1 //===-- sanitizer_linux.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and ThreadSanitizer 10 // run-time libraries and implements linux-specific functions from 11 // sanitizer_libc.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_platform.h" 15 16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \ 17 SANITIZER_SOLARIS 18 19 # include "sanitizer_common.h" 20 # include "sanitizer_flags.h" 21 # include "sanitizer_getauxval.h" 22 # include "sanitizer_internal_defs.h" 23 # include "sanitizer_libc.h" 24 # include "sanitizer_linux.h" 25 # include "sanitizer_mutex.h" 26 # include "sanitizer_placement_new.h" 27 # include "sanitizer_procmaps.h" 28 29 # if SANITIZER_LINUX && !SANITIZER_GO 30 # include <asm/param.h> 31 # endif 32 33 // For mips64, syscall(__NR_stat) fills the buffer in the 'struct kernel_stat' 34 // format. Struct kernel_stat is defined as 'struct stat' in asm/stat.h. To 35 // access stat from asm/stat.h, without conflicting with definition in 36 // sys/stat.h, we use this trick. 37 # if SANITIZER_MIPS64 38 # include <asm/unistd.h> 39 # include <sys/types.h> 40 # define stat kernel_stat 41 # if SANITIZER_GO 42 # undef st_atime 43 # undef st_mtime 44 # undef st_ctime 45 # define st_atime st_atim 46 # define st_mtime st_mtim 47 # define st_ctime st_ctim 48 # endif 49 # include <asm/stat.h> 50 # undef stat 51 # endif 52 53 # include <dlfcn.h> 54 # include <errno.h> 55 # include <fcntl.h> 56 # include <link.h> 57 # include <pthread.h> 58 # include <sched.h> 59 # include <signal.h> 60 # include <sys/mman.h> 61 # if !SANITIZER_SOLARIS 62 # include <sys/ptrace.h> 63 # endif 64 # include <sys/resource.h> 65 # include <sys/stat.h> 66 # include <sys/syscall.h> 67 # include <sys/time.h> 68 # include <sys/types.h> 69 # include <ucontext.h> 70 # include <unistd.h> 71 72 # if SANITIZER_LINUX 73 # include <sys/utsname.h> 74 # endif 75 76 # if SANITIZER_LINUX && !SANITIZER_ANDROID 77 # include <sys/personality.h> 78 # endif 79 80 # if SANITIZER_LINUX && defined(__loongarch__) 81 # include <sys/sysmacros.h> 82 # endif 83 84 # if SANITIZER_FREEBSD 85 # include <machine/atomic.h> 86 # include <sys/exec.h> 87 # include <sys/procctl.h> 88 # include <sys/sysctl.h> 89 extern "C" { 90 // <sys/umtx.h> must be included after <errno.h> and <sys/types.h> on 91 // FreeBSD 9.2 and 10.0. 92 # include <sys/umtx.h> 93 } 94 # include <sys/thr.h> 95 # endif // SANITIZER_FREEBSD 96 97 # if SANITIZER_NETBSD 98 # include <limits.h> // For NAME_MAX 99 # include <sys/exec.h> 100 # include <sys/sysctl.h> 101 extern struct ps_strings *__ps_strings; 102 # endif // SANITIZER_NETBSD 103 104 # if SANITIZER_SOLARIS 105 # include <stdlib.h> 106 # include <thread.h> 107 # define environ _environ 108 # endif 109 110 extern char **environ; 111 112 # if SANITIZER_LINUX 113 // <linux/time.h> 114 struct kernel_timeval { 115 long tv_sec; 116 long tv_usec; 117 }; 118 119 // <linux/futex.h> is broken on some linux distributions. 120 const int FUTEX_WAIT = 0; 121 const int FUTEX_WAKE = 1; 122 const int FUTEX_PRIVATE_FLAG = 128; 123 const int FUTEX_WAIT_PRIVATE = FUTEX_WAIT | FUTEX_PRIVATE_FLAG; 124 const int FUTEX_WAKE_PRIVATE = FUTEX_WAKE | FUTEX_PRIVATE_FLAG; 125 # endif // SANITIZER_LINUX 126 127 // Are we using 32-bit or 64-bit Linux syscalls? 128 // x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32 129 // but it still needs to use 64-bit syscalls. 130 # if SANITIZER_LINUX && (defined(__x86_64__) || defined(__powerpc64__) || \ 131 SANITIZER_WORDSIZE == 64 || \ 132 (defined(__mips__) && _MIPS_SIM == _ABIN32)) 133 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1 134 # else 135 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0 136 # endif 137 138 // Note : FreeBSD implemented both Linux and OpenBSD apis. 139 # if SANITIZER_LINUX && defined(__NR_getrandom) 140 # if !defined(GRND_NONBLOCK) 141 # define GRND_NONBLOCK 1 142 # endif 143 # define SANITIZER_USE_GETRANDOM 1 144 # else 145 # define SANITIZER_USE_GETRANDOM 0 146 # endif // SANITIZER_LINUX && defined(__NR_getrandom) 147 148 # if SANITIZER_FREEBSD 149 # define SANITIZER_USE_GETENTROPY 1 150 # endif 151 152 namespace __sanitizer { 153 154 void SetSigProcMask(__sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) { 155 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, set, oldset)); 156 } 157 158 void BlockSignals(__sanitizer_sigset_t *oldset) { 159 __sanitizer_sigset_t set; 160 internal_sigfillset(&set); 161 # if SANITIZER_LINUX && !SANITIZER_ANDROID 162 // Glibc uses SIGSETXID signal during setuid call. If this signal is blocked 163 // on any thread, setuid call hangs. 164 // See test/sanitizer_common/TestCases/Linux/setuid.c. 165 internal_sigdelset(&set, 33); 166 # endif 167 # if SANITIZER_LINUX 168 // Seccomp-BPF-sandboxed processes rely on SIGSYS to handle trapped syscalls. 169 // If this signal is blocked, such calls cannot be handled and the process may 170 // hang. 171 internal_sigdelset(&set, 31); 172 # endif 173 SetSigProcMask(&set, oldset); 174 } 175 176 ScopedBlockSignals::ScopedBlockSignals(__sanitizer_sigset_t *copy) { 177 BlockSignals(&saved_); 178 if (copy) 179 internal_memcpy(copy, &saved_, sizeof(saved_)); 180 } 181 182 ScopedBlockSignals::~ScopedBlockSignals() { SetSigProcMask(&saved_, nullptr); } 183 184 # if SANITIZER_LINUX && defined(__x86_64__) 185 # include "sanitizer_syscall_linux_x86_64.inc" 186 # elif SANITIZER_LINUX && SANITIZER_RISCV64 187 # include "sanitizer_syscall_linux_riscv64.inc" 188 # elif SANITIZER_LINUX && defined(__aarch64__) 189 # include "sanitizer_syscall_linux_aarch64.inc" 190 # elif SANITIZER_LINUX && defined(__arm__) 191 # include "sanitizer_syscall_linux_arm.inc" 192 # elif SANITIZER_LINUX && defined(__hexagon__) 193 # include "sanitizer_syscall_linux_hexagon.inc" 194 # elif SANITIZER_LINUX && SANITIZER_LOONGARCH64 195 # include "sanitizer_syscall_linux_loongarch64.inc" 196 # else 197 # include "sanitizer_syscall_generic.inc" 198 # endif 199 200 // --------------- sanitizer_libc.h 201 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD 202 # if !SANITIZER_S390 203 uptr internal_mmap(void *addr, uptr length, int prot, int flags, int fd, 204 u64 offset) { 205 # if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS 206 return internal_syscall(SYSCALL(mmap), (uptr)addr, length, prot, flags, fd, 207 offset); 208 # else 209 // mmap2 specifies file offset in 4096-byte units. 210 CHECK(IsAligned(offset, 4096)); 211 return internal_syscall(SYSCALL(mmap2), addr, length, prot, flags, fd, 212 offset / 4096); 213 # endif 214 } 215 # endif // !SANITIZER_S390 216 217 uptr internal_munmap(void *addr, uptr length) { 218 return internal_syscall(SYSCALL(munmap), (uptr)addr, length); 219 } 220 221 # if SANITIZER_LINUX 222 uptr internal_mremap(void *old_address, uptr old_size, uptr new_size, int flags, 223 void *new_address) { 224 return internal_syscall(SYSCALL(mremap), (uptr)old_address, old_size, 225 new_size, flags, (uptr)new_address); 226 } 227 # endif 228 229 int internal_mprotect(void *addr, uptr length, int prot) { 230 return internal_syscall(SYSCALL(mprotect), (uptr)addr, length, prot); 231 } 232 233 int internal_madvise(uptr addr, uptr length, int advice) { 234 return internal_syscall(SYSCALL(madvise), addr, length, advice); 235 } 236 237 uptr internal_close(fd_t fd) { return internal_syscall(SYSCALL(close), fd); } 238 239 uptr internal_open(const char *filename, int flags) { 240 # if SANITIZER_LINUX 241 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags); 242 # else 243 return internal_syscall(SYSCALL(open), (uptr)filename, flags); 244 # endif 245 } 246 247 uptr internal_open(const char *filename, int flags, u32 mode) { 248 # if SANITIZER_LINUX 249 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags, 250 mode); 251 # else 252 return internal_syscall(SYSCALL(open), (uptr)filename, flags, mode); 253 # endif 254 } 255 256 uptr internal_read(fd_t fd, void *buf, uptr count) { 257 sptr res; 258 HANDLE_EINTR(res, 259 (sptr)internal_syscall(SYSCALL(read), fd, (uptr)buf, count)); 260 return res; 261 } 262 263 uptr internal_write(fd_t fd, const void *buf, uptr count) { 264 sptr res; 265 HANDLE_EINTR(res, 266 (sptr)internal_syscall(SYSCALL(write), fd, (uptr)buf, count)); 267 return res; 268 } 269 270 uptr internal_ftruncate(fd_t fd, uptr size) { 271 sptr res; 272 HANDLE_EINTR(res, 273 (sptr)internal_syscall(SYSCALL(ftruncate), fd, (OFF_T)size)); 274 return res; 275 } 276 277 # if (!SANITIZER_LINUX_USES_64BIT_SYSCALLS || SANITIZER_SPARC) && \ 278 SANITIZER_LINUX 279 static void stat64_to_stat(struct stat64 *in, struct stat *out) { 280 internal_memset(out, 0, sizeof(*out)); 281 out->st_dev = in->st_dev; 282 out->st_ino = in->st_ino; 283 out->st_mode = in->st_mode; 284 out->st_nlink = in->st_nlink; 285 out->st_uid = in->st_uid; 286 out->st_gid = in->st_gid; 287 out->st_rdev = in->st_rdev; 288 out->st_size = in->st_size; 289 out->st_blksize = in->st_blksize; 290 out->st_blocks = in->st_blocks; 291 out->st_atime = in->st_atime; 292 out->st_mtime = in->st_mtime; 293 out->st_ctime = in->st_ctime; 294 } 295 # endif 296 297 # if SANITIZER_LINUX && defined(__loongarch__) 298 static void statx_to_stat(struct statx *in, struct stat *out) { 299 internal_memset(out, 0, sizeof(*out)); 300 out->st_dev = makedev(in->stx_dev_major, in->stx_dev_minor); 301 out->st_ino = in->stx_ino; 302 out->st_mode = in->stx_mode; 303 out->st_nlink = in->stx_nlink; 304 out->st_uid = in->stx_uid; 305 out->st_gid = in->stx_gid; 306 out->st_rdev = makedev(in->stx_rdev_major, in->stx_rdev_minor); 307 out->st_size = in->stx_size; 308 out->st_blksize = in->stx_blksize; 309 out->st_blocks = in->stx_blocks; 310 out->st_atime = in->stx_atime.tv_sec; 311 out->st_atim.tv_nsec = in->stx_atime.tv_nsec; 312 out->st_mtime = in->stx_mtime.tv_sec; 313 out->st_mtim.tv_nsec = in->stx_mtime.tv_nsec; 314 out->st_ctime = in->stx_ctime.tv_sec; 315 out->st_ctim.tv_nsec = in->stx_ctime.tv_nsec; 316 } 317 # endif 318 319 # if SANITIZER_MIPS64 320 // Undefine compatibility macros from <sys/stat.h> 321 // so that they would not clash with the kernel_stat 322 // st_[a|m|c]time fields 323 # if !SANITIZER_GO 324 # undef st_atime 325 # undef st_mtime 326 # undef st_ctime 327 # endif 328 # if defined(SANITIZER_ANDROID) 329 // Bionic sys/stat.h defines additional macros 330 // for compatibility with the old NDKs and 331 // they clash with the kernel_stat structure 332 // st_[a|m|c]time_nsec fields. 333 # undef st_atime_nsec 334 # undef st_mtime_nsec 335 # undef st_ctime_nsec 336 # endif 337 static void kernel_stat_to_stat(struct kernel_stat *in, struct stat *out) { 338 internal_memset(out, 0, sizeof(*out)); 339 out->st_dev = in->st_dev; 340 out->st_ino = in->st_ino; 341 out->st_mode = in->st_mode; 342 out->st_nlink = in->st_nlink; 343 out->st_uid = in->st_uid; 344 out->st_gid = in->st_gid; 345 out->st_rdev = in->st_rdev; 346 out->st_size = in->st_size; 347 out->st_blksize = in->st_blksize; 348 out->st_blocks = in->st_blocks; 349 # if defined(__USE_MISC) || defined(__USE_XOPEN2K8) || \ 350 defined(SANITIZER_ANDROID) 351 out->st_atim.tv_sec = in->st_atime; 352 out->st_atim.tv_nsec = in->st_atime_nsec; 353 out->st_mtim.tv_sec = in->st_mtime; 354 out->st_mtim.tv_nsec = in->st_mtime_nsec; 355 out->st_ctim.tv_sec = in->st_ctime; 356 out->st_ctim.tv_nsec = in->st_ctime_nsec; 357 # else 358 out->st_atime = in->st_atime; 359 out->st_atimensec = in->st_atime_nsec; 360 out->st_mtime = in->st_mtime; 361 out->st_mtimensec = in->st_mtime_nsec; 362 out->st_ctime = in->st_ctime; 363 out->st_atimensec = in->st_ctime_nsec; 364 # endif 365 } 366 # endif 367 368 uptr internal_stat(const char *path, void *buf) { 369 # if SANITIZER_FREEBSD 370 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 0); 371 # elif SANITIZER_LINUX 372 # if defined(__loongarch__) 373 struct statx bufx; 374 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path, 375 AT_NO_AUTOMOUNT, STATX_BASIC_STATS, (uptr)&bufx); 376 statx_to_stat(&bufx, (struct stat *)buf); 377 return res; 378 # elif (SANITIZER_WORDSIZE == 64 || SANITIZER_X32 || \ 379 (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \ 380 !SANITIZER_SPARC 381 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, 382 0); 383 # else 384 struct stat64 buf64; 385 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 386 (uptr)&buf64, 0); 387 stat64_to_stat(&buf64, (struct stat *)buf); 388 return res; 389 # endif 390 # else 391 struct stat64 buf64; 392 int res = internal_syscall(SYSCALL(stat64), path, &buf64); 393 stat64_to_stat(&buf64, (struct stat *)buf); 394 return res; 395 # endif 396 } 397 398 uptr internal_lstat(const char *path, void *buf) { 399 # if SANITIZER_FREEBSD 400 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 401 AT_SYMLINK_NOFOLLOW); 402 # elif SANITIZER_LINUX 403 # if defined(__loongarch__) 404 struct statx bufx; 405 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path, 406 AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT, 407 STATX_BASIC_STATS, (uptr)&bufx); 408 statx_to_stat(&bufx, (struct stat *)buf); 409 return res; 410 # elif (defined(_LP64) || SANITIZER_X32 || \ 411 (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \ 412 !SANITIZER_SPARC 413 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, 414 AT_SYMLINK_NOFOLLOW); 415 # else 416 struct stat64 buf64; 417 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 418 (uptr)&buf64, AT_SYMLINK_NOFOLLOW); 419 stat64_to_stat(&buf64, (struct stat *)buf); 420 return res; 421 # endif 422 # else 423 struct stat64 buf64; 424 int res = internal_syscall(SYSCALL(lstat64), path, &buf64); 425 stat64_to_stat(&buf64, (struct stat *)buf); 426 return res; 427 # endif 428 } 429 430 uptr internal_fstat(fd_t fd, void *buf) { 431 # if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS 432 # if SANITIZER_MIPS64 433 // For mips64, fstat syscall fills buffer in the format of kernel_stat 434 struct kernel_stat kbuf; 435 int res = internal_syscall(SYSCALL(fstat), fd, &kbuf); 436 kernel_stat_to_stat(&kbuf, (struct stat *)buf); 437 return res; 438 # elif SANITIZER_LINUX && defined(__loongarch__) 439 struct statx bufx; 440 int res = internal_syscall(SYSCALL(statx), fd, "", AT_EMPTY_PATH, 441 STATX_BASIC_STATS, (uptr)&bufx); 442 statx_to_stat(&bufx, (struct stat *)buf); 443 return res; 444 # else 445 return internal_syscall(SYSCALL(fstat), fd, (uptr)buf); 446 # endif 447 # else 448 struct stat64 buf64; 449 int res = internal_syscall(SYSCALL(fstat64), fd, &buf64); 450 stat64_to_stat(&buf64, (struct stat *)buf); 451 return res; 452 # endif 453 } 454 455 uptr internal_filesize(fd_t fd) { 456 struct stat st; 457 if (internal_fstat(fd, &st)) 458 return -1; 459 return (uptr)st.st_size; 460 } 461 462 uptr internal_dup(int oldfd) { return internal_syscall(SYSCALL(dup), oldfd); } 463 464 uptr internal_dup2(int oldfd, int newfd) { 465 # if SANITIZER_LINUX 466 return internal_syscall(SYSCALL(dup3), oldfd, newfd, 0); 467 # else 468 return internal_syscall(SYSCALL(dup2), oldfd, newfd); 469 # endif 470 } 471 472 uptr internal_readlink(const char *path, char *buf, uptr bufsize) { 473 # if SANITIZER_LINUX 474 return internal_syscall(SYSCALL(readlinkat), AT_FDCWD, (uptr)path, (uptr)buf, 475 bufsize); 476 # else 477 return internal_syscall(SYSCALL(readlink), (uptr)path, (uptr)buf, bufsize); 478 # endif 479 } 480 481 uptr internal_unlink(const char *path) { 482 # if SANITIZER_LINUX 483 return internal_syscall(SYSCALL(unlinkat), AT_FDCWD, (uptr)path, 0); 484 # else 485 return internal_syscall(SYSCALL(unlink), (uptr)path); 486 # endif 487 } 488 489 uptr internal_rename(const char *oldpath, const char *newpath) { 490 # if (defined(__riscv) || defined(__loongarch__)) && defined(__linux__) 491 return internal_syscall(SYSCALL(renameat2), AT_FDCWD, (uptr)oldpath, AT_FDCWD, 492 (uptr)newpath, 0); 493 # elif SANITIZER_LINUX 494 return internal_syscall(SYSCALL(renameat), AT_FDCWD, (uptr)oldpath, AT_FDCWD, 495 (uptr)newpath); 496 # else 497 return internal_syscall(SYSCALL(rename), (uptr)oldpath, (uptr)newpath); 498 # endif 499 } 500 501 uptr internal_sched_yield() { return internal_syscall(SYSCALL(sched_yield)); } 502 503 void internal_usleep(u64 useconds) { 504 struct timespec ts; 505 ts.tv_sec = useconds / 1000000; 506 ts.tv_nsec = (useconds % 1000000) * 1000; 507 internal_syscall(SYSCALL(nanosleep), &ts, &ts); 508 } 509 510 uptr internal_execve(const char *filename, char *const argv[], 511 char *const envp[]) { 512 return internal_syscall(SYSCALL(execve), (uptr)filename, (uptr)argv, 513 (uptr)envp); 514 } 515 # endif // !SANITIZER_SOLARIS && !SANITIZER_NETBSD 516 517 # if !SANITIZER_NETBSD 518 void internal__exit(int exitcode) { 519 # if SANITIZER_FREEBSD || SANITIZER_SOLARIS 520 internal_syscall(SYSCALL(exit), exitcode); 521 # else 522 internal_syscall(SYSCALL(exit_group), exitcode); 523 # endif 524 Die(); // Unreachable. 525 } 526 # endif // !SANITIZER_NETBSD 527 528 // ----------------- sanitizer_common.h 529 bool FileExists(const char *filename) { 530 if (ShouldMockFailureToOpen(filename)) 531 return false; 532 struct stat st; 533 if (internal_stat(filename, &st)) 534 return false; 535 // Sanity check: filename is a regular file. 536 return S_ISREG(st.st_mode); 537 } 538 539 bool DirExists(const char *path) { 540 struct stat st; 541 if (internal_stat(path, &st)) 542 return false; 543 return S_ISDIR(st.st_mode); 544 } 545 546 # if !SANITIZER_NETBSD 547 tid_t GetTid() { 548 # if SANITIZER_FREEBSD 549 long Tid; 550 thr_self(&Tid); 551 return Tid; 552 # elif SANITIZER_SOLARIS 553 return thr_self(); 554 # else 555 return internal_syscall(SYSCALL(gettid)); 556 # endif 557 } 558 559 int TgKill(pid_t pid, tid_t tid, int sig) { 560 # if SANITIZER_LINUX 561 return internal_syscall(SYSCALL(tgkill), pid, tid, sig); 562 # elif SANITIZER_FREEBSD 563 return internal_syscall(SYSCALL(thr_kill2), pid, tid, sig); 564 # elif SANITIZER_SOLARIS 565 (void)pid; 566 return thr_kill(tid, sig); 567 # endif 568 } 569 # endif 570 571 # if SANITIZER_GLIBC 572 u64 NanoTime() { 573 kernel_timeval tv; 574 internal_memset(&tv, 0, sizeof(tv)); 575 internal_syscall(SYSCALL(gettimeofday), &tv, 0); 576 return (u64)tv.tv_sec * 1000 * 1000 * 1000 + tv.tv_usec * 1000; 577 } 578 // Used by real_clock_gettime. 579 uptr internal_clock_gettime(__sanitizer_clockid_t clk_id, void *tp) { 580 return internal_syscall(SYSCALL(clock_gettime), clk_id, tp); 581 } 582 # elif !SANITIZER_SOLARIS && !SANITIZER_NETBSD 583 u64 NanoTime() { 584 struct timespec ts; 585 clock_gettime(CLOCK_REALTIME, &ts); 586 return (u64)ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec; 587 } 588 # endif 589 590 // Like getenv, but reads env directly from /proc (on Linux) or parses the 591 // 'environ' array (on some others) and does not use libc. This function 592 // should be called first inside __asan_init. 593 const char *GetEnv(const char *name) { 594 # if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_SOLARIS 595 if (::environ != 0) { 596 uptr NameLen = internal_strlen(name); 597 for (char **Env = ::environ; *Env != 0; Env++) { 598 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') 599 return (*Env) + NameLen + 1; 600 } 601 } 602 return 0; // Not found. 603 # elif SANITIZER_LINUX 604 static char *environ; 605 static uptr len; 606 static bool inited; 607 if (!inited) { 608 inited = true; 609 uptr environ_size; 610 if (!ReadFileToBuffer("/proc/self/environ", &environ, &environ_size, &len)) 611 environ = nullptr; 612 } 613 if (!environ || len == 0) 614 return nullptr; 615 uptr namelen = internal_strlen(name); 616 const char *p = environ; 617 while (*p != '\0') { // will happen at the \0\0 that terminates the buffer 618 // proc file has the format NAME=value\0NAME=value\0NAME=value\0... 619 const char *endp = (char *)internal_memchr(p, '\0', len - (p - environ)); 620 if (!endp) // this entry isn't NUL terminated 621 return nullptr; 622 else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=') // Match. 623 return p + namelen + 1; // point after = 624 p = endp + 1; 625 } 626 return nullptr; // Not found. 627 # else 628 # error "Unsupported platform" 629 # endif 630 } 631 632 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD && !SANITIZER_GO 633 extern "C" { 634 SANITIZER_WEAK_ATTRIBUTE extern void *__libc_stack_end; 635 } 636 # endif 637 638 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD 639 static void ReadNullSepFileToArray(const char *path, char ***arr, 640 int arr_size) { 641 char *buff; 642 uptr buff_size; 643 uptr buff_len; 644 *arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray"); 645 if (!ReadFileToBuffer(path, &buff, &buff_size, &buff_len, 1024 * 1024)) { 646 (*arr)[0] = nullptr; 647 return; 648 } 649 (*arr)[0] = buff; 650 int count, i; 651 for (count = 1, i = 1;; i++) { 652 if (buff[i] == 0) { 653 if (buff[i + 1] == 0) 654 break; 655 (*arr)[count] = &buff[i + 1]; 656 CHECK_LE(count, arr_size - 1); // FIXME: make this more flexible. 657 count++; 658 } 659 } 660 (*arr)[count] = nullptr; 661 } 662 # endif 663 664 static void GetArgsAndEnv(char ***argv, char ***envp) { 665 # if SANITIZER_FREEBSD 666 // On FreeBSD, retrieving the argument and environment arrays is done via the 667 // kern.ps_strings sysctl, which returns a pointer to a structure containing 668 // this information. See also <sys/exec.h>. 669 ps_strings *pss; 670 uptr sz = sizeof(pss); 671 if (internal_sysctlbyname("kern.ps_strings", &pss, &sz, NULL, 0) == -1) { 672 Printf("sysctl kern.ps_strings failed\n"); 673 Die(); 674 } 675 *argv = pss->ps_argvstr; 676 *envp = pss->ps_envstr; 677 # elif SANITIZER_NETBSD 678 *argv = __ps_strings->ps_argvstr; 679 *envp = __ps_strings->ps_envstr; 680 # else // SANITIZER_FREEBSD 681 # if !SANITIZER_GO 682 if (&__libc_stack_end) { 683 uptr *stack_end = (uptr *)__libc_stack_end; 684 // Normally argc can be obtained from *stack_end, however, on ARM glibc's 685 // _start clobbers it: 686 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/arm/start.S;hb=refs/heads/release/2.31/master#l75 687 // Do not special-case ARM and infer argc from argv everywhere. 688 int argc = 0; 689 while (stack_end[argc + 1]) argc++; 690 *argv = (char **)(stack_end + 1); 691 *envp = (char **)(stack_end + argc + 2); 692 } else { 693 # endif // !SANITIZER_GO 694 static const int kMaxArgv = 2000, kMaxEnvp = 2000; 695 ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv); 696 ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp); 697 # if !SANITIZER_GO 698 } 699 # endif // !SANITIZER_GO 700 # endif // SANITIZER_FREEBSD 701 } 702 703 char **GetArgv() { 704 char **argv, **envp; 705 GetArgsAndEnv(&argv, &envp); 706 return argv; 707 } 708 709 char **GetEnviron() { 710 char **argv, **envp; 711 GetArgsAndEnv(&argv, &envp); 712 return envp; 713 } 714 715 # if !SANITIZER_SOLARIS 716 void FutexWait(atomic_uint32_t *p, u32 cmp) { 717 # if SANITIZER_FREEBSD 718 _umtx_op(p, UMTX_OP_WAIT_UINT, cmp, 0, 0); 719 # elif SANITIZER_NETBSD 720 sched_yield(); /* No userspace futex-like synchronization */ 721 # else 722 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAIT_PRIVATE, cmp, 0, 0, 0); 723 # endif 724 } 725 726 void FutexWake(atomic_uint32_t *p, u32 count) { 727 # if SANITIZER_FREEBSD 728 _umtx_op(p, UMTX_OP_WAKE, count, 0, 0); 729 # elif SANITIZER_NETBSD 730 /* No userspace futex-like synchronization */ 731 # else 732 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAKE_PRIVATE, count, 0, 0, 0); 733 # endif 734 } 735 736 # endif // !SANITIZER_SOLARIS 737 738 // ----------------- sanitizer_linux.h 739 // The actual size of this structure is specified by d_reclen. 740 // Note that getdents64 uses a different structure format. We only provide the 741 // 32-bit syscall here. 742 # if SANITIZER_NETBSD 743 // Not used 744 # else 745 struct linux_dirent { 746 # if SANITIZER_X32 || SANITIZER_LINUX 747 u64 d_ino; 748 u64 d_off; 749 # else 750 unsigned long d_ino; 751 unsigned long d_off; 752 # endif 753 unsigned short d_reclen; 754 # if SANITIZER_LINUX 755 unsigned char d_type; 756 # endif 757 char d_name[256]; 758 }; 759 # endif 760 761 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD 762 // Syscall wrappers. 763 uptr internal_ptrace(int request, int pid, void *addr, void *data) { 764 return internal_syscall(SYSCALL(ptrace), request, pid, (uptr)addr, 765 (uptr)data); 766 } 767 768 uptr internal_waitpid(int pid, int *status, int options) { 769 return internal_syscall(SYSCALL(wait4), pid, (uptr)status, options, 770 0 /* rusage */); 771 } 772 773 uptr internal_getpid() { return internal_syscall(SYSCALL(getpid)); } 774 775 uptr internal_getppid() { return internal_syscall(SYSCALL(getppid)); } 776 777 int internal_dlinfo(void *handle, int request, void *p) { 778 # if SANITIZER_FREEBSD 779 return dlinfo(handle, request, p); 780 # else 781 UNIMPLEMENTED(); 782 # endif 783 } 784 785 uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) { 786 # if SANITIZER_FREEBSD 787 return internal_syscall(SYSCALL(getdirentries), fd, (uptr)dirp, count, NULL); 788 # elif SANITIZER_LINUX 789 return internal_syscall(SYSCALL(getdents64), fd, (uptr)dirp, count); 790 # else 791 return internal_syscall(SYSCALL(getdents), fd, (uptr)dirp, count); 792 # endif 793 } 794 795 uptr internal_lseek(fd_t fd, OFF_T offset, int whence) { 796 return internal_syscall(SYSCALL(lseek), fd, offset, whence); 797 } 798 799 # if SANITIZER_LINUX 800 uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) { 801 return internal_syscall(SYSCALL(prctl), option, arg2, arg3, arg4, arg5); 802 } 803 # if defined(__x86_64__) 804 # include <asm/unistd_64.h> 805 // Currently internal_arch_prctl() is only needed on x86_64. 806 uptr internal_arch_prctl(int option, uptr arg2) { 807 return internal_syscall(__NR_arch_prctl, option, arg2); 808 } 809 # endif 810 # endif 811 812 uptr internal_sigaltstack(const void *ss, void *oss) { 813 return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss); 814 } 815 816 int internal_fork() { 817 # if SANITIZER_LINUX 818 # if SANITIZER_S390 819 return internal_syscall(SYSCALL(clone), 0, SIGCHLD); 820 # else 821 return internal_syscall(SYSCALL(clone), SIGCHLD, 0); 822 # endif 823 # else 824 return internal_syscall(SYSCALL(fork)); 825 # endif 826 } 827 828 # if SANITIZER_FREEBSD 829 int internal_sysctl(const int *name, unsigned int namelen, void *oldp, 830 uptr *oldlenp, const void *newp, uptr newlen) { 831 return internal_syscall(SYSCALL(__sysctl), name, namelen, oldp, 832 (size_t *)oldlenp, newp, (size_t)newlen); 833 } 834 835 int internal_sysctlbyname(const char *sname, void *oldp, uptr *oldlenp, 836 const void *newp, uptr newlen) { 837 // Note: this function can be called during startup, so we need to avoid 838 // calling any interceptable functions. On FreeBSD >= 1300045 sysctlbyname() 839 // is a real syscall, but for older versions it calls sysctlnametomib() 840 // followed by sysctl(). To avoid calling the intercepted version and 841 // asserting if this happens during startup, call the real sysctlnametomib() 842 // followed by internal_sysctl() if the syscall is not available. 843 # ifdef SYS___sysctlbyname 844 return internal_syscall(SYSCALL(__sysctlbyname), sname, 845 internal_strlen(sname), oldp, (size_t *)oldlenp, newp, 846 (size_t)newlen); 847 # else 848 static decltype(sysctlnametomib) *real_sysctlnametomib = nullptr; 849 if (!real_sysctlnametomib) 850 real_sysctlnametomib = 851 (decltype(sysctlnametomib) *)dlsym(RTLD_NEXT, "sysctlnametomib"); 852 CHECK(real_sysctlnametomib); 853 854 int oid[CTL_MAXNAME]; 855 size_t len = CTL_MAXNAME; 856 if (real_sysctlnametomib(sname, oid, &len) == -1) 857 return (-1); 858 return internal_sysctl(oid, len, oldp, oldlenp, newp, newlen); 859 # endif 860 } 861 # endif 862 863 # if SANITIZER_LINUX 864 # define SA_RESTORER 0x04000000 865 // Doesn't set sa_restorer if the caller did not set it, so use with caution 866 //(see below). 867 int internal_sigaction_norestorer(int signum, const void *act, void *oldact) { 868 __sanitizer_kernel_sigaction_t k_act, k_oldact; 869 internal_memset(&k_act, 0, sizeof(__sanitizer_kernel_sigaction_t)); 870 internal_memset(&k_oldact, 0, sizeof(__sanitizer_kernel_sigaction_t)); 871 const __sanitizer_sigaction *u_act = (const __sanitizer_sigaction *)act; 872 __sanitizer_sigaction *u_oldact = (__sanitizer_sigaction *)oldact; 873 if (u_act) { 874 k_act.handler = u_act->handler; 875 k_act.sigaction = u_act->sigaction; 876 internal_memcpy(&k_act.sa_mask, &u_act->sa_mask, 877 sizeof(__sanitizer_kernel_sigset_t)); 878 // Without SA_RESTORER kernel ignores the calls (probably returns EINVAL). 879 k_act.sa_flags = u_act->sa_flags | SA_RESTORER; 880 // FIXME: most often sa_restorer is unset, however the kernel requires it 881 // to point to a valid signal restorer that calls the rt_sigreturn syscall. 882 // If sa_restorer passed to the kernel is NULL, the program may crash upon 883 // signal delivery or fail to unwind the stack in the signal handler. 884 // libc implementation of sigaction() passes its own restorer to 885 // rt_sigaction, so we need to do the same (we'll need to reimplement the 886 // restorers; for x86_64 the restorer address can be obtained from 887 // oldact->sa_restorer upon a call to sigaction(xxx, NULL, oldact). 888 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32 889 k_act.sa_restorer = u_act->sa_restorer; 890 # endif 891 } 892 893 uptr result = internal_syscall(SYSCALL(rt_sigaction), (uptr)signum, 894 (uptr)(u_act ? &k_act : nullptr), 895 (uptr)(u_oldact ? &k_oldact : nullptr), 896 (uptr)sizeof(__sanitizer_kernel_sigset_t)); 897 898 if ((result == 0) && u_oldact) { 899 u_oldact->handler = k_oldact.handler; 900 u_oldact->sigaction = k_oldact.sigaction; 901 internal_memcpy(&u_oldact->sa_mask, &k_oldact.sa_mask, 902 sizeof(__sanitizer_kernel_sigset_t)); 903 u_oldact->sa_flags = k_oldact.sa_flags; 904 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32 905 u_oldact->sa_restorer = k_oldact.sa_restorer; 906 # endif 907 } 908 return result; 909 } 910 # endif // SANITIZER_LINUX 911 912 uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set, 913 __sanitizer_sigset_t *oldset) { 914 # if SANITIZER_FREEBSD 915 return internal_syscall(SYSCALL(sigprocmask), how, set, oldset); 916 # else 917 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 918 __sanitizer_kernel_sigset_t *k_oldset = (__sanitizer_kernel_sigset_t *)oldset; 919 return internal_syscall(SYSCALL(rt_sigprocmask), (uptr)how, (uptr)k_set, 920 (uptr)k_oldset, sizeof(__sanitizer_kernel_sigset_t)); 921 # endif 922 } 923 924 void internal_sigfillset(__sanitizer_sigset_t *set) { 925 internal_memset(set, 0xff, sizeof(*set)); 926 } 927 928 void internal_sigemptyset(__sanitizer_sigset_t *set) { 929 internal_memset(set, 0, sizeof(*set)); 930 } 931 932 # if SANITIZER_LINUX 933 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) { 934 signum -= 1; 935 CHECK_GE(signum, 0); 936 CHECK_LT(signum, sizeof(*set) * 8); 937 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 938 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); 939 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); 940 k_set->sig[idx] &= ~((uptr)1 << bit); 941 } 942 943 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) { 944 signum -= 1; 945 CHECK_GE(signum, 0); 946 CHECK_LT(signum, sizeof(*set) * 8); 947 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 948 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); 949 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); 950 return k_set->sig[idx] & ((uptr)1 << bit); 951 } 952 # elif SANITIZER_FREEBSD 953 uptr internal_procctl(int type, int id, int cmd, void *data) { 954 return internal_syscall(SYSCALL(procctl), type, id, cmd, data); 955 } 956 957 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) { 958 sigset_t *rset = reinterpret_cast<sigset_t *>(set); 959 sigdelset(rset, signum); 960 } 961 962 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) { 963 sigset_t *rset = reinterpret_cast<sigset_t *>(set); 964 return sigismember(rset, signum); 965 } 966 # endif 967 # endif // !SANITIZER_SOLARIS 968 969 # if !SANITIZER_NETBSD 970 // ThreadLister implementation. 971 ThreadLister::ThreadLister(pid_t pid) : pid_(pid), buffer_(4096) { 972 char task_directory_path[80]; 973 internal_snprintf(task_directory_path, sizeof(task_directory_path), 974 "/proc/%d/task/", pid); 975 descriptor_ = internal_open(task_directory_path, O_RDONLY | O_DIRECTORY); 976 if (internal_iserror(descriptor_)) { 977 Report("Can't open /proc/%d/task for reading.\n", pid); 978 } 979 } 980 981 ThreadLister::Result ThreadLister::ListThreads( 982 InternalMmapVector<tid_t> *threads) { 983 if (internal_iserror(descriptor_)) 984 return Error; 985 internal_lseek(descriptor_, 0, SEEK_SET); 986 threads->clear(); 987 988 Result result = Ok; 989 for (bool first_read = true;; first_read = false) { 990 // Resize to max capacity if it was downsized by IsAlive. 991 buffer_.resize(buffer_.capacity()); 992 CHECK_GE(buffer_.size(), 4096); 993 uptr read = internal_getdents( 994 descriptor_, (struct linux_dirent *)buffer_.data(), buffer_.size()); 995 if (!read) 996 return result; 997 if (internal_iserror(read)) { 998 Report("Can't read directory entries from /proc/%d/task.\n", pid_); 999 return Error; 1000 } 1001 1002 for (uptr begin = (uptr)buffer_.data(), end = begin + read; begin < end;) { 1003 struct linux_dirent *entry = (struct linux_dirent *)begin; 1004 begin += entry->d_reclen; 1005 if (entry->d_ino == 1) { 1006 // Inode 1 is for bad blocks and also can be a reason for early return. 1007 // Should be emitted if kernel tried to output terminating thread. 1008 // See proc_task_readdir implementation in Linux. 1009 result = Incomplete; 1010 } 1011 if (entry->d_ino && *entry->d_name >= '0' && *entry->d_name <= '9') 1012 threads->push_back(internal_atoll(entry->d_name)); 1013 } 1014 1015 // Now we are going to detect short-read or early EOF. In such cases Linux 1016 // can return inconsistent list with missing alive threads. 1017 // Code will just remember that the list can be incomplete but it will 1018 // continue reads to return as much as possible. 1019 if (!first_read) { 1020 // The first one was a short-read by definition. 1021 result = Incomplete; 1022 } else if (read > buffer_.size() - 1024) { 1023 // Read was close to the buffer size. So double the size and assume the 1024 // worst. 1025 buffer_.resize(buffer_.size() * 2); 1026 result = Incomplete; 1027 } else if (!threads->empty() && !IsAlive(threads->back())) { 1028 // Maybe Linux early returned from read on terminated thread (!pid_alive) 1029 // and failed to restore read position. 1030 // See next_tid and proc_task_instantiate in Linux. 1031 result = Incomplete; 1032 } 1033 } 1034 } 1035 1036 bool ThreadLister::IsAlive(int tid) { 1037 // /proc/%d/task/%d/status uses same call to detect alive threads as 1038 // proc_task_readdir. See task_state implementation in Linux. 1039 char path[80]; 1040 internal_snprintf(path, sizeof(path), "/proc/%d/task/%d/status", pid_, tid); 1041 if (!ReadFileToVector(path, &buffer_) || buffer_.empty()) 1042 return false; 1043 buffer_.push_back(0); 1044 static const char kPrefix[] = "\nPPid:"; 1045 const char *field = internal_strstr(buffer_.data(), kPrefix); 1046 if (!field) 1047 return false; 1048 field += internal_strlen(kPrefix); 1049 return (int)internal_atoll(field) != 0; 1050 } 1051 1052 ThreadLister::~ThreadLister() { 1053 if (!internal_iserror(descriptor_)) 1054 internal_close(descriptor_); 1055 } 1056 # endif 1057 1058 # if SANITIZER_WORDSIZE == 32 1059 // Take care of unusable kernel area in top gigabyte. 1060 static uptr GetKernelAreaSize() { 1061 # if SANITIZER_LINUX && !SANITIZER_X32 1062 const uptr gbyte = 1UL << 30; 1063 1064 // Firstly check if there are writable segments 1065 // mapped to top gigabyte (e.g. stack). 1066 MemoryMappingLayout proc_maps(/*cache_enabled*/ true); 1067 if (proc_maps.Error()) 1068 return 0; 1069 MemoryMappedSegment segment; 1070 while (proc_maps.Next(&segment)) { 1071 if ((segment.end >= 3 * gbyte) && segment.IsWritable()) 1072 return 0; 1073 } 1074 1075 # if !SANITIZER_ANDROID 1076 // Even if nothing is mapped, top Gb may still be accessible 1077 // if we are running on 64-bit kernel. 1078 // Uname may report misleading results if personality type 1079 // is modified (e.g. under schroot) so check this as well. 1080 struct utsname uname_info; 1081 int pers = personality(0xffffffffUL); 1082 if (!(pers & PER_MASK) && internal_uname(&uname_info) == 0 && 1083 internal_strstr(uname_info.machine, "64")) 1084 return 0; 1085 # endif // SANITIZER_ANDROID 1086 1087 // Top gigabyte is reserved for kernel. 1088 return gbyte; 1089 # else 1090 return 0; 1091 # endif // SANITIZER_LINUX && !SANITIZER_X32 1092 } 1093 # endif // SANITIZER_WORDSIZE == 32 1094 1095 uptr GetMaxVirtualAddress() { 1096 # if SANITIZER_NETBSD && defined(__x86_64__) 1097 return 0x7f7ffffff000ULL; // (0x00007f8000000000 - PAGE_SIZE) 1098 # elif SANITIZER_WORDSIZE == 64 1099 # if defined(__powerpc64__) || defined(__aarch64__) || defined(__loongarch__) 1100 // On PowerPC64 we have two different address space layouts: 44- and 46-bit. 1101 // We somehow need to figure out which one we are using now and choose 1102 // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL. 1103 // Note that with 'ulimit -s unlimited' the stack is moved away from the top 1104 // of the address space, so simply checking the stack address is not enough. 1105 // This should (does) work for both PowerPC64 Endian modes. 1106 // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit. 1107 // loongarch64 also has multiple address space layouts: default is 47-bit. 1108 return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1; 1109 # elif SANITIZER_RISCV64 1110 return (1ULL << 38) - 1; 1111 # elif SANITIZER_MIPS64 1112 return (1ULL << 40) - 1; // 0x000000ffffffffffUL; 1113 # elif defined(__s390x__) 1114 return (1ULL << 53) - 1; // 0x001fffffffffffffUL; 1115 # elif defined(__sparc__) 1116 return ~(uptr)0; 1117 # else 1118 return (1ULL << 47) - 1; // 0x00007fffffffffffUL; 1119 # endif 1120 # else // SANITIZER_WORDSIZE == 32 1121 # if defined(__s390__) 1122 return (1ULL << 31) - 1; // 0x7fffffff; 1123 # else 1124 return (1ULL << 32) - 1; // 0xffffffff; 1125 # endif 1126 # endif // SANITIZER_WORDSIZE 1127 } 1128 1129 uptr GetMaxUserVirtualAddress() { 1130 uptr addr = GetMaxVirtualAddress(); 1131 # if SANITIZER_WORDSIZE == 32 && !defined(__s390__) 1132 if (!common_flags()->full_address_space) 1133 addr -= GetKernelAreaSize(); 1134 CHECK_LT(reinterpret_cast<uptr>(&addr), addr); 1135 # endif 1136 return addr; 1137 } 1138 1139 # if !SANITIZER_ANDROID 1140 uptr GetPageSize() { 1141 # if SANITIZER_LINUX && (defined(__x86_64__) || defined(__i386__)) && \ 1142 defined(EXEC_PAGESIZE) 1143 return EXEC_PAGESIZE; 1144 # elif SANITIZER_FREEBSD || SANITIZER_NETBSD 1145 // Use sysctl as sysconf can trigger interceptors internally. 1146 int pz = 0; 1147 uptr pzl = sizeof(pz); 1148 int mib[2] = {CTL_HW, HW_PAGESIZE}; 1149 int rv = internal_sysctl(mib, 2, &pz, &pzl, nullptr, 0); 1150 CHECK_EQ(rv, 0); 1151 return (uptr)pz; 1152 # elif SANITIZER_USE_GETAUXVAL 1153 return getauxval(AT_PAGESZ); 1154 # else 1155 return sysconf(_SC_PAGESIZE); // EXEC_PAGESIZE may not be trustworthy. 1156 # endif 1157 } 1158 # endif // !SANITIZER_ANDROID 1159 1160 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { 1161 # if SANITIZER_SOLARIS 1162 const char *default_module_name = getexecname(); 1163 CHECK_NE(default_module_name, NULL); 1164 return internal_snprintf(buf, buf_len, "%s", default_module_name); 1165 # else 1166 # if SANITIZER_FREEBSD || SANITIZER_NETBSD 1167 # if SANITIZER_FREEBSD 1168 const int Mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; 1169 # else 1170 const int Mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; 1171 # endif 1172 const char *default_module_name = "kern.proc.pathname"; 1173 uptr Size = buf_len; 1174 bool IsErr = 1175 (internal_sysctl(Mib, ARRAY_SIZE(Mib), buf, &Size, NULL, 0) != 0); 1176 int readlink_error = IsErr ? errno : 0; 1177 uptr module_name_len = Size; 1178 # else 1179 const char *default_module_name = "/proc/self/exe"; 1180 uptr module_name_len = internal_readlink(default_module_name, buf, buf_len); 1181 int readlink_error; 1182 bool IsErr = internal_iserror(module_name_len, &readlink_error); 1183 # endif // SANITIZER_SOLARIS 1184 if (IsErr) { 1185 // We can't read binary name for some reason, assume it's unknown. 1186 Report( 1187 "WARNING: reading executable name failed with errno %d, " 1188 "some stack frames may not be symbolized\n", 1189 readlink_error); 1190 module_name_len = 1191 internal_snprintf(buf, buf_len, "%s", default_module_name); 1192 CHECK_LT(module_name_len, buf_len); 1193 } 1194 return module_name_len; 1195 # endif 1196 } 1197 1198 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { 1199 # if SANITIZER_LINUX 1200 char *tmpbuf; 1201 uptr tmpsize; 1202 uptr tmplen; 1203 if (ReadFileToBuffer("/proc/self/cmdline", &tmpbuf, &tmpsize, &tmplen, 1204 1024 * 1024)) { 1205 internal_strncpy(buf, tmpbuf, buf_len); 1206 UnmapOrDie(tmpbuf, tmpsize); 1207 return internal_strlen(buf); 1208 } 1209 # endif 1210 return ReadBinaryName(buf, buf_len); 1211 } 1212 1213 // Match full names of the form /path/to/base_name{-,.}* 1214 bool LibraryNameIs(const char *full_name, const char *base_name) { 1215 const char *name = full_name; 1216 // Strip path. 1217 while (*name != '\0') name++; 1218 while (name > full_name && *name != '/') name--; 1219 if (*name == '/') 1220 name++; 1221 uptr base_name_length = internal_strlen(base_name); 1222 if (internal_strncmp(name, base_name, base_name_length)) 1223 return false; 1224 return (name[base_name_length] == '-' || name[base_name_length] == '.'); 1225 } 1226 1227 # if !SANITIZER_ANDROID 1228 // Call cb for each region mapped by map. 1229 void ForEachMappedRegion(link_map *map, void (*cb)(const void *, uptr)) { 1230 CHECK_NE(map, nullptr); 1231 # if !SANITIZER_FREEBSD 1232 typedef ElfW(Phdr) Elf_Phdr; 1233 typedef ElfW(Ehdr) Elf_Ehdr; 1234 # endif // !SANITIZER_FREEBSD 1235 char *base = (char *)map->l_addr; 1236 Elf_Ehdr *ehdr = (Elf_Ehdr *)base; 1237 char *phdrs = base + ehdr->e_phoff; 1238 char *phdrs_end = phdrs + ehdr->e_phnum * ehdr->e_phentsize; 1239 1240 // Find the segment with the minimum base so we can "relocate" the p_vaddr 1241 // fields. Typically ET_DYN objects (DSOs) have base of zero and ET_EXEC 1242 // objects have a non-zero base. 1243 uptr preferred_base = (uptr)-1; 1244 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { 1245 Elf_Phdr *phdr = (Elf_Phdr *)iter; 1246 if (phdr->p_type == PT_LOAD && preferred_base > (uptr)phdr->p_vaddr) 1247 preferred_base = (uptr)phdr->p_vaddr; 1248 } 1249 1250 // Compute the delta from the real base to get a relocation delta. 1251 sptr delta = (uptr)base - preferred_base; 1252 // Now we can figure out what the loader really mapped. 1253 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { 1254 Elf_Phdr *phdr = (Elf_Phdr *)iter; 1255 if (phdr->p_type == PT_LOAD) { 1256 uptr seg_start = phdr->p_vaddr + delta; 1257 uptr seg_end = seg_start + phdr->p_memsz; 1258 // None of these values are aligned. We consider the ragged edges of the 1259 // load command as defined, since they are mapped from the file. 1260 seg_start = RoundDownTo(seg_start, GetPageSizeCached()); 1261 seg_end = RoundUpTo(seg_end, GetPageSizeCached()); 1262 cb((void *)seg_start, seg_end - seg_start); 1263 } 1264 } 1265 } 1266 # endif 1267 1268 # if SANITIZER_LINUX 1269 # if defined(__x86_64__) 1270 // We cannot use glibc's clone wrapper, because it messes with the child 1271 // task's TLS. It writes the PID and TID of the child task to its thread 1272 // descriptor, but in our case the child task shares the thread descriptor with 1273 // the parent (because we don't know how to allocate a new thread 1274 // descriptor to keep glibc happy). So the stock version of clone(), when 1275 // used with CLONE_VM, would end up corrupting the parent's thread descriptor. 1276 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1277 int *parent_tidptr, void *newtls, int *child_tidptr) { 1278 long long res; 1279 if (!fn || !child_stack) 1280 return -EINVAL; 1281 CHECK_EQ(0, (uptr)child_stack % 16); 1282 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1283 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1284 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1285 register void *r8 __asm__("r8") = newtls; 1286 register int *r10 __asm__("r10") = child_tidptr; 1287 __asm__ __volatile__( 1288 /* %rax = syscall(%rax = SYSCALL(clone), 1289 * %rdi = flags, 1290 * %rsi = child_stack, 1291 * %rdx = parent_tidptr, 1292 * %r8 = new_tls, 1293 * %r10 = child_tidptr) 1294 */ 1295 "syscall\n" 1296 1297 /* if (%rax != 0) 1298 * return; 1299 */ 1300 "testq %%rax,%%rax\n" 1301 "jnz 1f\n" 1302 1303 /* In the child. Terminate unwind chain. */ 1304 // XXX: We should also terminate the CFI unwind chain 1305 // here. Unfortunately clang 3.2 doesn't support the 1306 // necessary CFI directives, so we skip that part. 1307 "xorq %%rbp,%%rbp\n" 1308 1309 /* Call "fn(arg)". */ 1310 "popq %%rax\n" 1311 "popq %%rdi\n" 1312 "call *%%rax\n" 1313 1314 /* Call _exit(%rax). */ 1315 "movq %%rax,%%rdi\n" 1316 "movq %2,%%rax\n" 1317 "syscall\n" 1318 1319 /* Return to parent. */ 1320 "1:\n" 1321 : "=a"(res) 1322 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "S"(child_stack), "D"(flags), 1323 "d"(parent_tidptr), "r"(r8), "r"(r10) 1324 : "memory", "r11", "rcx"); 1325 return res; 1326 } 1327 # elif defined(__mips__) 1328 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1329 int *parent_tidptr, void *newtls, int *child_tidptr) { 1330 long long res; 1331 if (!fn || !child_stack) 1332 return -EINVAL; 1333 CHECK_EQ(0, (uptr)child_stack % 16); 1334 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1335 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1336 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1337 register void *a3 __asm__("$7") = newtls; 1338 register int *a4 __asm__("$8") = child_tidptr; 1339 // We don't have proper CFI directives here because it requires alot of code 1340 // for very marginal benefits. 1341 __asm__ __volatile__( 1342 /* $v0 = syscall($v0 = __NR_clone, 1343 * $a0 = flags, 1344 * $a1 = child_stack, 1345 * $a2 = parent_tidptr, 1346 * $a3 = new_tls, 1347 * $a4 = child_tidptr) 1348 */ 1349 ".cprestore 16;\n" 1350 "move $4,%1;\n" 1351 "move $5,%2;\n" 1352 "move $6,%3;\n" 1353 "move $7,%4;\n" 1354 /* Store the fifth argument on stack 1355 * if we are using 32-bit abi. 1356 */ 1357 # if SANITIZER_WORDSIZE == 32 1358 "lw %5,16($29);\n" 1359 # else 1360 "move $8,%5;\n" 1361 # endif 1362 "li $2,%6;\n" 1363 "syscall;\n" 1364 1365 /* if ($v0 != 0) 1366 * return; 1367 */ 1368 "bnez $2,1f;\n" 1369 1370 /* Call "fn(arg)". */ 1371 # if SANITIZER_WORDSIZE == 32 1372 # ifdef __BIG_ENDIAN__ 1373 "lw $25,4($29);\n" 1374 "lw $4,12($29);\n" 1375 # else 1376 "lw $25,0($29);\n" 1377 "lw $4,8($29);\n" 1378 # endif 1379 # else 1380 "ld $25,0($29);\n" 1381 "ld $4,8($29);\n" 1382 # endif 1383 "jal $25;\n" 1384 1385 /* Call _exit($v0). */ 1386 "move $4,$2;\n" 1387 "li $2,%7;\n" 1388 "syscall;\n" 1389 1390 /* Return to parent. */ 1391 "1:\n" 1392 : "=r"(res) 1393 : "r"(flags), "r"(child_stack), "r"(parent_tidptr), "r"(a3), "r"(a4), 1394 "i"(__NR_clone), "i"(__NR_exit) 1395 : "memory", "$29"); 1396 return res; 1397 } 1398 # elif SANITIZER_RISCV64 1399 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1400 int *parent_tidptr, void *newtls, int *child_tidptr) { 1401 if (!fn || !child_stack) 1402 return -EINVAL; 1403 1404 CHECK_EQ(0, (uptr)child_stack % 16); 1405 1406 register int res __asm__("a0"); 1407 register int __flags __asm__("a0") = flags; 1408 register void *__stack __asm__("a1") = child_stack; 1409 register int *__ptid __asm__("a2") = parent_tidptr; 1410 register void *__tls __asm__("a3") = newtls; 1411 register int *__ctid __asm__("a4") = child_tidptr; 1412 register int (*__fn)(void *) __asm__("a5") = fn; 1413 register void *__arg __asm__("a6") = arg; 1414 register int nr_clone __asm__("a7") = __NR_clone; 1415 1416 __asm__ __volatile__( 1417 "ecall\n" 1418 1419 /* if (a0 != 0) 1420 * return a0; 1421 */ 1422 "bnez a0, 1f\n" 1423 1424 // In the child, now. Call "fn(arg)". 1425 "mv a0, a6\n" 1426 "jalr a5\n" 1427 1428 // Call _exit(a0). 1429 "addi a7, zero, %9\n" 1430 "ecall\n" 1431 "1:\n" 1432 1433 : "=r"(res) 1434 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__tls), "r"(__ctid), 1435 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit) 1436 : "memory"); 1437 return res; 1438 } 1439 # elif defined(__aarch64__) 1440 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1441 int *parent_tidptr, void *newtls, int *child_tidptr) { 1442 register long long res __asm__("x0"); 1443 if (!fn || !child_stack) 1444 return -EINVAL; 1445 CHECK_EQ(0, (uptr)child_stack % 16); 1446 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1447 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1448 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1449 1450 register int (*__fn)(void *) __asm__("x0") = fn; 1451 register void *__stack __asm__("x1") = child_stack; 1452 register int __flags __asm__("x2") = flags; 1453 register void *__arg __asm__("x3") = arg; 1454 register int *__ptid __asm__("x4") = parent_tidptr; 1455 register void *__tls __asm__("x5") = newtls; 1456 register int *__ctid __asm__("x6") = child_tidptr; 1457 1458 __asm__ __volatile__( 1459 "mov x0,x2\n" /* flags */ 1460 "mov x2,x4\n" /* ptid */ 1461 "mov x3,x5\n" /* tls */ 1462 "mov x4,x6\n" /* ctid */ 1463 "mov x8,%9\n" /* clone */ 1464 1465 "svc 0x0\n" 1466 1467 /* if (%r0 != 0) 1468 * return %r0; 1469 */ 1470 "cmp x0, #0\n" 1471 "bne 1f\n" 1472 1473 /* In the child, now. Call "fn(arg)". */ 1474 "ldp x1, x0, [sp], #16\n" 1475 "blr x1\n" 1476 1477 /* Call _exit(%r0). */ 1478 "mov x8, %10\n" 1479 "svc 0x0\n" 1480 "1:\n" 1481 1482 : "=r"(res) 1483 : "i"(-EINVAL), "r"(__fn), "r"(__stack), "r"(__flags), "r"(__arg), 1484 "r"(__ptid), "r"(__tls), "r"(__ctid), "i"(__NR_clone), "i"(__NR_exit) 1485 : "x30", "memory"); 1486 return res; 1487 } 1488 # elif SANITIZER_LOONGARCH64 1489 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1490 int *parent_tidptr, void *newtls, int *child_tidptr) { 1491 if (!fn || !child_stack) 1492 return -EINVAL; 1493 1494 CHECK_EQ(0, (uptr)child_stack % 16); 1495 1496 register int res __asm__("$a0"); 1497 register int __flags __asm__("$a0") = flags; 1498 register void *__stack __asm__("$a1") = child_stack; 1499 register int *__ptid __asm__("$a2") = parent_tidptr; 1500 register int *__ctid __asm__("$a3") = child_tidptr; 1501 register void *__tls __asm__("$a4") = newtls; 1502 register int (*__fn)(void *) __asm__("$a5") = fn; 1503 register void *__arg __asm__("$a6") = arg; 1504 register int nr_clone __asm__("$a7") = __NR_clone; 1505 1506 __asm__ __volatile__( 1507 "syscall 0\n" 1508 1509 // if ($a0 != 0) 1510 // return $a0; 1511 "bnez $a0, 1f\n" 1512 1513 // In the child, now. Call "fn(arg)". 1514 "move $a0, $a6\n" 1515 "jirl $ra, $a5, 0\n" 1516 1517 // Call _exit($a0). 1518 "addi.d $a7, $zero, %9\n" 1519 "syscall 0\n" 1520 1521 "1:\n" 1522 1523 : "=r"(res) 1524 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__ctid), "r"(__tls), 1525 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit) 1526 : "memory", "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7", 1527 "$t8"); 1528 return res; 1529 } 1530 # elif defined(__powerpc64__) 1531 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1532 int *parent_tidptr, void *newtls, int *child_tidptr) { 1533 long long res; 1534 // Stack frame structure. 1535 # if SANITIZER_PPC64V1 1536 // Back chain == 0 (SP + 112) 1537 // Frame (112 bytes): 1538 // Parameter save area (SP + 48), 8 doublewords 1539 // TOC save area (SP + 40) 1540 // Link editor doubleword (SP + 32) 1541 // Compiler doubleword (SP + 24) 1542 // LR save area (SP + 16) 1543 // CR save area (SP + 8) 1544 // Back chain (SP + 0) 1545 # define FRAME_SIZE 112 1546 # define FRAME_TOC_SAVE_OFFSET 40 1547 # elif SANITIZER_PPC64V2 1548 // Back chain == 0 (SP + 32) 1549 // Frame (32 bytes): 1550 // TOC save area (SP + 24) 1551 // LR save area (SP + 16) 1552 // CR save area (SP + 8) 1553 // Back chain (SP + 0) 1554 # define FRAME_SIZE 32 1555 # define FRAME_TOC_SAVE_OFFSET 24 1556 # else 1557 # error "Unsupported PPC64 ABI" 1558 # endif 1559 if (!fn || !child_stack) 1560 return -EINVAL; 1561 CHECK_EQ(0, (uptr)child_stack % 16); 1562 1563 register int (*__fn)(void *) __asm__("r3") = fn; 1564 register void *__cstack __asm__("r4") = child_stack; 1565 register int __flags __asm__("r5") = flags; 1566 register void *__arg __asm__("r6") = arg; 1567 register int *__ptidptr __asm__("r7") = parent_tidptr; 1568 register void *__newtls __asm__("r8") = newtls; 1569 register int *__ctidptr __asm__("r9") = child_tidptr; 1570 1571 __asm__ __volatile__( 1572 /* fn and arg are saved across the syscall */ 1573 "mr 28, %5\n\t" 1574 "mr 27, %8\n\t" 1575 1576 /* syscall 1577 r0 == __NR_clone 1578 r3 == flags 1579 r4 == child_stack 1580 r5 == parent_tidptr 1581 r6 == newtls 1582 r7 == child_tidptr */ 1583 "mr 3, %7\n\t" 1584 "mr 5, %9\n\t" 1585 "mr 6, %10\n\t" 1586 "mr 7, %11\n\t" 1587 "li 0, %3\n\t" 1588 "sc\n\t" 1589 1590 /* Test if syscall was successful */ 1591 "cmpdi cr1, 3, 0\n\t" 1592 "crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t" 1593 "bne- cr1, 1f\n\t" 1594 1595 /* Set up stack frame */ 1596 "li 29, 0\n\t" 1597 "stdu 29, -8(1)\n\t" 1598 "stdu 1, -%12(1)\n\t" 1599 /* Do the function call */ 1600 "std 2, %13(1)\n\t" 1601 # if SANITIZER_PPC64V1 1602 "ld 0, 0(28)\n\t" 1603 "ld 2, 8(28)\n\t" 1604 "mtctr 0\n\t" 1605 # elif SANITIZER_PPC64V2 1606 "mr 12, 28\n\t" 1607 "mtctr 12\n\t" 1608 # else 1609 # error "Unsupported PPC64 ABI" 1610 # endif 1611 "mr 3, 27\n\t" 1612 "bctrl\n\t" 1613 "ld 2, %13(1)\n\t" 1614 1615 /* Call _exit(r3) */ 1616 "li 0, %4\n\t" 1617 "sc\n\t" 1618 1619 /* Return to parent */ 1620 "1:\n\t" 1621 "mr %0, 3\n\t" 1622 : "=r"(res) 1623 : "0"(-1), "i"(EINVAL), "i"(__NR_clone), "i"(__NR_exit), "r"(__fn), 1624 "r"(__cstack), "r"(__flags), "r"(__arg), "r"(__ptidptr), "r"(__newtls), 1625 "r"(__ctidptr), "i"(FRAME_SIZE), "i"(FRAME_TOC_SAVE_OFFSET) 1626 : "cr0", "cr1", "memory", "ctr", "r0", "r27", "r28", "r29"); 1627 return res; 1628 } 1629 # elif defined(__i386__) 1630 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1631 int *parent_tidptr, void *newtls, int *child_tidptr) { 1632 int res; 1633 if (!fn || !child_stack) 1634 return -EINVAL; 1635 CHECK_EQ(0, (uptr)child_stack % 16); 1636 child_stack = (char *)child_stack - 7 * sizeof(unsigned int); 1637 ((unsigned int *)child_stack)[0] = (uptr)flags; 1638 ((unsigned int *)child_stack)[1] = (uptr)0; 1639 ((unsigned int *)child_stack)[2] = (uptr)fn; 1640 ((unsigned int *)child_stack)[3] = (uptr)arg; 1641 __asm__ __volatile__( 1642 /* %eax = syscall(%eax = SYSCALL(clone), 1643 * %ebx = flags, 1644 * %ecx = child_stack, 1645 * %edx = parent_tidptr, 1646 * %esi = new_tls, 1647 * %edi = child_tidptr) 1648 */ 1649 1650 /* Obtain flags */ 1651 "movl (%%ecx), %%ebx\n" 1652 /* Do the system call */ 1653 "pushl %%ebx\n" 1654 "pushl %%esi\n" 1655 "pushl %%edi\n" 1656 /* Remember the flag value. */ 1657 "movl %%ebx, (%%ecx)\n" 1658 "int $0x80\n" 1659 "popl %%edi\n" 1660 "popl %%esi\n" 1661 "popl %%ebx\n" 1662 1663 /* if (%eax != 0) 1664 * return; 1665 */ 1666 1667 "test %%eax,%%eax\n" 1668 "jnz 1f\n" 1669 1670 /* terminate the stack frame */ 1671 "xorl %%ebp,%%ebp\n" 1672 /* Call FN. */ 1673 "call *%%ebx\n" 1674 # ifdef PIC 1675 "call here\n" 1676 "here:\n" 1677 "popl %%ebx\n" 1678 "addl $_GLOBAL_OFFSET_TABLE_+[.-here], %%ebx\n" 1679 # endif 1680 /* Call exit */ 1681 "movl %%eax, %%ebx\n" 1682 "movl %2, %%eax\n" 1683 "int $0x80\n" 1684 "1:\n" 1685 : "=a"(res) 1686 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "c"(child_stack), 1687 "d"(parent_tidptr), "S"(newtls), "D"(child_tidptr) 1688 : "memory"); 1689 return res; 1690 } 1691 # elif defined(__arm__) 1692 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1693 int *parent_tidptr, void *newtls, int *child_tidptr) { 1694 unsigned int res; 1695 if (!fn || !child_stack) 1696 return -EINVAL; 1697 child_stack = (char *)child_stack - 2 * sizeof(unsigned int); 1698 ((unsigned int *)child_stack)[0] = (uptr)fn; 1699 ((unsigned int *)child_stack)[1] = (uptr)arg; 1700 register int r0 __asm__("r0") = flags; 1701 register void *r1 __asm__("r1") = child_stack; 1702 register int *r2 __asm__("r2") = parent_tidptr; 1703 register void *r3 __asm__("r3") = newtls; 1704 register int *r4 __asm__("r4") = child_tidptr; 1705 register int r7 __asm__("r7") = __NR_clone; 1706 1707 # if __ARM_ARCH > 4 || defined(__ARM_ARCH_4T__) 1708 # define ARCH_HAS_BX 1709 # endif 1710 # if __ARM_ARCH > 4 1711 # define ARCH_HAS_BLX 1712 # endif 1713 1714 # ifdef ARCH_HAS_BX 1715 # ifdef ARCH_HAS_BLX 1716 # define BLX(R) "blx " #R "\n" 1717 # else 1718 # define BLX(R) "mov lr, pc; bx " #R "\n" 1719 # endif 1720 # else 1721 # define BLX(R) "mov lr, pc; mov pc," #R "\n" 1722 # endif 1723 1724 __asm__ __volatile__( 1725 /* %r0 = syscall(%r7 = SYSCALL(clone), 1726 * %r0 = flags, 1727 * %r1 = child_stack, 1728 * %r2 = parent_tidptr, 1729 * %r3 = new_tls, 1730 * %r4 = child_tidptr) 1731 */ 1732 1733 /* Do the system call */ 1734 "swi 0x0\n" 1735 1736 /* if (%r0 != 0) 1737 * return %r0; 1738 */ 1739 "cmp r0, #0\n" 1740 "bne 1f\n" 1741 1742 /* In the child, now. Call "fn(arg)". */ 1743 "ldr r0, [sp, #4]\n" 1744 "ldr ip, [sp], #8\n" BLX(ip) 1745 /* Call _exit(%r0). */ 1746 "mov r7, %7\n" 1747 "swi 0x0\n" 1748 "1:\n" 1749 "mov %0, r0\n" 1750 : "=r"(res) 1751 : "r"(r0), "r"(r1), "r"(r2), "r"(r3), "r"(r4), "r"(r7), "i"(__NR_exit) 1752 : "memory"); 1753 return res; 1754 } 1755 # endif 1756 # endif // SANITIZER_LINUX 1757 1758 # if SANITIZER_LINUX 1759 int internal_uname(struct utsname *buf) { 1760 return internal_syscall(SYSCALL(uname), buf); 1761 } 1762 # endif 1763 1764 # if SANITIZER_ANDROID 1765 # if __ANDROID_API__ < 21 1766 extern "C" __attribute__((weak)) int dl_iterate_phdr( 1767 int (*)(struct dl_phdr_info *, size_t, void *), void *); 1768 # endif 1769 1770 static int dl_iterate_phdr_test_cb(struct dl_phdr_info *info, size_t size, 1771 void *data) { 1772 // Any name starting with "lib" indicates a bug in L where library base names 1773 // are returned instead of paths. 1774 if (info->dlpi_name && info->dlpi_name[0] == 'l' && 1775 info->dlpi_name[1] == 'i' && info->dlpi_name[2] == 'b') { 1776 *(bool *)data = true; 1777 return 1; 1778 } 1779 return 0; 1780 } 1781 1782 static atomic_uint32_t android_api_level; 1783 1784 static AndroidApiLevel AndroidDetectApiLevelStatic() { 1785 # if __ANDROID_API__ <= 19 1786 return ANDROID_KITKAT; 1787 # elif __ANDROID_API__ <= 22 1788 return ANDROID_LOLLIPOP_MR1; 1789 # else 1790 return ANDROID_POST_LOLLIPOP; 1791 # endif 1792 } 1793 1794 static AndroidApiLevel AndroidDetectApiLevel() { 1795 if (!&dl_iterate_phdr) 1796 return ANDROID_KITKAT; // K or lower 1797 bool base_name_seen = false; 1798 dl_iterate_phdr(dl_iterate_phdr_test_cb, &base_name_seen); 1799 if (base_name_seen) 1800 return ANDROID_LOLLIPOP_MR1; // L MR1 1801 return ANDROID_POST_LOLLIPOP; // post-L 1802 // Plain L (API level 21) is completely broken wrt ASan and not very 1803 // interesting to detect. 1804 } 1805 1806 extern "C" __attribute__((weak)) void *_DYNAMIC; 1807 1808 AndroidApiLevel AndroidGetApiLevel() { 1809 AndroidApiLevel level = 1810 (AndroidApiLevel)atomic_load(&android_api_level, memory_order_relaxed); 1811 if (level) 1812 return level; 1813 level = &_DYNAMIC == nullptr ? AndroidDetectApiLevelStatic() 1814 : AndroidDetectApiLevel(); 1815 atomic_store(&android_api_level, level, memory_order_relaxed); 1816 return level; 1817 } 1818 1819 # endif 1820 1821 static HandleSignalMode GetHandleSignalModeImpl(int signum) { 1822 switch (signum) { 1823 case SIGABRT: 1824 return common_flags()->handle_abort; 1825 case SIGILL: 1826 return common_flags()->handle_sigill; 1827 case SIGTRAP: 1828 return common_flags()->handle_sigtrap; 1829 case SIGFPE: 1830 return common_flags()->handle_sigfpe; 1831 case SIGSEGV: 1832 return common_flags()->handle_segv; 1833 case SIGBUS: 1834 return common_flags()->handle_sigbus; 1835 } 1836 return kHandleSignalNo; 1837 } 1838 1839 HandleSignalMode GetHandleSignalMode(int signum) { 1840 HandleSignalMode result = GetHandleSignalModeImpl(signum); 1841 if (result == kHandleSignalYes && !common_flags()->allow_user_segv_handler) 1842 return kHandleSignalExclusive; 1843 return result; 1844 } 1845 1846 # if !SANITIZER_GO 1847 void *internal_start_thread(void *(*func)(void *arg), void *arg) { 1848 if (&real_pthread_create == 0) 1849 return nullptr; 1850 // Start the thread with signals blocked, otherwise it can steal user signals. 1851 ScopedBlockSignals block(nullptr); 1852 void *th; 1853 real_pthread_create(&th, nullptr, func, arg); 1854 return th; 1855 } 1856 1857 void internal_join_thread(void *th) { 1858 if (&real_pthread_join) 1859 real_pthread_join(th, nullptr); 1860 } 1861 # else 1862 void *internal_start_thread(void *(*func)(void *), void *arg) { return 0; } 1863 1864 void internal_join_thread(void *th) {} 1865 # endif 1866 1867 # if SANITIZER_LINUX && defined(__aarch64__) 1868 // Android headers in the older NDK releases miss this definition. 1869 struct __sanitizer_esr_context { 1870 struct _aarch64_ctx head; 1871 uint64_t esr; 1872 }; 1873 1874 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { 1875 static const u32 kEsrMagic = 0x45535201; 1876 u8 *aux = reinterpret_cast<u8 *>(ucontext->uc_mcontext.__reserved); 1877 while (true) { 1878 _aarch64_ctx *ctx = (_aarch64_ctx *)aux; 1879 if (ctx->size == 0) 1880 break; 1881 if (ctx->magic == kEsrMagic) { 1882 *esr = ((__sanitizer_esr_context *)ctx)->esr; 1883 return true; 1884 } 1885 aux += ctx->size; 1886 } 1887 return false; 1888 } 1889 # elif SANITIZER_FREEBSD && defined(__aarch64__) 1890 // FreeBSD doesn't provide ESR in the ucontext. 1891 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { return false; } 1892 # endif 1893 1894 using Context = ucontext_t; 1895 1896 SignalContext::WriteFlag SignalContext::GetWriteFlag() const { 1897 Context *ucontext = (Context *)context; 1898 # if defined(__x86_64__) || defined(__i386__) 1899 static const uptr PF_WRITE = 1U << 1; 1900 # if SANITIZER_FREEBSD 1901 uptr err = ucontext->uc_mcontext.mc_err; 1902 # elif SANITIZER_NETBSD 1903 uptr err = ucontext->uc_mcontext.__gregs[_REG_ERR]; 1904 # elif SANITIZER_SOLARIS && defined(__i386__) 1905 const int Err = 13; 1906 uptr err = ucontext->uc_mcontext.gregs[Err]; 1907 # else 1908 uptr err = ucontext->uc_mcontext.gregs[REG_ERR]; 1909 # endif // SANITIZER_FREEBSD 1910 return err & PF_WRITE ? Write : Read; 1911 # elif defined(__mips__) 1912 uint32_t *exception_source; 1913 uint32_t faulty_instruction; 1914 uint32_t op_code; 1915 1916 exception_source = (uint32_t *)ucontext->uc_mcontext.pc; 1917 faulty_instruction = (uint32_t)(*exception_source); 1918 1919 op_code = (faulty_instruction >> 26) & 0x3f; 1920 1921 // FIXME: Add support for FPU, microMIPS, DSP, MSA memory instructions. 1922 switch (op_code) { 1923 case 0x28: // sb 1924 case 0x29: // sh 1925 case 0x2b: // sw 1926 case 0x3f: // sd 1927 # if __mips_isa_rev < 6 1928 case 0x2c: // sdl 1929 case 0x2d: // sdr 1930 case 0x2a: // swl 1931 case 0x2e: // swr 1932 # endif 1933 return SignalContext::Write; 1934 1935 case 0x20: // lb 1936 case 0x24: // lbu 1937 case 0x21: // lh 1938 case 0x25: // lhu 1939 case 0x23: // lw 1940 case 0x27: // lwu 1941 case 0x37: // ld 1942 # if __mips_isa_rev < 6 1943 case 0x1a: // ldl 1944 case 0x1b: // ldr 1945 case 0x22: // lwl 1946 case 0x26: // lwr 1947 # endif 1948 return SignalContext::Read; 1949 # if __mips_isa_rev == 6 1950 case 0x3b: // pcrel 1951 op_code = (faulty_instruction >> 19) & 0x3; 1952 switch (op_code) { 1953 case 0x1: // lwpc 1954 case 0x2: // lwupc 1955 return SignalContext::Read; 1956 } 1957 # endif 1958 } 1959 return SignalContext::Unknown; 1960 # elif defined(__arm__) 1961 static const uptr FSR_WRITE = 1U << 11; 1962 uptr fsr = ucontext->uc_mcontext.error_code; 1963 return fsr & FSR_WRITE ? Write : Read; 1964 # elif defined(__aarch64__) 1965 static const u64 ESR_ELx_WNR = 1U << 6; 1966 u64 esr; 1967 if (!Aarch64GetESR(ucontext, &esr)) 1968 return Unknown; 1969 return esr & ESR_ELx_WNR ? Write : Read; 1970 # elif defined(__loongarch__) 1971 u32 flags = ucontext->uc_mcontext.__flags; 1972 if (flags & SC_ADDRERR_RD) 1973 return SignalContext::Read; 1974 if (flags & SC_ADDRERR_WR) 1975 return SignalContext::Write; 1976 return SignalContext::Unknown; 1977 # elif defined(__sparc__) 1978 // Decode the instruction to determine the access type. 1979 // From OpenSolaris $SRC/uts/sun4/os/trap.c (get_accesstype). 1980 # if SANITIZER_SOLARIS 1981 uptr pc = ucontext->uc_mcontext.gregs[REG_PC]; 1982 # else 1983 // Historical BSDism here. 1984 struct sigcontext *scontext = (struct sigcontext *)context; 1985 # if defined(__arch64__) 1986 uptr pc = scontext->sigc_regs.tpc; 1987 # else 1988 uptr pc = scontext->si_regs.pc; 1989 # endif 1990 # endif 1991 u32 instr = *(u32 *)pc; 1992 return (instr >> 21) & 1 ? Write : Read; 1993 # elif defined(__riscv) 1994 # if SANITIZER_FREEBSD 1995 unsigned long pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc; 1996 # else 1997 unsigned long pc = ucontext->uc_mcontext.__gregs[REG_PC]; 1998 # endif 1999 unsigned faulty_instruction = *(uint16_t *)pc; 2000 2001 # if defined(__riscv_compressed) 2002 if ((faulty_instruction & 0x3) != 0x3) { // it's a compressed instruction 2003 // set op_bits to the instruction bits [1, 0, 15, 14, 13] 2004 unsigned op_bits = 2005 ((faulty_instruction & 0x3) << 3) | (faulty_instruction >> 13); 2006 unsigned rd = faulty_instruction & 0xF80; // bits 7-11, inclusive 2007 switch (op_bits) { 2008 case 0b10'010: // c.lwsp (rd != x0) 2009 # if __riscv_xlen == 64 2010 case 0b10'011: // c.ldsp (rd != x0) 2011 # endif 2012 return rd ? SignalContext::Read : SignalContext::Unknown; 2013 case 0b00'010: // c.lw 2014 # if __riscv_flen >= 32 && __riscv_xlen == 32 2015 case 0b10'011: // c.flwsp 2016 # endif 2017 # if __riscv_flen >= 32 || __riscv_xlen == 64 2018 case 0b00'011: // c.flw / c.ld 2019 # endif 2020 # if __riscv_flen == 64 2021 case 0b00'001: // c.fld 2022 case 0b10'001: // c.fldsp 2023 # endif 2024 return SignalContext::Read; 2025 case 0b00'110: // c.sw 2026 case 0b10'110: // c.swsp 2027 # if __riscv_flen >= 32 || __riscv_xlen == 64 2028 case 0b00'111: // c.fsw / c.sd 2029 case 0b10'111: // c.fswsp / c.sdsp 2030 # endif 2031 # if __riscv_flen == 64 2032 case 0b00'101: // c.fsd 2033 case 0b10'101: // c.fsdsp 2034 # endif 2035 return SignalContext::Write; 2036 default: 2037 return SignalContext::Unknown; 2038 } 2039 } 2040 # endif 2041 2042 unsigned opcode = faulty_instruction & 0x7f; // lower 7 bits 2043 unsigned funct3 = (faulty_instruction >> 12) & 0x7; // bits 12-14, inclusive 2044 switch (opcode) { 2045 case 0b0000011: // loads 2046 switch (funct3) { 2047 case 0b000: // lb 2048 case 0b001: // lh 2049 case 0b010: // lw 2050 # if __riscv_xlen == 64 2051 case 0b011: // ld 2052 # endif 2053 case 0b100: // lbu 2054 case 0b101: // lhu 2055 return SignalContext::Read; 2056 default: 2057 return SignalContext::Unknown; 2058 } 2059 case 0b0100011: // stores 2060 switch (funct3) { 2061 case 0b000: // sb 2062 case 0b001: // sh 2063 case 0b010: // sw 2064 # if __riscv_xlen == 64 2065 case 0b011: // sd 2066 # endif 2067 return SignalContext::Write; 2068 default: 2069 return SignalContext::Unknown; 2070 } 2071 # if __riscv_flen >= 32 2072 case 0b0000111: // floating-point loads 2073 switch (funct3) { 2074 case 0b010: // flw 2075 # if __riscv_flen == 64 2076 case 0b011: // fld 2077 # endif 2078 return SignalContext::Read; 2079 default: 2080 return SignalContext::Unknown; 2081 } 2082 case 0b0100111: // floating-point stores 2083 switch (funct3) { 2084 case 0b010: // fsw 2085 # if __riscv_flen == 64 2086 case 0b011: // fsd 2087 # endif 2088 return SignalContext::Write; 2089 default: 2090 return SignalContext::Unknown; 2091 } 2092 # endif 2093 default: 2094 return SignalContext::Unknown; 2095 } 2096 # else 2097 (void)ucontext; 2098 return Unknown; // FIXME: Implement. 2099 # endif 2100 } 2101 2102 bool SignalContext::IsTrueFaultingAddress() const { 2103 auto si = static_cast<const siginfo_t *>(siginfo); 2104 // SIGSEGV signals without a true fault address have si_code set to 128. 2105 return si->si_signo == SIGSEGV && si->si_code != 128; 2106 } 2107 2108 void SignalContext::DumpAllRegisters(void *context) { 2109 // FIXME: Implement this. 2110 } 2111 2112 static void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) { 2113 # if SANITIZER_NETBSD 2114 // This covers all NetBSD architectures 2115 ucontext_t *ucontext = (ucontext_t *)context; 2116 *pc = _UC_MACHINE_PC(ucontext); 2117 *bp = _UC_MACHINE_FP(ucontext); 2118 *sp = _UC_MACHINE_SP(ucontext); 2119 # elif defined(__arm__) 2120 ucontext_t *ucontext = (ucontext_t *)context; 2121 *pc = ucontext->uc_mcontext.arm_pc; 2122 *bp = ucontext->uc_mcontext.arm_fp; 2123 *sp = ucontext->uc_mcontext.arm_sp; 2124 # elif defined(__aarch64__) 2125 # if SANITIZER_FREEBSD 2126 ucontext_t *ucontext = (ucontext_t *)context; 2127 *pc = ucontext->uc_mcontext.mc_gpregs.gp_elr; 2128 *bp = ucontext->uc_mcontext.mc_gpregs.gp_x[29]; 2129 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp; 2130 # else 2131 ucontext_t *ucontext = (ucontext_t *)context; 2132 *pc = ucontext->uc_mcontext.pc; 2133 *bp = ucontext->uc_mcontext.regs[29]; 2134 *sp = ucontext->uc_mcontext.sp; 2135 # endif 2136 # elif defined(__hppa__) 2137 ucontext_t *ucontext = (ucontext_t *)context; 2138 *pc = ucontext->uc_mcontext.sc_iaoq[0]; 2139 /* GCC uses %r3 whenever a frame pointer is needed. */ 2140 *bp = ucontext->uc_mcontext.sc_gr[3]; 2141 *sp = ucontext->uc_mcontext.sc_gr[30]; 2142 # elif defined(__x86_64__) 2143 # if SANITIZER_FREEBSD 2144 ucontext_t *ucontext = (ucontext_t *)context; 2145 *pc = ucontext->uc_mcontext.mc_rip; 2146 *bp = ucontext->uc_mcontext.mc_rbp; 2147 *sp = ucontext->uc_mcontext.mc_rsp; 2148 # else 2149 ucontext_t *ucontext = (ucontext_t *)context; 2150 *pc = ucontext->uc_mcontext.gregs[REG_RIP]; 2151 *bp = ucontext->uc_mcontext.gregs[REG_RBP]; 2152 *sp = ucontext->uc_mcontext.gregs[REG_RSP]; 2153 # endif 2154 # elif defined(__i386__) 2155 # if SANITIZER_FREEBSD 2156 ucontext_t *ucontext = (ucontext_t *)context; 2157 *pc = ucontext->uc_mcontext.mc_eip; 2158 *bp = ucontext->uc_mcontext.mc_ebp; 2159 *sp = ucontext->uc_mcontext.mc_esp; 2160 # else 2161 ucontext_t *ucontext = (ucontext_t *)context; 2162 # if SANITIZER_SOLARIS 2163 /* Use the numeric values: the symbolic ones are undefined by llvm 2164 include/llvm/Support/Solaris.h. */ 2165 # ifndef REG_EIP 2166 # define REG_EIP 14 // REG_PC 2167 # endif 2168 # ifndef REG_EBP 2169 # define REG_EBP 6 // REG_FP 2170 # endif 2171 # ifndef REG_UESP 2172 # define REG_UESP 17 // REG_SP 2173 # endif 2174 # endif 2175 *pc = ucontext->uc_mcontext.gregs[REG_EIP]; 2176 *bp = ucontext->uc_mcontext.gregs[REG_EBP]; 2177 *sp = ucontext->uc_mcontext.gregs[REG_UESP]; 2178 # endif 2179 # elif defined(__powerpc__) || defined(__powerpc64__) 2180 # if SANITIZER_FREEBSD 2181 ucontext_t *ucontext = (ucontext_t *)context; 2182 *pc = ucontext->uc_mcontext.mc_srr0; 2183 *sp = ucontext->uc_mcontext.mc_frame[1]; 2184 *bp = ucontext->uc_mcontext.mc_frame[31]; 2185 # else 2186 ucontext_t *ucontext = (ucontext_t *)context; 2187 *pc = ucontext->uc_mcontext.regs->nip; 2188 *sp = ucontext->uc_mcontext.regs->gpr[PT_R1]; 2189 // The powerpc{,64}-linux ABIs do not specify r31 as the frame 2190 // pointer, but GCC always uses r31 when we need a frame pointer. 2191 *bp = ucontext->uc_mcontext.regs->gpr[PT_R31]; 2192 # endif 2193 # elif defined(__sparc__) 2194 # if defined(__arch64__) || defined(__sparcv9) 2195 # define STACK_BIAS 2047 2196 # else 2197 # define STACK_BIAS 0 2198 # endif 2199 # if SANITIZER_SOLARIS 2200 ucontext_t *ucontext = (ucontext_t *)context; 2201 *pc = ucontext->uc_mcontext.gregs[REG_PC]; 2202 *sp = ucontext->uc_mcontext.gregs[REG_O6] + STACK_BIAS; 2203 # else 2204 // Historical BSDism here. 2205 struct sigcontext *scontext = (struct sigcontext *)context; 2206 # if defined(__arch64__) 2207 *pc = scontext->sigc_regs.tpc; 2208 *sp = scontext->sigc_regs.u_regs[14] + STACK_BIAS; 2209 # else 2210 *pc = scontext->si_regs.pc; 2211 *sp = scontext->si_regs.u_regs[14]; 2212 # endif 2213 # endif 2214 *bp = (uptr)((uhwptr *)*sp)[14] + STACK_BIAS; 2215 # elif defined(__mips__) 2216 ucontext_t *ucontext = (ucontext_t *)context; 2217 *pc = ucontext->uc_mcontext.pc; 2218 *bp = ucontext->uc_mcontext.gregs[30]; 2219 *sp = ucontext->uc_mcontext.gregs[29]; 2220 # elif defined(__s390__) 2221 ucontext_t *ucontext = (ucontext_t *)context; 2222 # if defined(__s390x__) 2223 *pc = ucontext->uc_mcontext.psw.addr; 2224 # else 2225 *pc = ucontext->uc_mcontext.psw.addr & 0x7fffffff; 2226 # endif 2227 *bp = ucontext->uc_mcontext.gregs[11]; 2228 *sp = ucontext->uc_mcontext.gregs[15]; 2229 # elif defined(__riscv) 2230 ucontext_t *ucontext = (ucontext_t *)context; 2231 # if SANITIZER_FREEBSD 2232 *pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc; 2233 *bp = ucontext->uc_mcontext.mc_gpregs.gp_s[0]; 2234 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp; 2235 # else 2236 *pc = ucontext->uc_mcontext.__gregs[REG_PC]; 2237 *bp = ucontext->uc_mcontext.__gregs[REG_S0]; 2238 *sp = ucontext->uc_mcontext.__gregs[REG_SP]; 2239 # endif 2240 # elif defined(__hexagon__) 2241 ucontext_t *ucontext = (ucontext_t *)context; 2242 *pc = ucontext->uc_mcontext.pc; 2243 *bp = ucontext->uc_mcontext.r30; 2244 *sp = ucontext->uc_mcontext.r29; 2245 # elif defined(__loongarch__) 2246 ucontext_t *ucontext = (ucontext_t *)context; 2247 *pc = ucontext->uc_mcontext.__pc; 2248 *bp = ucontext->uc_mcontext.__gregs[22]; 2249 *sp = ucontext->uc_mcontext.__gregs[3]; 2250 # else 2251 # error "Unsupported arch" 2252 # endif 2253 } 2254 2255 void SignalContext::InitPcSpBp() { GetPcSpBp(context, &pc, &sp, &bp); } 2256 2257 void InitializePlatformEarly() { 2258 // Do nothing. 2259 } 2260 2261 void CheckASLR() { 2262 # if SANITIZER_NETBSD 2263 int mib[3]; 2264 int paxflags; 2265 uptr len = sizeof(paxflags); 2266 2267 mib[0] = CTL_PROC; 2268 mib[1] = internal_getpid(); 2269 mib[2] = PROC_PID_PAXFLAGS; 2270 2271 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) { 2272 Printf("sysctl failed\n"); 2273 Die(); 2274 } 2275 2276 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_ASLR)) { 2277 Printf( 2278 "This sanitizer is not compatible with enabled ASLR.\n" 2279 "To disable ASLR, please run \"paxctl +a %s\" and try again.\n", 2280 GetArgv()[0]); 2281 Die(); 2282 } 2283 # elif SANITIZER_FREEBSD 2284 int aslr_status; 2285 int r = internal_procctl(P_PID, 0, PROC_ASLR_STATUS, &aslr_status); 2286 if (UNLIKELY(r == -1)) { 2287 // We're making things less 'dramatic' here since 2288 // the cmd is not necessarily guaranteed to be here 2289 // just yet regarding FreeBSD release 2290 return; 2291 } 2292 if ((aslr_status & PROC_ASLR_ACTIVE) != 0) { 2293 VReport(1, 2294 "This sanitizer is not compatible with enabled ASLR " 2295 "and binaries compiled with PIE\n" 2296 "ASLR will be disabled and the program re-executed.\n"); 2297 int aslr_ctl = PROC_ASLR_FORCE_DISABLE; 2298 CHECK_NE(internal_procctl(P_PID, 0, PROC_ASLR_CTL, &aslr_ctl), -1); 2299 ReExec(); 2300 } 2301 # elif SANITIZER_PPC64V2 2302 // Disable ASLR for Linux PPC64LE. 2303 int old_personality = personality(0xffffffff); 2304 if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) { 2305 VReport(1, 2306 "WARNING: Program is being run with address space layout " 2307 "randomization (ASLR) enabled which prevents the thread and " 2308 "memory sanitizers from working on powerpc64le.\n" 2309 "ASLR will be disabled and the program re-executed.\n"); 2310 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); 2311 ReExec(); 2312 } 2313 # else 2314 // Do nothing 2315 # endif 2316 } 2317 2318 void CheckMPROTECT() { 2319 # if SANITIZER_NETBSD 2320 int mib[3]; 2321 int paxflags; 2322 uptr len = sizeof(paxflags); 2323 2324 mib[0] = CTL_PROC; 2325 mib[1] = internal_getpid(); 2326 mib[2] = PROC_PID_PAXFLAGS; 2327 2328 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) { 2329 Printf("sysctl failed\n"); 2330 Die(); 2331 } 2332 2333 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_MPROTECT)) { 2334 Printf("This sanitizer is not compatible with enabled MPROTECT\n"); 2335 Die(); 2336 } 2337 # else 2338 // Do nothing 2339 # endif 2340 } 2341 2342 void CheckNoDeepBind(const char *filename, int flag) { 2343 # ifdef RTLD_DEEPBIND 2344 if (flag & RTLD_DEEPBIND) { 2345 Report( 2346 "You are trying to dlopen a %s shared library with RTLD_DEEPBIND flag" 2347 " which is incompatible with sanitizer runtime " 2348 "(see https://github.com/google/sanitizers/issues/611 for details" 2349 "). If you want to run %s library under sanitizers please remove " 2350 "RTLD_DEEPBIND from dlopen flags.\n", 2351 filename, filename); 2352 Die(); 2353 } 2354 # endif 2355 } 2356 2357 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 2358 uptr *largest_gap_found, 2359 uptr *max_occupied_addr) { 2360 UNREACHABLE("FindAvailableMemoryRange is not available"); 2361 return 0; 2362 } 2363 2364 bool GetRandom(void *buffer, uptr length, bool blocking) { 2365 if (!buffer || !length || length > 256) 2366 return false; 2367 # if SANITIZER_USE_GETENTROPY 2368 uptr rnd = getentropy(buffer, length); 2369 int rverrno = 0; 2370 if (internal_iserror(rnd, &rverrno) && rverrno == EFAULT) 2371 return false; 2372 else if (rnd == 0) 2373 return true; 2374 # endif // SANITIZER_USE_GETENTROPY 2375 2376 # if SANITIZER_USE_GETRANDOM 2377 static atomic_uint8_t skip_getrandom_syscall; 2378 if (!atomic_load_relaxed(&skip_getrandom_syscall)) { 2379 // Up to 256 bytes, getrandom will not be interrupted. 2380 uptr res = internal_syscall(SYSCALL(getrandom), buffer, length, 2381 blocking ? 0 : GRND_NONBLOCK); 2382 int rverrno = 0; 2383 if (internal_iserror(res, &rverrno) && rverrno == ENOSYS) 2384 atomic_store_relaxed(&skip_getrandom_syscall, 1); 2385 else if (res == length) 2386 return true; 2387 } 2388 # endif // SANITIZER_USE_GETRANDOM 2389 // Up to 256 bytes, a read off /dev/urandom will not be interrupted. 2390 // blocking is moot here, O_NONBLOCK has no effect when opening /dev/urandom. 2391 uptr fd = internal_open("/dev/urandom", O_RDONLY); 2392 if (internal_iserror(fd)) 2393 return false; 2394 uptr res = internal_read(fd, buffer, length); 2395 if (internal_iserror(res)) 2396 return false; 2397 internal_close(fd); 2398 return true; 2399 } 2400 2401 } // namespace __sanitizer 2402 2403 #endif 2404