batch_count, total_bytes, total_quarantined_bytes,
297            total_quarantine_chunks, quarantine_chunks_capacity,
298            chunks_usage_percent, memory_overhead_percent);
299   }
300 
301  private:
302   typedef IntrusiveList<QuarantineBatch> List;
303 
304   List list_;
305   atomic_uintptr_t size_;
306 
307   void SizeAdd(uptr add) {
308     atomic_store_relaxed(&size_, Size() + add);
309   }
310   void SizeSub(uptr sub) {
311     atomic_store_relaxed(&size_, Size() - sub);
312   }
313 };
314 
315 } // namespace __sanitizer
316 
317 #endif // SANITIZER_QUARANTINE_H
318