xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_linux.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- sanitizer_linux.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements linux-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_platform.h"
15 
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
17     SANITIZER_SOLARIS
18 
19 #  include "sanitizer_common.h"
20 #  include "sanitizer_flags.h"
21 #  include "sanitizer_getauxval.h"
22 #  include "sanitizer_internal_defs.h"
23 #  include "sanitizer_libc.h"
24 #  include "sanitizer_linux.h"
25 #  include "sanitizer_mutex.h"
26 #  include "sanitizer_placement_new.h"
27 #  include "sanitizer_procmaps.h"
28 
29 #  if SANITIZER_LINUX && !SANITIZER_GO
30 #    include <asm/param.h>
31 #  endif
32 
33 // For mips64, syscall(__NR_stat) fills the buffer in the 'struct kernel_stat'
34 // format. Struct kernel_stat is defined as 'struct stat' in asm/stat.h. To
35 // access stat from asm/stat.h, without conflicting with definition in
36 // sys/stat.h, we use this trick.  sparc64 is similar, using
37 // syscall(__NR_stat64) and struct kernel_stat64.
38 #  if SANITIZER_LINUX && (SANITIZER_MIPS64 || SANITIZER_SPARC64)
39 #    include <asm/unistd.h>
40 #    include <sys/types.h>
41 #    define stat kernel_stat
42 #    if SANITIZER_SPARC64
43 #      define stat64 kernel_stat64
44 #    endif
45 #    if SANITIZER_GO
46 #      undef st_atime
47 #      undef st_mtime
48 #      undef st_ctime
49 #      define st_atime st_atim
50 #      define st_mtime st_mtim
51 #      define st_ctime st_ctim
52 #    endif
53 #    include <asm/stat.h>
54 #    undef stat
55 #    undef stat64
56 #  endif
57 
58 #  include <dlfcn.h>
59 #  include <errno.h>
60 #  include <fcntl.h>
61 #  include <link.h>
62 #  include <pthread.h>
63 #  include <sched.h>
64 #  include <signal.h>
65 #  include <sys/mman.h>
66 #  if !SANITIZER_SOLARIS
67 #    include <sys/ptrace.h>
68 #  endif
69 #  include <sys/resource.h>
70 #  include <sys/stat.h>
71 #  include <sys/syscall.h>
72 #  include <sys/time.h>
73 #  include <sys/types.h>
74 #  include <ucontext.h>
75 #  include <unistd.h>
76 
77 #  if SANITIZER_LINUX
78 #    include <sys/utsname.h>
79 #  endif
80 
81 #  if SANITIZER_LINUX && !SANITIZER_ANDROID
82 #    include <sys/personality.h>
83 #  endif
84 
85 #  if SANITIZER_LINUX && defined(__loongarch__)
86 #    include <sys/sysmacros.h>
87 #  endif
88 
89 #  if SANITIZER_FREEBSD
90 #    include <machine/atomic.h>
91 #    include <sys/exec.h>
92 #    include <sys/procctl.h>
93 #    include <sys/sysctl.h>
94 extern "C" {
95 // <sys/umtx.h> must be included after <errno.h> and <sys/types.h> on
96 // FreeBSD 9.2 and 10.0.
97 #    include <sys/umtx.h>
98 }
99 #    include <sys/thr.h>
100 #  endif  // SANITIZER_FREEBSD
101 
102 #  if SANITIZER_NETBSD
103 #    include <limits.h>  // For NAME_MAX
104 #    include <sys/exec.h>
105 #    include <sys/sysctl.h>
106 extern struct ps_strings *__ps_strings;
107 #  endif  // SANITIZER_NETBSD
108 
109 #  if SANITIZER_SOLARIS
110 #    include <stdlib.h>
111 #    include <thread.h>
112 #    define environ _environ
113 #  endif
114 
115 extern char **environ;
116 
117 #  if SANITIZER_LINUX
118 // <linux/time.h>
119 struct kernel_timeval {
120   long tv_sec;
121   long tv_usec;
122 };
123 
124 // <linux/futex.h> is broken on some linux distributions.
125 const int FUTEX_WAIT = 0;
126 const int FUTEX_WAKE = 1;
127 const int FUTEX_PRIVATE_FLAG = 128;
128 const int FUTEX_WAIT_PRIVATE = FUTEX_WAIT | FUTEX_PRIVATE_FLAG;
129 const int FUTEX_WAKE_PRIVATE = FUTEX_WAKE | FUTEX_PRIVATE_FLAG;
130 #  endif  // SANITIZER_LINUX
131 
132 // Are we using 32-bit or 64-bit Linux syscalls?
133 // x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32
134 // but it still needs to use 64-bit syscalls.
135 #  if SANITIZER_LINUX && (defined(__x86_64__) || defined(__powerpc64__) || \
136                           SANITIZER_WORDSIZE == 64 ||                      \
137                           (defined(__mips__) && _MIPS_SIM == _ABIN32))
138 #    define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1
139 #  else
140 #    define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0
141 #  endif
142 
143 // Note : FreeBSD implemented both Linux and OpenBSD apis.
144 #  if SANITIZER_LINUX && defined(__NR_getrandom)
145 #    if !defined(GRND_NONBLOCK)
146 #      define GRND_NONBLOCK 1
147 #    endif
148 #    define SANITIZER_USE_GETRANDOM 1
149 #  else
150 #    define SANITIZER_USE_GETRANDOM 0
151 #  endif  // SANITIZER_LINUX && defined(__NR_getrandom)
152 
153 #  if SANITIZER_FREEBSD
154 #    define SANITIZER_USE_GETENTROPY 1
155 #  endif
156 
157 namespace __sanitizer {
158 
159 void SetSigProcMask(__sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) {
160   CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, set, oldset));
161 }
162 
163 // Block asynchronous signals
164 void BlockSignals(__sanitizer_sigset_t *oldset) {
165   __sanitizer_sigset_t set;
166   internal_sigfillset(&set);
167 #  if SANITIZER_LINUX && !SANITIZER_ANDROID
168   // Glibc uses SIGSETXID signal during setuid call. If this signal is blocked
169   // on any thread, setuid call hangs.
170   // See test/sanitizer_common/TestCases/Linux/setuid.c.
171   internal_sigdelset(&set, 33);
172 #  endif
173 #  if SANITIZER_LINUX
174   // Seccomp-BPF-sandboxed processes rely on SIGSYS to handle trapped syscalls.
175   // If this signal is blocked, such calls cannot be handled and the process may
176   // hang.
177   internal_sigdelset(&set, 31);
178 
179   // Don't block synchronous signals
180   internal_sigdelset(&set, SIGSEGV);
181   internal_sigdelset(&set, SIGBUS);
182   internal_sigdelset(&set, SIGILL);
183   internal_sigdelset(&set, SIGTRAP);
184   internal_sigdelset(&set, SIGABRT);
185   internal_sigdelset(&set, SIGFPE);
186   internal_sigdelset(&set, SIGPIPE);
187 #  endif
188 
189   SetSigProcMask(&set, oldset);
190 }
191 
192 ScopedBlockSignals::ScopedBlockSignals(__sanitizer_sigset_t *copy) {
193   BlockSignals(&saved_);
194   if (copy)
195     internal_memcpy(copy, &saved_, sizeof(saved_));
196 }
197 
198 ScopedBlockSignals::~ScopedBlockSignals() { SetSigProcMask(&saved_, nullptr); }
199 
200 #  if SANITIZER_LINUX && defined(__x86_64__)
201 #    include "sanitizer_syscall_linux_x86_64.inc"
202 #  elif SANITIZER_LINUX && SANITIZER_RISCV64
203 #    include "sanitizer_syscall_linux_riscv64.inc"
204 #  elif SANITIZER_LINUX && defined(__aarch64__)
205 #    include "sanitizer_syscall_linux_aarch64.inc"
206 #  elif SANITIZER_LINUX && defined(__arm__)
207 #    include "sanitizer_syscall_linux_arm.inc"
208 #  elif SANITIZER_LINUX && defined(__hexagon__)
209 #    include "sanitizer_syscall_linux_hexagon.inc"
210 #  elif SANITIZER_LINUX && SANITIZER_LOONGARCH64
211 #    include "sanitizer_syscall_linux_loongarch64.inc"
212 #  else
213 #    include "sanitizer_syscall_generic.inc"
214 #  endif
215 
216 // --------------- sanitizer_libc.h
217 #  if !SANITIZER_SOLARIS && !SANITIZER_NETBSD
218 #    if !SANITIZER_S390
219 uptr internal_mmap(void *addr, uptr length, int prot, int flags, int fd,
220                    u64 offset) {
221 #      if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS
222   return internal_syscall(SYSCALL(mmap), (uptr)addr, length, prot, flags, fd,
223                           offset);
224 #      else
225   // mmap2 specifies file offset in 4096-byte units.
226   CHECK(IsAligned(offset, 4096));
227   return internal_syscall(SYSCALL(mmap2), addr, length, prot, flags, fd,
228                           (OFF_T)(offset / 4096));
229 #      endif
230 }
231 #    endif  // !SANITIZER_S390
232 
233 uptr internal_munmap(void *addr, uptr length) {
234   return internal_syscall(SYSCALL(munmap), (uptr)addr, length);
235 }
236 
237 #    if SANITIZER_LINUX
238 uptr internal_mremap(void *old_address, uptr old_size, uptr new_size, int flags,
239                      void *new_address) {
240   return internal_syscall(SYSCALL(mremap), (uptr)old_address, old_size,
241                           new_size, flags, (uptr)new_address);
242 }
243 #    endif
244 
245 int internal_mprotect(void *addr, uptr length, int prot) {
246   return internal_syscall(SYSCALL(mprotect), (uptr)addr, length, prot);
247 }
248 
249 int internal_madvise(uptr addr, uptr length, int advice) {
250   return internal_syscall(SYSCALL(madvise), addr, length, advice);
251 }
252 
253 uptr internal_close(fd_t fd) { return internal_syscall(SYSCALL(close), fd); }
254 
255 uptr internal_open(const char *filename, int flags) {
256 #    if SANITIZER_LINUX
257   return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags);
258 #    else
259   return internal_syscall(SYSCALL(open), (uptr)filename, flags);
260 #    endif
261 }
262 
263 uptr internal_open(const char *filename, int flags, u32 mode) {
264 #    if SANITIZER_LINUX
265   return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags,
266                           mode);
267 #    else
268   return internal_syscall(SYSCALL(open), (uptr)filename, flags, mode);
269 #    endif
270 }
271 
272 uptr internal_read(fd_t fd, void *buf, uptr count) {
273   sptr res;
274   HANDLE_EINTR(res,
275                (sptr)internal_syscall(SYSCALL(read), fd, (uptr)buf, count));
276   return res;
277 }
278 
279 uptr internal_write(fd_t fd, const void *buf, uptr count) {
280   sptr res;
281   HANDLE_EINTR(res,
282                (sptr)internal_syscall(SYSCALL(write), fd, (uptr)buf, count));
283   return res;
284 }
285 
286 uptr internal_ftruncate(fd_t fd, uptr size) {
287   sptr res;
288   HANDLE_EINTR(res,
289                (sptr)internal_syscall(SYSCALL(ftruncate), fd, (OFF_T)size));
290   return res;
291 }
292 
293 #    if !SANITIZER_LINUX_USES_64BIT_SYSCALLS && SANITIZER_LINUX
294 static void stat64_to_stat(struct stat64 *in, struct stat *out) {
295   internal_memset(out, 0, sizeof(*out));
296   out->st_dev = in->st_dev;
297   out->st_ino = in->st_ino;
298   out->st_mode = in->st_mode;
299   out->st_nlink = in->st_nlink;
300   out->st_uid = in->st_uid;
301   out->st_gid = in->st_gid;
302   out->st_rdev = in->st_rdev;
303   out->st_size = in->st_size;
304   out->st_blksize = in->st_blksize;
305   out->st_blocks = in->st_blocks;
306   out->st_atime = in->st_atime;
307   out->st_mtime = in->st_mtime;
308   out->st_ctime = in->st_ctime;
309 }
310 #    endif
311 
312 #    if SANITIZER_LINUX && defined(__loongarch__)
313 static void statx_to_stat(struct statx *in, struct stat *out) {
314   internal_memset(out, 0, sizeof(*out));
315   out->st_dev = makedev(in->stx_dev_major, in->stx_dev_minor);
316   out->st_ino = in->stx_ino;
317   out->st_mode = in->stx_mode;
318   out->st_nlink = in->stx_nlink;
319   out->st_uid = in->stx_uid;
320   out->st_gid = in->stx_gid;
321   out->st_rdev = makedev(in->stx_rdev_major, in->stx_rdev_minor);
322   out->st_size = in->stx_size;
323   out->st_blksize = in->stx_blksize;
324   out->st_blocks = in->stx_blocks;
325   out->st_atime = in->stx_atime.tv_sec;
326   out->st_atim.tv_nsec = in->stx_atime.tv_nsec;
327   out->st_mtime = in->stx_mtime.tv_sec;
328   out->st_mtim.tv_nsec = in->stx_mtime.tv_nsec;
329   out->st_ctime = in->stx_ctime.tv_sec;
330   out->st_ctim.tv_nsec = in->stx_ctime.tv_nsec;
331 }
332 #    endif
333 
334 #    if SANITIZER_MIPS64 || SANITIZER_SPARC64
335 #      if SANITIZER_MIPS64
336 typedef struct kernel_stat kstat_t;
337 #      else
338 typedef struct kernel_stat64 kstat_t;
339 #      endif
340 // Undefine compatibility macros from <sys/stat.h>
341 // so that they would not clash with the kernel_stat
342 // st_[a|m|c]time fields
343 #      if !SANITIZER_GO
344 #        undef st_atime
345 #        undef st_mtime
346 #        undef st_ctime
347 #      endif
348 #      if defined(SANITIZER_ANDROID)
349 // Bionic sys/stat.h defines additional macros
350 // for compatibility with the old NDKs and
351 // they clash with the kernel_stat structure
352 // st_[a|m|c]time_nsec fields.
353 #        undef st_atime_nsec
354 #        undef st_mtime_nsec
355 #        undef st_ctime_nsec
356 #      endif
357 static void kernel_stat_to_stat(kstat_t *in, struct stat *out) {
358   internal_memset(out, 0, sizeof(*out));
359   out->st_dev = in->st_dev;
360   out->st_ino = in->st_ino;
361   out->st_mode = in->st_mode;
362   out->st_nlink = in->st_nlink;
363   out->st_uid = in->st_uid;
364   out->st_gid = in->st_gid;
365   out->st_rdev = in->st_rdev;
366   out->st_size = in->st_size;
367   out->st_blksize = in->st_blksize;
368   out->st_blocks = in->st_blocks;
369 #      if defined(__USE_MISC) || defined(__USE_XOPEN2K8) || \
370           defined(SANITIZER_ANDROID)
371   out->st_atim.tv_sec = in->st_atime;
372   out->st_atim.tv_nsec = in->st_atime_nsec;
373   out->st_mtim.tv_sec = in->st_mtime;
374   out->st_mtim.tv_nsec = in->st_mtime_nsec;
375   out->st_ctim.tv_sec = in->st_ctime;
376   out->st_ctim.tv_nsec = in->st_ctime_nsec;
377 #      else
378   out->st_atime = in->st_atime;
379   out->st_atimensec = in->st_atime_nsec;
380   out->st_mtime = in->st_mtime;
381   out->st_mtimensec = in->st_mtime_nsec;
382   out->st_ctime = in->st_ctime;
383   out->st_atimensec = in->st_ctime_nsec;
384 #      endif
385 }
386 #    endif
387 
388 uptr internal_stat(const char *path, void *buf) {
389 #    if SANITIZER_FREEBSD
390   return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 0);
391 #    elif SANITIZER_LINUX
392 #      if defined(__loongarch__)
393   struct statx bufx;
394   int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path,
395                              AT_NO_AUTOMOUNT, STATX_BASIC_STATS, (uptr)&bufx);
396   statx_to_stat(&bufx, (struct stat *)buf);
397   return res;
398 #      elif (SANITIZER_WORDSIZE == 64 || SANITIZER_X32 ||    \
399              (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \
400           !SANITIZER_SPARC
401   return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf,
402                           0);
403 #      elif SANITIZER_SPARC64
404   kstat_t buf64;
405   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
406                              (uptr)&buf64, 0);
407   kernel_stat_to_stat(&buf64, (struct stat *)buf);
408   return res;
409 #      else
410   struct stat64 buf64;
411   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
412                              (uptr)&buf64, 0);
413   stat64_to_stat(&buf64, (struct stat *)buf);
414   return res;
415 #      endif
416 #    else
417   struct stat64 buf64;
418   int res = internal_syscall(SYSCALL(stat64), path, &buf64);
419   stat64_to_stat(&buf64, (struct stat *)buf);
420   return res;
421 #    endif
422 }
423 
424 uptr internal_lstat(const char *path, void *buf) {
425 #    if SANITIZER_FREEBSD
426   return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf,
427                           AT_SYMLINK_NOFOLLOW);
428 #    elif SANITIZER_LINUX
429 #      if defined(__loongarch__)
430   struct statx bufx;
431   int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path,
432                              AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT,
433                              STATX_BASIC_STATS, (uptr)&bufx);
434   statx_to_stat(&bufx, (struct stat *)buf);
435   return res;
436 #      elif (defined(_LP64) || SANITIZER_X32 ||              \
437              (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \
438           !SANITIZER_SPARC
439   return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf,
440                           AT_SYMLINK_NOFOLLOW);
441 #      elif SANITIZER_SPARC64
442   kstat_t buf64;
443   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
444                              (uptr)&buf64, AT_SYMLINK_NOFOLLOW);
445   kernel_stat_to_stat(&buf64, (struct stat *)buf);
446   return res;
447 #      else
448   struct stat64 buf64;
449   int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path,
450                              (uptr)&buf64, AT_SYMLINK_NOFOLLOW);
451   stat64_to_stat(&buf64, (struct stat *)buf);
452   return res;
453 #      endif
454 #    else
455   struct stat64 buf64;
456   int res = internal_syscall(SYSCALL(lstat64), path, &buf64);
457   stat64_to_stat(&buf64, (struct stat *)buf);
458   return res;
459 #    endif
460 }
461 
462 uptr internal_fstat(fd_t fd, void *buf) {
463 #    if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS
464 #      if SANITIZER_MIPS64
465   // For mips64, fstat syscall fills buffer in the format of kernel_stat
466   kstat_t kbuf;
467   int res = internal_syscall(SYSCALL(fstat), fd, &kbuf);
468   kernel_stat_to_stat(&kbuf, (struct stat *)buf);
469   return res;
470 #      elif SANITIZER_LINUX && SANITIZER_SPARC64
471   // For sparc64, fstat64 syscall fills buffer in the format of kernel_stat64
472   kstat_t kbuf;
473   int res = internal_syscall(SYSCALL(fstat64), fd, &kbuf);
474   kernel_stat_to_stat(&kbuf, (struct stat *)buf);
475   return res;
476 #      elif SANITIZER_LINUX && defined(__loongarch__)
477   struct statx bufx;
478   int res = internal_syscall(SYSCALL(statx), fd, "", AT_EMPTY_PATH,
479                              STATX_BASIC_STATS, (uptr)&bufx);
480   statx_to_stat(&bufx, (struct stat *)buf);
481   return res;
482 #      else
483   return internal_syscall(SYSCALL(fstat), fd, (uptr)buf);
484 #      endif
485 #    else
486   struct stat64 buf64;
487   int res = internal_syscall(SYSCALL(fstat64), fd, &buf64);
488   stat64_to_stat(&buf64, (struct stat *)buf);
489   return res;
490 #    endif
491 }
492 
493 uptr internal_filesize(fd_t fd) {
494   struct stat st;
495   if (internal_fstat(fd, &st))
496     return -1;
497   return (uptr)st.st_size;
498 }
499 
500 uptr internal_dup(int oldfd) { return internal_syscall(SYSCALL(dup), oldfd); }
501 
502 uptr internal_dup2(int oldfd, int newfd) {
503 #    if SANITIZER_LINUX
504   return internal_syscall(SYSCALL(dup3), oldfd, newfd, 0);
505 #    else
506   return internal_syscall(SYSCALL(dup2), oldfd, newfd);
507 #    endif
508 }
509 
510 uptr internal_readlink(const char *path, char *buf, uptr bufsize) {
511 #    if SANITIZER_LINUX
512   return internal_syscall(SYSCALL(readlinkat), AT_FDCWD, (uptr)path, (uptr)buf,
513                           bufsize);
514 #    else
515   return internal_syscall(SYSCALL(readlink), (uptr)path, (uptr)buf, bufsize);
516 #    endif
517 }
518 
519 uptr internal_unlink(const char *path) {
520 #    if SANITIZER_LINUX
521   return internal_syscall(SYSCALL(unlinkat), AT_FDCWD, (uptr)path, 0);
522 #    else
523   return internal_syscall(SYSCALL(unlink), (uptr)path);
524 #    endif
525 }
526 
527 uptr internal_rename(const char *oldpath, const char *newpath) {
528 #    if (defined(__riscv) || defined(__loongarch__)) && defined(__linux__)
529   return internal_syscall(SYSCALL(renameat2), AT_FDCWD, (uptr)oldpath, AT_FDCWD,
530                           (uptr)newpath, 0);
531 #    elif SANITIZER_LINUX
532   return internal_syscall(SYSCALL(renameat), AT_FDCWD, (uptr)oldpath, AT_FDCWD,
533                           (uptr)newpath);
534 #    else
535   return internal_syscall(SYSCALL(rename), (uptr)oldpath, (uptr)newpath);
536 #    endif
537 }
538 
539 uptr internal_sched_yield() { return internal_syscall(SYSCALL(sched_yield)); }
540 
541 void internal_usleep(u64 useconds) {
542   struct timespec ts;
543   ts.tv_sec = useconds / 1000000;
544   ts.tv_nsec = (useconds % 1000000) * 1000;
545   internal_syscall(SYSCALL(nanosleep), &ts, &ts);
546 }
547 
548 uptr internal_execve(const char *filename, char *const argv[],
549                      char *const envp[]) {
550   return internal_syscall(SYSCALL(execve), (uptr)filename, (uptr)argv,
551                           (uptr)envp);
552 }
553 #  endif  // !SANITIZER_SOLARIS && !SANITIZER_NETBSD
554 
555 #  if !SANITIZER_NETBSD
556 void internal__exit(int exitcode) {
557 #    if SANITIZER_FREEBSD || SANITIZER_SOLARIS
558   internal_syscall(SYSCALL(exit), exitcode);
559 #    else
560   internal_syscall(SYSCALL(exit_group), exitcode);
561 #    endif
562   Die();  // Unreachable.
563 }
564 #  endif  // !SANITIZER_NETBSD
565 
566 // ----------------- sanitizer_common.h
567 bool FileExists(const char *filename) {
568   if (ShouldMockFailureToOpen(filename))
569     return false;
570   struct stat st;
571   if (internal_stat(filename, &st))
572     return false;
573   // Sanity check: filename is a regular file.
574   return S_ISREG(st.st_mode);
575 }
576 
577 bool DirExists(const char *path) {
578   struct stat st;
579   if (internal_stat(path, &st))
580     return false;
581   return S_ISDIR(st.st_mode);
582 }
583 
584 #  if !SANITIZER_NETBSD
585 tid_t GetTid() {
586 #    if SANITIZER_FREEBSD
587   long Tid;
588   thr_self(&Tid);
589   return Tid;
590 #    elif SANITIZER_SOLARIS
591   return thr_self();
592 #    else
593   return internal_syscall(SYSCALL(gettid));
594 #    endif
595 }
596 
597 int TgKill(pid_t pid, tid_t tid, int sig) {
598 #    if SANITIZER_LINUX
599   return internal_syscall(SYSCALL(tgkill), pid, tid, sig);
600 #    elif SANITIZER_FREEBSD
601   return internal_syscall(SYSCALL(thr_kill2), pid, tid, sig);
602 #    elif SANITIZER_SOLARIS
603   (void)pid;
604   errno = thr_kill(tid, sig);
605   // TgKill is expected to return -1 on error, not an errno.
606   return errno != 0 ? -1 : 0;
607 #    endif
608 }
609 #  endif
610 
611 #  if SANITIZER_GLIBC
612 u64 NanoTime() {
613   kernel_timeval tv;
614   internal_memset(&tv, 0, sizeof(tv));
615   internal_syscall(SYSCALL(gettimeofday), &tv, 0);
616   return (u64)tv.tv_sec * 1000 * 1000 * 1000 + tv.tv_usec * 1000;
617 }
618 // Used by real_clock_gettime.
619 uptr internal_clock_gettime(__sanitizer_clockid_t clk_id, void *tp) {
620   return internal_syscall(SYSCALL(clock_gettime), clk_id, tp);
621 }
622 #  elif !SANITIZER_SOLARIS && !SANITIZER_NETBSD
623 u64 NanoTime() {
624   struct timespec ts;
625   clock_gettime(CLOCK_REALTIME, &ts);
626   return (u64)ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec;
627 }
628 #  endif
629 
630 // Like getenv, but reads env directly from /proc (on Linux) or parses the
631 // 'environ' array (on some others) and does not use libc. This function
632 // should be called first inside __asan_init.
633 const char *GetEnv(const char *name) {
634 #  if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_SOLARIS
635   if (::environ != 0) {
636     uptr NameLen = internal_strlen(name);
637     for (char **Env = ::environ; *Env != 0; Env++) {
638       if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
639         return (*Env) + NameLen + 1;
640     }
641   }
642   return 0;  // Not found.
643 #  elif SANITIZER_LINUX
644   static char *environ;
645   static uptr len;
646   static bool inited;
647   if (!inited) {
648     inited = true;
649     uptr environ_size;
650     if (!ReadFileToBuffer("/proc/self/environ", &environ, &environ_size, &len))
651       environ = nullptr;
652   }
653   if (!environ || len == 0)
654     return nullptr;
655   uptr namelen = internal_strlen(name);
656   const char *p = environ;
657   while (*p != '\0') {  // will happen at the \0\0 that terminates the buffer
658     // proc file has the format NAME=value\0NAME=value\0NAME=value\0...
659     const char *endp = (char *)internal_memchr(p, '\0', len - (p - environ));
660     if (!endp)  // this entry isn't NUL terminated
661       return nullptr;
662     else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=')  // Match.
663       return p + namelen + 1;  // point after =
664     p = endp + 1;
665   }
666   return nullptr;  // Not found.
667 #  else
668 #    error "Unsupported platform"
669 #  endif
670 }
671 
672 #  if !SANITIZER_FREEBSD && !SANITIZER_NETBSD && !SANITIZER_GO
673 extern "C" {
674 SANITIZER_WEAK_ATTRIBUTE extern void *__libc_stack_end;
675 }
676 #  endif
677 
678 #  if !SANITIZER_FREEBSD && !SANITIZER_NETBSD
679 static void ReadNullSepFileToArray(const char *path, char ***arr,
680                                    int arr_size) {
681   char *buff;
682   uptr buff_size;
683   uptr buff_len;
684   *arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray");
685   if (!ReadFileToBuffer(path, &buff, &buff_size, &buff_len, 1024 * 1024)) {
686     (*arr)[0] = nullptr;
687     return;
688   }
689   (*arr)[0] = buff;
690   int count, i;
691   for (count = 1, i = 1;; i++) {
692     if (buff[i] == 0) {
693       if (buff[i + 1] == 0)
694         break;
695       (*arr)[count] = &buff[i + 1];
696       CHECK_LE(count, arr_size - 1);  // FIXME: make this more flexible.
697       count++;
698     }
699   }
700   (*arr)[count] = nullptr;
701 }
702 #  endif
703 
704 static void GetArgsAndEnv(char ***argv, char ***envp) {
705 #  if SANITIZER_FREEBSD
706   // On FreeBSD, retrieving the argument and environment arrays is done via the
707   // kern.ps_strings sysctl, which returns a pointer to a structure containing
708   // this information. See also <sys/exec.h>.
709   ps_strings *pss;
710   uptr sz = sizeof(pss);
711   if (internal_sysctlbyname("kern.ps_strings", &pss, &sz, NULL, 0) == -1) {
712     Printf("sysctl kern.ps_strings failed\n");
713     Die();
714   }
715   *argv = pss->ps_argvstr;
716   *envp = pss->ps_envstr;
717 #  elif SANITIZER_NETBSD
718   *argv = __ps_strings->ps_argvstr;
719   *envp = __ps_strings->ps_envstr;
720 #  else  // SANITIZER_FREEBSD
721 #    if !SANITIZER_GO
722   if (&__libc_stack_end) {
723     uptr *stack_end = (uptr *)__libc_stack_end;
724     // Normally argc can be obtained from *stack_end, however, on ARM glibc's
725     // _start clobbers it:
726     // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/arm/start.S;hb=refs/heads/release/2.31/master#l75
727     // Do not special-case ARM and infer argc from argv everywhere.
728     int argc = 0;
729     while (stack_end[argc + 1]) argc++;
730     *argv = (char **)(stack_end + 1);
731     *envp = (char **)(stack_end + argc + 2);
732   } else {
733 #    endif  // !SANITIZER_GO
734     static const int kMaxArgv = 2000, kMaxEnvp = 2000;
735     ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv);
736     ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp);
737 #    if !SANITIZER_GO
738   }
739 #    endif  // !SANITIZER_GO
740 #  endif    // SANITIZER_FREEBSD
741 }
742 
743 char **GetArgv() {
744   char **argv, **envp;
745   GetArgsAndEnv(&argv, &envp);
746   return argv;
747 }
748 
749 char **GetEnviron() {
750   char **argv, **envp;
751   GetArgsAndEnv(&argv, &envp);
752   return envp;
753 }
754 
755 #  if !SANITIZER_SOLARIS
756 void FutexWait(atomic_uint32_t *p, u32 cmp) {
757 #    if SANITIZER_FREEBSD
758   _umtx_op(p, UMTX_OP_WAIT_UINT, cmp, 0, 0);
759 #    elif SANITIZER_NETBSD
760   sched_yield(); /* No userspace futex-like synchronization */
761 #    else
762   internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAIT_PRIVATE, cmp, 0, 0, 0);
763 #    endif
764 }
765 
766 void FutexWake(atomic_uint32_t *p, u32 count) {
767 #    if SANITIZER_FREEBSD
768   _umtx_op(p, UMTX_OP_WAKE, count, 0, 0);
769 #    elif SANITIZER_NETBSD
770   /* No userspace futex-like synchronization */
771 #    else
772   internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAKE_PRIVATE, count, 0, 0, 0);
773 #    endif
774 }
775 
776 #  endif  // !SANITIZER_SOLARIS
777 
778 // ----------------- sanitizer_linux.h
779 // The actual size of this structure is specified by d_reclen.
780 // Note that getdents64 uses a different structure format. We only provide the
781 // 32-bit syscall here.
782 #  if SANITIZER_NETBSD
783 // Not used
784 #  else
785 struct linux_dirent {
786 #    if SANITIZER_X32 || SANITIZER_LINUX
787   u64 d_ino;
788   u64 d_off;
789 #    else
790   unsigned long d_ino;
791   unsigned long d_off;
792 #    endif
793   unsigned short d_reclen;
794 #    if SANITIZER_LINUX
795   unsigned char d_type;
796 #    endif
797   char d_name[256];
798 };
799 #  endif
800 
801 #  if !SANITIZER_SOLARIS && !SANITIZER_NETBSD
802 // Syscall wrappers.
803 uptr internal_ptrace(int request, int pid, void *addr, void *data) {
804   return internal_syscall(SYSCALL(ptrace), request, pid, (uptr)addr,
805                           (uptr)data);
806 }
807 
808 uptr internal_waitpid(int pid, int *status, int options) {
809   return internal_syscall(SYSCALL(wait4), pid, (uptr)status, options,
810                           0 /* rusage */);
811 }
812 
813 uptr internal_getpid() { return internal_syscall(SYSCALL(getpid)); }
814 
815 uptr internal_getppid() { return internal_syscall(SYSCALL(getppid)); }
816 
817 int internal_dlinfo(void *handle, int request, void *p) {
818 #    if SANITIZER_FREEBSD
819   return dlinfo(handle, request, p);
820 #    else
821   UNIMPLEMENTED();
822 #    endif
823 }
824 
825 uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) {
826 #    if SANITIZER_FREEBSD
827   return internal_syscall(SYSCALL(getdirentries), fd, (uptr)dirp, count, NULL);
828 #    elif SANITIZER_LINUX
829   return internal_syscall(SYSCALL(getdents64), fd, (uptr)dirp, count);
830 #    else
831   return internal_syscall(SYSCALL(getdents), fd, (uptr)dirp, count);
832 #    endif
833 }
834 
835 uptr internal_lseek(fd_t fd, OFF_T offset, int whence) {
836   return internal_syscall(SYSCALL(lseek), fd, offset, whence);
837 }
838 
839 #    if SANITIZER_LINUX
840 uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) {
841   return internal_syscall(SYSCALL(prctl), option, arg2, arg3, arg4, arg5);
842 }
843 #      if defined(__x86_64__)
844 #        include <asm/unistd_64.h>
845 // Currently internal_arch_prctl() is only needed on x86_64.
846 uptr internal_arch_prctl(int option, uptr arg2) {
847   return internal_syscall(__NR_arch_prctl, option, arg2);
848 }
849 #      endif
850 #    endif
851 
852 uptr internal_sigaltstack(const void *ss, void *oss) {
853   return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss);
854 }
855 
856 extern "C" pid_t __fork(void);
857 
858 int internal_fork() {
859 #    if SANITIZER_LINUX
860 #      if SANITIZER_S390
861   return internal_syscall(SYSCALL(clone), 0, SIGCHLD);
862 #      elif SANITIZER_SPARC
863   // The clone syscall interface on SPARC differs massively from the rest,
864   // so fall back to __fork.
865   return __fork();
866 #      else
867   return internal_syscall(SYSCALL(clone), SIGCHLD, 0);
868 #      endif
869 #    else
870   return internal_syscall(SYSCALL(fork));
871 #    endif
872 }
873 
874 #    if SANITIZER_FREEBSD
875 int internal_sysctl(const int *name, unsigned int namelen, void *oldp,
876                     uptr *oldlenp, const void *newp, uptr newlen) {
877   return internal_syscall(SYSCALL(__sysctl), name, namelen, oldp,
878                           (size_t *)oldlenp, newp, (size_t)newlen);
879 }
880 
881 int internal_sysctlbyname(const char *sname, void *oldp, uptr *oldlenp,
882                           const void *newp, uptr newlen) {
883   // Note: this function can be called during startup, so we need to avoid
884   // calling any interceptable functions. On FreeBSD >= 1300045 sysctlbyname()
885   // is a real syscall, but for older versions it calls sysctlnametomib()
886   // followed by sysctl(). To avoid calling the intercepted version and
887   // asserting if this happens during startup, call the real sysctlnametomib()
888   // followed by internal_sysctl() if the syscall is not available.
889 #      ifdef SYS___sysctlbyname
890   return internal_syscall(SYSCALL(__sysctlbyname), sname,
891                           internal_strlen(sname), oldp, (size_t *)oldlenp, newp,
892                           (size_t)newlen);
893 #      else
894   static decltype(sysctlnametomib) *real_sysctlnametomib = nullptr;
895   if (!real_sysctlnametomib)
896     real_sysctlnametomib =
897         (decltype(sysctlnametomib) *)dlsym(RTLD_NEXT, "sysctlnametomib");
898   CHECK(real_sysctlnametomib);
899 
900   int oid[CTL_MAXNAME];
901   size_t len = CTL_MAXNAME;
902   if (real_sysctlnametomib(sname, oid, &len) == -1)
903     return (-1);
904   return internal_sysctl(oid, len, oldp, oldlenp, newp, newlen);
905 #      endif
906 }
907 #    endif
908 
909 #    if SANITIZER_LINUX
910 #      define SA_RESTORER 0x04000000
911 // Doesn't set sa_restorer if the caller did not set it, so use with caution
912 //(see below).
913 int internal_sigaction_norestorer(int signum, const void *act, void *oldact) {
914   __sanitizer_kernel_sigaction_t k_act, k_oldact;
915   internal_memset(&k_act, 0, sizeof(__sanitizer_kernel_sigaction_t));
916   internal_memset(&k_oldact, 0, sizeof(__sanitizer_kernel_sigaction_t));
917   const __sanitizer_sigaction *u_act = (const __sanitizer_sigaction *)act;
918   __sanitizer_sigaction *u_oldact = (__sanitizer_sigaction *)oldact;
919   if (u_act) {
920     k_act.handler = u_act->handler;
921     k_act.sigaction = u_act->sigaction;
922     internal_memcpy(&k_act.sa_mask, &u_act->sa_mask,
923                     sizeof(__sanitizer_kernel_sigset_t));
924     // Without SA_RESTORER kernel ignores the calls (probably returns EINVAL).
925     k_act.sa_flags = u_act->sa_flags | SA_RESTORER;
926     // FIXME: most often sa_restorer is unset, however the kernel requires it
927     // to point to a valid signal restorer that calls the rt_sigreturn syscall.
928     // If sa_restorer passed to the kernel is NULL, the program may crash upon
929     // signal delivery or fail to unwind the stack in the signal handler.
930     // libc implementation of sigaction() passes its own restorer to
931     // rt_sigaction, so we need to do the same (we'll need to reimplement the
932     // restorers; for x86_64 the restorer address can be obtained from
933     // oldact->sa_restorer upon a call to sigaction(xxx, NULL, oldact).
934 #      if !SANITIZER_ANDROID || !SANITIZER_MIPS32
935     k_act.sa_restorer = u_act->sa_restorer;
936 #      endif
937   }
938 
939   uptr result = internal_syscall(SYSCALL(rt_sigaction), (uptr)signum,
940                                  (uptr)(u_act ? &k_act : nullptr),
941                                  (uptr)(u_oldact ? &k_oldact : nullptr),
942                                  (uptr)sizeof(__sanitizer_kernel_sigset_t));
943 
944   if ((result == 0) && u_oldact) {
945     u_oldact->handler = k_oldact.handler;
946     u_oldact->sigaction = k_oldact.sigaction;
947     internal_memcpy(&u_oldact->sa_mask, &k_oldact.sa_mask,
948                     sizeof(__sanitizer_kernel_sigset_t));
949     u_oldact->sa_flags = k_oldact.sa_flags;
950 #      if !SANITIZER_ANDROID || !SANITIZER_MIPS32
951     u_oldact->sa_restorer = k_oldact.sa_restorer;
952 #      endif
953   }
954   return result;
955 }
956 #    endif  // SANITIZER_LINUX
957 
958 uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set,
959                           __sanitizer_sigset_t *oldset) {
960 #    if SANITIZER_FREEBSD
961   return internal_syscall(SYSCALL(sigprocmask), how, set, oldset);
962 #    else
963   __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
964   __sanitizer_kernel_sigset_t *k_oldset = (__sanitizer_kernel_sigset_t *)oldset;
965   return internal_syscall(SYSCALL(rt_sigprocmask), (uptr)how, (uptr)k_set,
966                           (uptr)k_oldset, sizeof(__sanitizer_kernel_sigset_t));
967 #    endif
968 }
969 
970 void internal_sigfillset(__sanitizer_sigset_t *set) {
971   internal_memset(set, 0xff, sizeof(*set));
972 }
973 
974 void internal_sigemptyset(__sanitizer_sigset_t *set) {
975   internal_memset(set, 0, sizeof(*set));
976 }
977 
978 #    if SANITIZER_LINUX
979 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) {
980   signum -= 1;
981   CHECK_GE(signum, 0);
982   CHECK_LT(signum, sizeof(*set) * 8);
983   __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
984   const uptr idx = signum / (sizeof(k_set->sig[0]) * 8);
985   const uptr bit = signum % (sizeof(k_set->sig[0]) * 8);
986   k_set->sig[idx] &= ~((uptr)1 << bit);
987 }
988 
989 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) {
990   signum -= 1;
991   CHECK_GE(signum, 0);
992   CHECK_LT(signum, sizeof(*set) * 8);
993   __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set;
994   const uptr idx = signum / (sizeof(k_set->sig[0]) * 8);
995   const uptr bit = signum % (sizeof(k_set->sig[0]) * 8);
996   return k_set->sig[idx] & ((uptr)1 << bit);
997 }
998 #    elif SANITIZER_FREEBSD
999 uptr internal_procctl(int type, int id, int cmd, void *data) {
1000   return internal_syscall(SYSCALL(procctl), type, id, cmd, data);
1001 }
1002 
1003 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) {
1004   sigset_t *rset = reinterpret_cast<sigset_t *>(set);
1005   sigdelset(rset, signum);
1006 }
1007 
1008 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) {
1009   sigset_t *rset = reinterpret_cast<sigset_t *>(set);
1010   return sigismember(rset, signum);
1011 }
1012 #    endif
1013 #  endif  // !SANITIZER_SOLARIS
1014 
1015 #  if !SANITIZER_NETBSD
1016 // ThreadLister implementation.
1017 ThreadLister::ThreadLister(pid_t pid) : pid_(pid), buffer_(4096) {
1018   char task_directory_path[80];
1019   internal_snprintf(task_directory_path, sizeof(task_directory_path),
1020                     "/proc/%d/task/", pid);
1021   descriptor_ = internal_open(task_directory_path, O_RDONLY | O_DIRECTORY);
1022   if (internal_iserror(descriptor_)) {
1023     Report("Can't open /proc/%d/task for reading.\n", pid);
1024   }
1025 }
1026 
1027 ThreadLister::Result ThreadLister::ListThreads(
1028     InternalMmapVector<tid_t> *threads) {
1029   if (internal_iserror(descriptor_))
1030     return Error;
1031   internal_lseek(descriptor_, 0, SEEK_SET);
1032   threads->clear();
1033 
1034   Result result = Ok;
1035   for (bool first_read = true;; first_read = false) {
1036     // Resize to max capacity if it was downsized by IsAlive.
1037     buffer_.resize(buffer_.capacity());
1038     CHECK_GE(buffer_.size(), 4096);
1039     uptr read = internal_getdents(
1040         descriptor_, (struct linux_dirent *)buffer_.data(), buffer_.size());
1041     if (!read)
1042       return result;
1043     if (internal_iserror(read)) {
1044       Report("Can't read directory entries from /proc/%d/task.\n", pid_);
1045       return Error;
1046     }
1047 
1048     for (uptr begin = (uptr)buffer_.data(), end = begin + read; begin < end;) {
1049       struct linux_dirent *entry = (struct linux_dirent *)begin;
1050       begin += entry->d_reclen;
1051       if (entry->d_ino == 1) {
1052         // Inode 1 is for bad blocks and also can be a reason for early return.
1053         // Should be emitted if kernel tried to output terminating thread.
1054         // See proc_task_readdir implementation in Linux.
1055         result = Incomplete;
1056       }
1057       if (entry->d_ino && *entry->d_name >= '0' && *entry->d_name <= '9')
1058         threads->push_back(internal_atoll(entry->d_name));
1059     }
1060 
1061     // Now we are going to detect short-read or early EOF. In such cases Linux
1062     // can return inconsistent list with missing alive threads.
1063     // Code will just remember that the list can be incomplete but it will
1064     // continue reads to return as much as possible.
1065     if (!first_read) {
1066       // The first one was a short-read by definition.
1067       result = Incomplete;
1068     } else if (read > buffer_.size() - 1024) {
1069       // Read was close to the buffer size. So double the size and assume the
1070       // worst.
1071       buffer_.resize(buffer_.size() * 2);
1072       result = Incomplete;
1073     } else if (!threads->empty() && !IsAlive(threads->back())) {
1074       // Maybe Linux early returned from read on terminated thread (!pid_alive)
1075       // and failed to restore read position.
1076       // See next_tid and proc_task_instantiate in Linux.
1077       result = Incomplete;
1078     }
1079   }
1080 }
1081 
1082 bool ThreadLister::IsAlive(int tid) {
1083   // /proc/%d/task/%d/status uses same call to detect alive threads as
1084   // proc_task_readdir. See task_state implementation in Linux.
1085   char path[80];
1086   internal_snprintf(path, sizeof(path), "/proc/%d/task/%d/status", pid_, tid);
1087   if (!ReadFileToVector(path, &buffer_) || buffer_.empty())
1088     return false;
1089   buffer_.push_back(0);
1090   static const char kPrefix[] = "\nPPid:";
1091   const char *field = internal_strstr(buffer_.data(), kPrefix);
1092   if (!field)
1093     return false;
1094   field += internal_strlen(kPrefix);
1095   return (int)internal_atoll(field) != 0;
1096 }
1097 
1098 ThreadLister::~ThreadLister() {
1099   if (!internal_iserror(descriptor_))
1100     internal_close(descriptor_);
1101 }
1102 #  endif
1103 
1104 #  if SANITIZER_WORDSIZE == 32
1105 // Take care of unusable kernel area in top gigabyte.
1106 static uptr GetKernelAreaSize() {
1107 #    if SANITIZER_LINUX && !SANITIZER_X32
1108   const uptr gbyte = 1UL << 30;
1109 
1110   // Firstly check if there are writable segments
1111   // mapped to top gigabyte (e.g. stack).
1112   MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
1113   if (proc_maps.Error())
1114     return 0;
1115   MemoryMappedSegment segment;
1116   while (proc_maps.Next(&segment)) {
1117     if ((segment.end >= 3 * gbyte) && segment.IsWritable())
1118       return 0;
1119   }
1120 
1121 #      if !SANITIZER_ANDROID
1122   // Even if nothing is mapped, top Gb may still be accessible
1123   // if we are running on 64-bit kernel.
1124   // Uname may report misleading results if personality type
1125   // is modified (e.g. under schroot) so check this as well.
1126   struct utsname uname_info;
1127   int pers = personality(0xffffffffUL);
1128   if (!(pers & PER_MASK) && internal_uname(&uname_info) == 0 &&
1129       internal_strstr(uname_info.machine, "64"))
1130     return 0;
1131 #      endif  // SANITIZER_ANDROID
1132 
1133   // Top gigabyte is reserved for kernel.
1134   return gbyte;
1135 #    else
1136   return 0;
1137 #    endif  // SANITIZER_LINUX && !SANITIZER_X32
1138 }
1139 #  endif  // SANITIZER_WORDSIZE == 32
1140 
1141 uptr GetMaxVirtualAddress() {
1142 #  if SANITIZER_NETBSD && defined(__x86_64__)
1143   return 0x7f7ffffff000ULL;  // (0x00007f8000000000 - PAGE_SIZE)
1144 #  elif SANITIZER_WORDSIZE == 64
1145 #    if defined(__powerpc64__) || defined(__aarch64__) || \
1146         defined(__loongarch__) || SANITIZER_RISCV64
1147   // On PowerPC64 we have two different address space layouts: 44- and 46-bit.
1148   // We somehow need to figure out which one we are using now and choose
1149   // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL.
1150   // Note that with 'ulimit -s unlimited' the stack is moved away from the top
1151   // of the address space, so simply checking the stack address is not enough.
1152   // This should (does) work for both PowerPC64 Endian modes.
1153   // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit.
1154   // loongarch64 also has multiple address space layouts: default is 47-bit.
1155   // RISC-V 64 also has multiple address space layouts: 39, 48 and 57-bit.
1156   return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1;
1157 #    elif SANITIZER_MIPS64
1158   return (1ULL << 40) - 1;  // 0x000000ffffffffffUL;
1159 #    elif defined(__s390x__)
1160   return (1ULL << 53) - 1;  // 0x001fffffffffffffUL;
1161 #    elif defined(__sparc__)
1162   return ~(uptr)0;
1163 #    else
1164   return (1ULL << 47) - 1;  // 0x00007fffffffffffUL;
1165 #    endif
1166 #  else  // SANITIZER_WORDSIZE == 32
1167 #    if defined(__s390__)
1168   return (1ULL << 31) - 1;  // 0x7fffffff;
1169 #    else
1170   return (1ULL << 32) - 1;  // 0xffffffff;
1171 #    endif
1172 #  endif  // SANITIZER_WORDSIZE
1173 }
1174 
1175 uptr GetMaxUserVirtualAddress() {
1176   uptr addr = GetMaxVirtualAddress();
1177 #  if SANITIZER_WORDSIZE == 32 && !defined(__s390__)
1178   if (!common_flags()->full_address_space)
1179     addr -= GetKernelAreaSize();
1180   CHECK_LT(reinterpret_cast<uptr>(&addr), addr);
1181 #  endif
1182   return addr;
1183 }
1184 
1185 #  if !SANITIZER_ANDROID || defined(__aarch64__)
1186 uptr GetPageSize() {
1187 #    if SANITIZER_LINUX && (defined(__x86_64__) || defined(__i386__)) && \
1188         defined(EXEC_PAGESIZE)
1189   return EXEC_PAGESIZE;
1190 #    elif SANITIZER_FREEBSD || SANITIZER_NETBSD
1191   // Use sysctl as sysconf can trigger interceptors internally.
1192   int pz = 0;
1193   uptr pzl = sizeof(pz);
1194   int mib[2] = {CTL_HW, HW_PAGESIZE};
1195   int rv = internal_sysctl(mib, 2, &pz, &pzl, nullptr, 0);
1196   CHECK_EQ(rv, 0);
1197   return (uptr)pz;
1198 #    elif SANITIZER_USE_GETAUXVAL
1199   return getauxval(AT_PAGESZ);
1200 #    else
1201   return sysconf(_SC_PAGESIZE);  // EXEC_PAGESIZE may not be trustworthy.
1202 #    endif
1203 }
1204 #  endif
1205 
1206 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
1207 #  if SANITIZER_SOLARIS
1208   const char *default_module_name = getexecname();
1209   CHECK_NE(default_module_name, NULL);
1210   return internal_snprintf(buf, buf_len, "%s", default_module_name);
1211 #  else
1212 #    if SANITIZER_FREEBSD || SANITIZER_NETBSD
1213 #      if SANITIZER_FREEBSD
1214   const int Mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
1215 #      else
1216   const int Mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
1217 #      endif
1218   const char *default_module_name = "kern.proc.pathname";
1219   uptr Size = buf_len;
1220   bool IsErr =
1221       (internal_sysctl(Mib, ARRAY_SIZE(Mib), buf, &Size, NULL, 0) != 0);
1222   int readlink_error = IsErr ? errno : 0;
1223   uptr module_name_len = Size;
1224 #    else
1225   const char *default_module_name = "/proc/self/exe";
1226   uptr module_name_len = internal_readlink(default_module_name, buf, buf_len);
1227   int readlink_error;
1228   bool IsErr = internal_iserror(module_name_len, &readlink_error);
1229 #    endif
1230   if (IsErr) {
1231     // We can't read binary name for some reason, assume it's unknown.
1232     Report(
1233         "WARNING: reading executable name failed with errno %d, "
1234         "some stack frames may not be symbolized\n",
1235         readlink_error);
1236     module_name_len =
1237         internal_snprintf(buf, buf_len, "%s", default_module_name);
1238     CHECK_LT(module_name_len, buf_len);
1239   }
1240   return module_name_len;
1241 #  endif
1242 }
1243 
1244 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
1245 #  if SANITIZER_LINUX
1246   char *tmpbuf;
1247   uptr tmpsize;
1248   uptr tmplen;
1249   if (ReadFileToBuffer("/proc/self/cmdline", &tmpbuf, &tmpsize, &tmplen,
1250                        1024 * 1024)) {
1251     internal_strncpy(buf, tmpbuf, buf_len);
1252     UnmapOrDie(tmpbuf, tmpsize);
1253     return internal_strlen(buf);
1254   }
1255 #  endif
1256   return ReadBinaryName(buf, buf_len);
1257 }
1258 
1259 // Match full names of the form /path/to/base_name{-,.}*
1260 bool LibraryNameIs(const char *full_name, const char *base_name) {
1261   const char *name = full_name;
1262   // Strip path.
1263   while (*name != '\0') name++;
1264   while (name > full_name && *name != '/') name--;
1265   if (*name == '/')
1266     name++;
1267   uptr base_name_length = internal_strlen(base_name);
1268   if (internal_strncmp(name, base_name, base_name_length))
1269     return false;
1270   return (name[base_name_length] == '-' || name[base_name_length] == '.');
1271 }
1272 
1273 #  if !SANITIZER_ANDROID
1274 // Call cb for each region mapped by map.
1275 void ForEachMappedRegion(link_map *map, void (*cb)(const void *, uptr)) {
1276   CHECK_NE(map, nullptr);
1277 #    if !SANITIZER_FREEBSD
1278   typedef ElfW(Phdr) Elf_Phdr;
1279   typedef ElfW(Ehdr) Elf_Ehdr;
1280 #    endif  // !SANITIZER_FREEBSD
1281   char *base = (char *)map->l_addr;
1282   Elf_Ehdr *ehdr = (Elf_Ehdr *)base;
1283   char *phdrs = base + ehdr->e_phoff;
1284   char *phdrs_end = phdrs + ehdr->e_phnum * ehdr->e_phentsize;
1285 
1286   // Find the segment with the minimum base so we can "relocate" the p_vaddr
1287   // fields.  Typically ET_DYN objects (DSOs) have base of zero and ET_EXEC
1288   // objects have a non-zero base.
1289   uptr preferred_base = (uptr)-1;
1290   for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) {
1291     Elf_Phdr *phdr = (Elf_Phdr *)iter;
1292     if (phdr->p_type == PT_LOAD && preferred_base > (uptr)phdr->p_vaddr)
1293       preferred_base = (uptr)phdr->p_vaddr;
1294   }
1295 
1296   // Compute the delta from the real base to get a relocation delta.
1297   sptr delta = (uptr)base - preferred_base;
1298   // Now we can figure out what the loader really mapped.
1299   for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) {
1300     Elf_Phdr *phdr = (Elf_Phdr *)iter;
1301     if (phdr->p_type == PT_LOAD) {
1302       uptr seg_start = phdr->p_vaddr + delta;
1303       uptr seg_end = seg_start + phdr->p_memsz;
1304       // None of these values are aligned.  We consider the ragged edges of the
1305       // load command as defined, since they are mapped from the file.
1306       seg_start = RoundDownTo(seg_start, GetPageSizeCached());
1307       seg_end = RoundUpTo(seg_end, GetPageSizeCached());
1308       cb((void *)seg_start, seg_end - seg_start);
1309     }
1310   }
1311 }
1312 #  endif
1313 
1314 #  if SANITIZER_LINUX
1315 #    if defined(__x86_64__)
1316 // We cannot use glibc's clone wrapper, because it messes with the child
1317 // task's TLS. It writes the PID and TID of the child task to its thread
1318 // descriptor, but in our case the child task shares the thread descriptor with
1319 // the parent (because we don't know how to allocate a new thread
1320 // descriptor to keep glibc happy). So the stock version of clone(), when
1321 // used with CLONE_VM, would end up corrupting the parent's thread descriptor.
1322 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1323                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1324   long long res;
1325   if (!fn || !child_stack)
1326     return -EINVAL;
1327   CHECK_EQ(0, (uptr)child_stack % 16);
1328   child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1329   ((unsigned long long *)child_stack)[0] = (uptr)fn;
1330   ((unsigned long long *)child_stack)[1] = (uptr)arg;
1331   register void *r8 __asm__("r8") = newtls;
1332   register int *r10 __asm__("r10") = child_tidptr;
1333   __asm__ __volatile__(
1334       /* %rax = syscall(%rax = SYSCALL(clone),
1335        *                %rdi = flags,
1336        *                %rsi = child_stack,
1337        *                %rdx = parent_tidptr,
1338        *                %r8  = new_tls,
1339        *                %r10 = child_tidptr)
1340        */
1341       "syscall\n"
1342 
1343       /* if (%rax != 0)
1344        *   return;
1345        */
1346       "testq  %%rax,%%rax\n"
1347       "jnz    1f\n"
1348 
1349       /* In the child. Terminate unwind chain. */
1350       // XXX: We should also terminate the CFI unwind chain
1351       // here. Unfortunately clang 3.2 doesn't support the
1352       // necessary CFI directives, so we skip that part.
1353       "xorq   %%rbp,%%rbp\n"
1354 
1355       /* Call "fn(arg)". */
1356       "popq   %%rax\n"
1357       "popq   %%rdi\n"
1358       "call   *%%rax\n"
1359 
1360       /* Call _exit(%rax). */
1361       "movq   %%rax,%%rdi\n"
1362       "movq   %2,%%rax\n"
1363       "syscall\n"
1364 
1365       /* Return to parent. */
1366       "1:\n"
1367       : "=a"(res)
1368       : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "S"(child_stack), "D"(flags),
1369         "d"(parent_tidptr), "r"(r8), "r"(r10)
1370       : "memory", "r11", "rcx");
1371   return res;
1372 }
1373 #    elif defined(__mips__)
1374 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1375                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1376   long long res;
1377   if (!fn || !child_stack)
1378     return -EINVAL;
1379   CHECK_EQ(0, (uptr)child_stack % 16);
1380   child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1381   ((unsigned long long *)child_stack)[0] = (uptr)fn;
1382   ((unsigned long long *)child_stack)[1] = (uptr)arg;
1383   register void *a3 __asm__("$7") = newtls;
1384   register int *a4 __asm__("$8") = child_tidptr;
1385   // We don't have proper CFI directives here because it requires alot of code
1386   // for very marginal benefits.
1387   __asm__ __volatile__(
1388       /* $v0 = syscall($v0 = __NR_clone,
1389        * $a0 = flags,
1390        * $a1 = child_stack,
1391        * $a2 = parent_tidptr,
1392        * $a3 = new_tls,
1393        * $a4 = child_tidptr)
1394        */
1395       ".cprestore 16;\n"
1396       "move $4,%1;\n"
1397       "move $5,%2;\n"
1398       "move $6,%3;\n"
1399       "move $7,%4;\n"
1400   /* Store the fifth argument on stack
1401    * if we are using 32-bit abi.
1402    */
1403 #      if SANITIZER_WORDSIZE == 32
1404       "lw %5,16($29);\n"
1405 #      else
1406       "move $8,%5;\n"
1407 #      endif
1408       "li $2,%6;\n"
1409       "syscall;\n"
1410 
1411       /* if ($v0 != 0)
1412        * return;
1413        */
1414       "bnez $2,1f;\n"
1415 
1416   /* Call "fn(arg)". */
1417 #      if SANITIZER_WORDSIZE == 32
1418 #        ifdef __BIG_ENDIAN__
1419       "lw $25,4($29);\n"
1420       "lw $4,12($29);\n"
1421 #        else
1422       "lw $25,0($29);\n"
1423       "lw $4,8($29);\n"
1424 #        endif
1425 #      else
1426       "ld $25,0($29);\n"
1427       "ld $4,8($29);\n"
1428 #      endif
1429       "jal $25;\n"
1430 
1431       /* Call _exit($v0). */
1432       "move $4,$2;\n"
1433       "li $2,%7;\n"
1434       "syscall;\n"
1435 
1436       /* Return to parent. */
1437       "1:\n"
1438       : "=r"(res)
1439       : "r"(flags), "r"(child_stack), "r"(parent_tidptr), "r"(a3), "r"(a4),
1440         "i"(__NR_clone), "i"(__NR_exit)
1441       : "memory", "$29");
1442   return res;
1443 }
1444 #    elif SANITIZER_RISCV64
1445 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1446                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1447   if (!fn || !child_stack)
1448     return -EINVAL;
1449 
1450   CHECK_EQ(0, (uptr)child_stack % 16);
1451 
1452   register int res __asm__("a0");
1453   register int __flags __asm__("a0") = flags;
1454   register void *__stack __asm__("a1") = child_stack;
1455   register int *__ptid __asm__("a2") = parent_tidptr;
1456   register void *__tls __asm__("a3") = newtls;
1457   register int *__ctid __asm__("a4") = child_tidptr;
1458   register int (*__fn)(void *) __asm__("a5") = fn;
1459   register void *__arg __asm__("a6") = arg;
1460   register int nr_clone __asm__("a7") = __NR_clone;
1461 
1462   __asm__ __volatile__(
1463       "ecall\n"
1464 
1465       /* if (a0 != 0)
1466        *   return a0;
1467        */
1468       "bnez a0, 1f\n"
1469 
1470       // In the child, now. Call "fn(arg)".
1471       "mv a0, a6\n"
1472       "jalr a5\n"
1473 
1474       // Call _exit(a0).
1475       "addi a7, zero, %9\n"
1476       "ecall\n"
1477       "1:\n"
1478 
1479       : "=r"(res)
1480       : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__tls), "r"(__ctid),
1481         "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit)
1482       : "memory");
1483   return res;
1484 }
1485 #    elif defined(__aarch64__)
1486 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1487                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1488   register long long res __asm__("x0");
1489   if (!fn || !child_stack)
1490     return -EINVAL;
1491   CHECK_EQ(0, (uptr)child_stack % 16);
1492   child_stack = (char *)child_stack - 2 * sizeof(unsigned long long);
1493   ((unsigned long long *)child_stack)[0] = (uptr)fn;
1494   ((unsigned long long *)child_stack)[1] = (uptr)arg;
1495 
1496   register int (*__fn)(void *) __asm__("x0") = fn;
1497   register void *__stack __asm__("x1") = child_stack;
1498   register int __flags __asm__("x2") = flags;
1499   register void *__arg __asm__("x3") = arg;
1500   register int *__ptid __asm__("x4") = parent_tidptr;
1501   register void *__tls __asm__("x5") = newtls;
1502   register int *__ctid __asm__("x6") = child_tidptr;
1503 
1504   __asm__ __volatile__(
1505       "mov x0,x2\n" /* flags  */
1506       "mov x2,x4\n" /* ptid  */
1507       "mov x3,x5\n" /* tls  */
1508       "mov x4,x6\n" /* ctid  */
1509       "mov x8,%9\n" /* clone  */
1510 
1511       "svc 0x0\n"
1512 
1513       /* if (%r0 != 0)
1514        *   return %r0;
1515        */
1516       "cmp x0, #0\n"
1517       "bne 1f\n"
1518 
1519       /* In the child, now. Call "fn(arg)". */
1520       "ldp x1, x0, [sp], #16\n"
1521       "blr x1\n"
1522 
1523       /* Call _exit(%r0).  */
1524       "mov x8, %10\n"
1525       "svc 0x0\n"
1526       "1:\n"
1527 
1528       : "=r"(res)
1529       : "i"(-EINVAL), "r"(__fn), "r"(__stack), "r"(__flags), "r"(__arg),
1530         "r"(__ptid), "r"(__tls), "r"(__ctid), "i"(__NR_clone), "i"(__NR_exit)
1531       : "x30", "memory");
1532   return res;
1533 }
1534 #    elif SANITIZER_LOONGARCH64
1535 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1536                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1537   if (!fn || !child_stack)
1538     return -EINVAL;
1539 
1540   CHECK_EQ(0, (uptr)child_stack % 16);
1541 
1542   register int res __asm__("$a0");
1543   register int __flags __asm__("$a0") = flags;
1544   register void *__stack __asm__("$a1") = child_stack;
1545   register int *__ptid __asm__("$a2") = parent_tidptr;
1546   register int *__ctid __asm__("$a3") = child_tidptr;
1547   register void *__tls __asm__("$a4") = newtls;
1548   register int (*__fn)(void *) __asm__("$a5") = fn;
1549   register void *__arg __asm__("$a6") = arg;
1550   register int nr_clone __asm__("$a7") = __NR_clone;
1551 
1552   __asm__ __volatile__(
1553       "syscall 0\n"
1554 
1555       // if ($a0 != 0)
1556       //   return $a0;
1557       "bnez $a0, 1f\n"
1558 
1559       // In the child, now. Call "fn(arg)".
1560       "move $a0, $a6\n"
1561       "jirl $ra, $a5, 0\n"
1562 
1563       // Call _exit($a0).
1564       "addi.d $a7, $zero, %9\n"
1565       "syscall 0\n"
1566 
1567       "1:\n"
1568 
1569       : "=r"(res)
1570       : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__ctid), "r"(__tls),
1571         "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit)
1572       : "memory", "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7",
1573         "$t8");
1574   return res;
1575 }
1576 #    elif defined(__powerpc64__)
1577 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1578                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1579   long long res;
1580 // Stack frame structure.
1581 #      if SANITIZER_PPC64V1
1582   //   Back chain == 0        (SP + 112)
1583   // Frame (112 bytes):
1584   //   Parameter save area    (SP + 48), 8 doublewords
1585   //   TOC save area          (SP + 40)
1586   //   Link editor doubleword (SP + 32)
1587   //   Compiler doubleword    (SP + 24)
1588   //   LR save area           (SP + 16)
1589   //   CR save area           (SP + 8)
1590   //   Back chain             (SP + 0)
1591 #        define FRAME_SIZE 112
1592 #        define FRAME_TOC_SAVE_OFFSET 40
1593 #      elif SANITIZER_PPC64V2
1594   //   Back chain == 0        (SP + 32)
1595   // Frame (32 bytes):
1596   //   TOC save area          (SP + 24)
1597   //   LR save area           (SP + 16)
1598   //   CR save area           (SP + 8)
1599   //   Back chain             (SP + 0)
1600 #        define FRAME_SIZE 32
1601 #        define FRAME_TOC_SAVE_OFFSET 24
1602 #      else
1603 #        error "Unsupported PPC64 ABI"
1604 #      endif
1605   if (!fn || !child_stack)
1606     return -EINVAL;
1607   CHECK_EQ(0, (uptr)child_stack % 16);
1608 
1609   register int (*__fn)(void *) __asm__("r3") = fn;
1610   register void *__cstack __asm__("r4") = child_stack;
1611   register int __flags __asm__("r5") = flags;
1612   register void *__arg __asm__("r6") = arg;
1613   register int *__ptidptr __asm__("r7") = parent_tidptr;
1614   register void *__newtls __asm__("r8") = newtls;
1615   register int *__ctidptr __asm__("r9") = child_tidptr;
1616 
1617   __asm__ __volatile__(
1618       /* fn and arg are saved across the syscall */
1619       "mr 28, %5\n\t"
1620       "mr 27, %8\n\t"
1621 
1622       /* syscall
1623         r0 == __NR_clone
1624         r3 == flags
1625         r4 == child_stack
1626         r5 == parent_tidptr
1627         r6 == newtls
1628         r7 == child_tidptr */
1629       "mr 3, %7\n\t"
1630       "mr 5, %9\n\t"
1631       "mr 6, %10\n\t"
1632       "mr 7, %11\n\t"
1633       "li 0, %3\n\t"
1634       "sc\n\t"
1635 
1636       /* Test if syscall was successful */
1637       "cmpdi  cr1, 3, 0\n\t"
1638       "crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t"
1639       "bne-   cr1, 1f\n\t"
1640 
1641       /* Set up stack frame */
1642       "li    29, 0\n\t"
1643       "stdu  29, -8(1)\n\t"
1644       "stdu  1, -%12(1)\n\t"
1645       /* Do the function call */
1646       "std   2, %13(1)\n\t"
1647 #      if SANITIZER_PPC64V1
1648       "ld    0, 0(28)\n\t"
1649       "ld    2, 8(28)\n\t"
1650       "mtctr 0\n\t"
1651 #      elif SANITIZER_PPC64V2
1652       "mr    12, 28\n\t"
1653       "mtctr 12\n\t"
1654 #      else
1655 #        error "Unsupported PPC64 ABI"
1656 #      endif
1657       "mr    3, 27\n\t"
1658       "bctrl\n\t"
1659       "ld    2, %13(1)\n\t"
1660 
1661       /* Call _exit(r3) */
1662       "li 0, %4\n\t"
1663       "sc\n\t"
1664 
1665       /* Return to parent */
1666       "1:\n\t"
1667       "mr %0, 3\n\t"
1668       : "=r"(res)
1669       : "0"(-1), "i"(EINVAL), "i"(__NR_clone), "i"(__NR_exit), "r"(__fn),
1670         "r"(__cstack), "r"(__flags), "r"(__arg), "r"(__ptidptr), "r"(__newtls),
1671         "r"(__ctidptr), "i"(FRAME_SIZE), "i"(FRAME_TOC_SAVE_OFFSET)
1672       : "cr0", "cr1", "memory", "ctr", "r0", "r27", "r28", "r29");
1673   return res;
1674 }
1675 #    elif defined(__i386__)
1676 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1677                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1678   int res;
1679   if (!fn || !child_stack)
1680     return -EINVAL;
1681   CHECK_EQ(0, (uptr)child_stack % 16);
1682   child_stack = (char *)child_stack - 7 * sizeof(unsigned int);
1683   ((unsigned int *)child_stack)[0] = (uptr)flags;
1684   ((unsigned int *)child_stack)[1] = (uptr)0;
1685   ((unsigned int *)child_stack)[2] = (uptr)fn;
1686   ((unsigned int *)child_stack)[3] = (uptr)arg;
1687   __asm__ __volatile__(
1688       /* %eax = syscall(%eax = SYSCALL(clone),
1689        *                %ebx = flags,
1690        *                %ecx = child_stack,
1691        *                %edx = parent_tidptr,
1692        *                %esi  = new_tls,
1693        *                %edi = child_tidptr)
1694        */
1695 
1696       /* Obtain flags */
1697       "movl    (%%ecx), %%ebx\n"
1698       /* Do the system call */
1699       "pushl   %%ebx\n"
1700       "pushl   %%esi\n"
1701       "pushl   %%edi\n"
1702       /* Remember the flag value.  */
1703       "movl    %%ebx, (%%ecx)\n"
1704       "int     $0x80\n"
1705       "popl    %%edi\n"
1706       "popl    %%esi\n"
1707       "popl    %%ebx\n"
1708 
1709       /* if (%eax != 0)
1710        *   return;
1711        */
1712 
1713       "test    %%eax,%%eax\n"
1714       "jnz    1f\n"
1715 
1716       /* terminate the stack frame */
1717       "xorl   %%ebp,%%ebp\n"
1718       /* Call FN. */
1719       "call    *%%ebx\n"
1720 #      ifdef PIC
1721       "call    here\n"
1722       "here:\n"
1723       "popl    %%ebx\n"
1724       "addl    $_GLOBAL_OFFSET_TABLE_+[.-here], %%ebx\n"
1725 #      endif
1726       /* Call exit */
1727       "movl    %%eax, %%ebx\n"
1728       "movl    %2, %%eax\n"
1729       "int     $0x80\n"
1730       "1:\n"
1731       : "=a"(res)
1732       : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "c"(child_stack),
1733         "d"(parent_tidptr), "S"(newtls), "D"(child_tidptr)
1734       : "memory");
1735   return res;
1736 }
1737 #    elif defined(__arm__)
1738 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg,
1739                     int *parent_tidptr, void *newtls, int *child_tidptr) {
1740   unsigned int res;
1741   if (!fn || !child_stack)
1742     return -EINVAL;
1743   child_stack = (char *)child_stack - 2 * sizeof(unsigned int);
1744   ((unsigned int *)child_stack)[0] = (uptr)fn;
1745   ((unsigned int *)child_stack)[1] = (uptr)arg;
1746   register int r0 __asm__("r0") = flags;
1747   register void *r1 __asm__("r1") = child_stack;
1748   register int *r2 __asm__("r2") = parent_tidptr;
1749   register void *r3 __asm__("r3") = newtls;
1750   register int *r4 __asm__("r4") = child_tidptr;
1751   register int r7 __asm__("r7") = __NR_clone;
1752 
1753 #      if __ARM_ARCH > 4 || defined(__ARM_ARCH_4T__)
1754 #        define ARCH_HAS_BX
1755 #      endif
1756 #      if __ARM_ARCH > 4
1757 #        define ARCH_HAS_BLX
1758 #      endif
1759 
1760 #      ifdef ARCH_HAS_BX
1761 #        ifdef ARCH_HAS_BLX
1762 #          define BLX(R) "blx " #R "\n"
1763 #        else
1764 #          define BLX(R) "mov lr, pc; bx " #R "\n"
1765 #        endif
1766 #      else
1767 #        define BLX(R) "mov lr, pc; mov pc," #R "\n"
1768 #      endif
1769 
1770   __asm__ __volatile__(
1771       /* %r0 = syscall(%r7 = SYSCALL(clone),
1772        *               %r0 = flags,
1773        *               %r1 = child_stack,
1774        *               %r2 = parent_tidptr,
1775        *               %r3  = new_tls,
1776        *               %r4 = child_tidptr)
1777        */
1778 
1779       /* Do the system call */
1780       "swi 0x0\n"
1781 
1782       /* if (%r0 != 0)
1783        *   return %r0;
1784        */
1785       "cmp r0, #0\n"
1786       "bne 1f\n"
1787 
1788       /* In the child, now. Call "fn(arg)". */
1789       "ldr r0, [sp, #4]\n"
1790       "ldr ip, [sp], #8\n" BLX(ip)
1791       /* Call _exit(%r0). */
1792       "mov r7, %7\n"
1793       "swi 0x0\n"
1794       "1:\n"
1795       "mov %0, r0\n"
1796       : "=r"(res)
1797       : "r"(r0), "r"(r1), "r"(r2), "r"(r3), "r"(r4), "r"(r7), "i"(__NR_exit)
1798       : "memory");
1799   return res;
1800 }
1801 #    endif
1802 #  endif  // SANITIZER_LINUX
1803 
1804 #  if SANITIZER_LINUX
1805 int internal_uname(struct utsname *buf) {
1806   return internal_syscall(SYSCALL(uname), buf);
1807 }
1808 #  endif
1809 
1810 #  if SANITIZER_ANDROID
1811 #    if __ANDROID_API__ < 21
1812 extern "C" __attribute__((weak)) int dl_iterate_phdr(
1813     int (*)(struct dl_phdr_info *, size_t, void *), void *);
1814 #    endif
1815 
1816 static int dl_iterate_phdr_test_cb(struct dl_phdr_info *info, size_t size,
1817                                    void *data) {
1818   // Any name starting with "lib" indicates a bug in L where library base names
1819   // are returned instead of paths.
1820   if (info->dlpi_name && info->dlpi_name[0] == 'l' &&
1821       info->dlpi_name[1] == 'i' && info->dlpi_name[2] == 'b') {
1822     *(bool *)data = true;
1823     return 1;
1824   }
1825   return 0;
1826 }
1827 
1828 static atomic_uint32_t android_api_level;
1829 
1830 static AndroidApiLevel AndroidDetectApiLevelStatic() {
1831 #    if __ANDROID_API__ <= 19
1832   return ANDROID_KITKAT;
1833 #    elif __ANDROID_API__ <= 22
1834   return ANDROID_LOLLIPOP_MR1;
1835 #    else
1836   return ANDROID_POST_LOLLIPOP;
1837 #    endif
1838 }
1839 
1840 static AndroidApiLevel AndroidDetectApiLevel() {
1841   if (!&dl_iterate_phdr)
1842     return ANDROID_KITKAT;  // K or lower
1843   bool base_name_seen = false;
1844   dl_iterate_phdr(dl_iterate_phdr_test_cb, &base_name_seen);
1845   if (base_name_seen)
1846     return ANDROID_LOLLIPOP_MR1;  // L MR1
1847   return ANDROID_POST_LOLLIPOP;   // post-L
1848   // Plain L (API level 21) is completely broken wrt ASan and not very
1849   // interesting to detect.
1850 }
1851 
1852 extern "C" __attribute__((weak)) void *_DYNAMIC;
1853 
1854 AndroidApiLevel AndroidGetApiLevel() {
1855   AndroidApiLevel level =
1856       (AndroidApiLevel)atomic_load(&android_api_level, memory_order_relaxed);
1857   if (level)
1858     return level;
1859   level = &_DYNAMIC == nullptr ? AndroidDetectApiLevelStatic()
1860                                : AndroidDetectApiLevel();
1861   atomic_store(&android_api_level, level, memory_order_relaxed);
1862   return level;
1863 }
1864 
1865 #  endif
1866 
1867 static HandleSignalMode GetHandleSignalModeImpl(int signum) {
1868   switch (signum) {
1869     case SIGABRT:
1870       return common_flags()->handle_abort;
1871     case SIGILL:
1872       return common_flags()->handle_sigill;
1873     case SIGTRAP:
1874       return common_flags()->handle_sigtrap;
1875     case SIGFPE:
1876       return common_flags()->handle_sigfpe;
1877     case SIGSEGV:
1878       return common_flags()->handle_segv;
1879     case SIGBUS:
1880       return common_flags()->handle_sigbus;
1881   }
1882   return kHandleSignalNo;
1883 }
1884 
1885 HandleSignalMode GetHandleSignalMode(int signum) {
1886   HandleSignalMode result = GetHandleSignalModeImpl(signum);
1887   if (result == kHandleSignalYes && !common_flags()->allow_user_segv_handler)
1888     return kHandleSignalExclusive;
1889   return result;
1890 }
1891 
1892 #  if !SANITIZER_GO
1893 void *internal_start_thread(void *(*func)(void *arg), void *arg) {
1894   if (&internal_pthread_create == 0)
1895     return nullptr;
1896   // Start the thread with signals blocked, otherwise it can steal user signals.
1897   ScopedBlockSignals block(nullptr);
1898   void *th;
1899   internal_pthread_create(&th, nullptr, func, arg);
1900   return th;
1901 }
1902 
1903 void internal_join_thread(void *th) {
1904   if (&internal_pthread_join)
1905     internal_pthread_join(th, nullptr);
1906 }
1907 #  else
1908 void *internal_start_thread(void *(*func)(void *), void *arg) { return 0; }
1909 
1910 void internal_join_thread(void *th) {}
1911 #  endif
1912 
1913 #  if SANITIZER_LINUX && defined(__aarch64__)
1914 // Android headers in the older NDK releases miss this definition.
1915 struct __sanitizer_esr_context {
1916   struct _aarch64_ctx head;
1917   uint64_t esr;
1918 };
1919 
1920 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) {
1921   static const u32 kEsrMagic = 0x45535201;
1922   u8 *aux = reinterpret_cast<u8 *>(ucontext->uc_mcontext.__reserved);
1923   while (true) {
1924     _aarch64_ctx *ctx = (_aarch64_ctx *)aux;
1925     if (ctx->size == 0)
1926       break;
1927     if (ctx->magic == kEsrMagic) {
1928       *esr = ((__sanitizer_esr_context *)ctx)->esr;
1929       return true;
1930     }
1931     aux += ctx->size;
1932   }
1933   return false;
1934 }
1935 #  elif SANITIZER_FREEBSD && defined(__aarch64__)
1936 // FreeBSD doesn't provide ESR in the ucontext.
1937 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { return false; }
1938 #  endif
1939 
1940 using Context = ucontext_t;
1941 
1942 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
1943   Context *ucontext = (Context *)context;
1944 #  if defined(__x86_64__) || defined(__i386__)
1945   static const uptr PF_WRITE = 1U << 1;
1946 #    if SANITIZER_FREEBSD
1947   uptr err = ucontext->uc_mcontext.mc_err;
1948 #    elif SANITIZER_NETBSD
1949   uptr err = ucontext->uc_mcontext.__gregs[_REG_ERR];
1950 #    elif SANITIZER_SOLARIS && defined(__i386__)
1951   const int Err = 13;
1952   uptr err = ucontext->uc_mcontext.gregs[Err];
1953 #    else
1954   uptr err = ucontext->uc_mcontext.gregs[REG_ERR];
1955 #    endif  // SANITIZER_FREEBSD
1956   return err & PF_WRITE ? Write : Read;
1957 #  elif defined(__mips__)
1958   uint32_t *exception_source;
1959   uint32_t faulty_instruction;
1960   uint32_t op_code;
1961 
1962   exception_source = (uint32_t *)ucontext->uc_mcontext.pc;
1963   faulty_instruction = (uint32_t)(*exception_source);
1964 
1965   op_code = (faulty_instruction >> 26) & 0x3f;
1966 
1967   // FIXME: Add support for FPU, microMIPS, DSP, MSA memory instructions.
1968   switch (op_code) {
1969     case 0x28:  // sb
1970     case 0x29:  // sh
1971     case 0x2b:  // sw
1972     case 0x3f:  // sd
1973 #    if __mips_isa_rev < 6
1974     case 0x2c:  // sdl
1975     case 0x2d:  // sdr
1976     case 0x2a:  // swl
1977     case 0x2e:  // swr
1978 #    endif
1979       return SignalContext::Write;
1980 
1981     case 0x20:  // lb
1982     case 0x24:  // lbu
1983     case 0x21:  // lh
1984     case 0x25:  // lhu
1985     case 0x23:  // lw
1986     case 0x27:  // lwu
1987     case 0x37:  // ld
1988 #    if __mips_isa_rev < 6
1989     case 0x1a:  // ldl
1990     case 0x1b:  // ldr
1991     case 0x22:  // lwl
1992     case 0x26:  // lwr
1993 #    endif
1994       return SignalContext::Read;
1995 #    if __mips_isa_rev == 6
1996     case 0x3b:  // pcrel
1997       op_code = (faulty_instruction >> 19) & 0x3;
1998       switch (op_code) {
1999         case 0x1:  // lwpc
2000         case 0x2:  // lwupc
2001           return SignalContext::Read;
2002       }
2003 #    endif
2004   }
2005   return SignalContext::Unknown;
2006 #  elif defined(__arm__)
2007   static const uptr FSR_WRITE = 1U << 11;
2008   uptr fsr = ucontext->uc_mcontext.error_code;
2009   return fsr & FSR_WRITE ? Write : Read;
2010 #  elif defined(__aarch64__)
2011   static const u64 ESR_ELx_WNR = 1U << 6;
2012   u64 esr;
2013   if (!Aarch64GetESR(ucontext, &esr))
2014     return Unknown;
2015   return esr & ESR_ELx_WNR ? Write : Read;
2016 #  elif defined(__loongarch__)
2017   // In the musl environment, the Linux kernel uapi sigcontext.h is not
2018   // included in signal.h. To avoid missing the SC_ADDRERR_{RD,WR} macros,
2019   // copy them here. The LoongArch Linux kernel uapi is already stable,
2020   // so there's no need to worry about the value changing.
2021 #    ifndef SC_ADDRERR_RD
2022   // Address error was due to memory load
2023 #      define SC_ADDRERR_RD (1 << 30)
2024 #    endif
2025 #    ifndef SC_ADDRERR_WR
2026   // Address error was due to memory store
2027 #      define SC_ADDRERR_WR (1 << 31)
2028 #    endif
2029   u32 flags = ucontext->uc_mcontext.__flags;
2030   if (flags & SC_ADDRERR_RD)
2031     return SignalContext::Read;
2032   if (flags & SC_ADDRERR_WR)
2033     return SignalContext::Write;
2034   return SignalContext::Unknown;
2035 #  elif defined(__sparc__)
2036   // Decode the instruction to determine the access type.
2037   // From OpenSolaris $SRC/uts/sun4/os/trap.c (get_accesstype).
2038 #    if SANITIZER_SOLARIS
2039   uptr pc = ucontext->uc_mcontext.gregs[REG_PC];
2040 #    else
2041   // Historical BSDism here.
2042   struct sigcontext *scontext = (struct sigcontext *)context;
2043 #      if defined(__arch64__)
2044   uptr pc = scontext->sigc_regs.tpc;
2045 #      else
2046   uptr pc = scontext->si_regs.pc;
2047 #      endif
2048 #    endif
2049   u32 instr = *(u32 *)pc;
2050   return (instr >> 21) & 1 ? Write : Read;
2051 #  elif defined(__riscv)
2052 #    if SANITIZER_FREEBSD
2053   unsigned long pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc;
2054 #    else
2055   unsigned long pc = ucontext->uc_mcontext.__gregs[REG_PC];
2056 #    endif
2057   unsigned faulty_instruction = *(uint16_t *)pc;
2058 
2059 #    if defined(__riscv_compressed)
2060   if ((faulty_instruction & 0x3) != 0x3) {  // it's a compressed instruction
2061     // set op_bits to the instruction bits [1, 0, 15, 14, 13]
2062     unsigned op_bits =
2063         ((faulty_instruction & 0x3) << 3) | (faulty_instruction >> 13);
2064     unsigned rd = faulty_instruction & 0xF80;  // bits 7-11, inclusive
2065     switch (op_bits) {
2066       case 0b10'010:  // c.lwsp (rd != x0)
2067 #      if __riscv_xlen == 64
2068       case 0b10'011:  // c.ldsp (rd != x0)
2069 #      endif
2070         return rd ? SignalContext::Read : SignalContext::Unknown;
2071       case 0b00'010:  // c.lw
2072 #      if __riscv_flen >= 32 && __riscv_xlen == 32
2073       case 0b10'011:  // c.flwsp
2074 #      endif
2075 #      if __riscv_flen >= 32 || __riscv_xlen == 64
2076       case 0b00'011:  // c.flw / c.ld
2077 #      endif
2078 #      if __riscv_flen == 64
2079       case 0b00'001:  // c.fld
2080       case 0b10'001:  // c.fldsp
2081 #      endif
2082         return SignalContext::Read;
2083       case 0b00'110:  // c.sw
2084       case 0b10'110:  // c.swsp
2085 #      if __riscv_flen >= 32 || __riscv_xlen == 64
2086       case 0b00'111:  // c.fsw / c.sd
2087       case 0b10'111:  // c.fswsp / c.sdsp
2088 #      endif
2089 #      if __riscv_flen == 64
2090       case 0b00'101:  // c.fsd
2091       case 0b10'101:  // c.fsdsp
2092 #      endif
2093         return SignalContext::Write;
2094       default:
2095         return SignalContext::Unknown;
2096     }
2097   }
2098 #    endif
2099 
2100   unsigned opcode = faulty_instruction & 0x7f;         // lower 7 bits
2101   unsigned funct3 = (faulty_instruction >> 12) & 0x7;  // bits 12-14, inclusive
2102   switch (opcode) {
2103     case 0b0000011:  // loads
2104       switch (funct3) {
2105         case 0b000:  // lb
2106         case 0b001:  // lh
2107         case 0b010:  // lw
2108 #    if __riscv_xlen == 64
2109         case 0b011:  // ld
2110 #    endif
2111         case 0b100:  // lbu
2112         case 0b101:  // lhu
2113           return SignalContext::Read;
2114         default:
2115           return SignalContext::Unknown;
2116       }
2117     case 0b0100011:  // stores
2118       switch (funct3) {
2119         case 0b000:  // sb
2120         case 0b001:  // sh
2121         case 0b010:  // sw
2122 #    if __riscv_xlen == 64
2123         case 0b011:  // sd
2124 #    endif
2125           return SignalContext::Write;
2126         default:
2127           return SignalContext::Unknown;
2128       }
2129 #    if __riscv_flen >= 32
2130     case 0b0000111:  // floating-point loads
2131       switch (funct3) {
2132         case 0b010:  // flw
2133 #      if __riscv_flen == 64
2134         case 0b011:  // fld
2135 #      endif
2136           return SignalContext::Read;
2137         default:
2138           return SignalContext::Unknown;
2139       }
2140     case 0b0100111:  // floating-point stores
2141       switch (funct3) {
2142         case 0b010:  // fsw
2143 #      if __riscv_flen == 64
2144         case 0b011:  // fsd
2145 #      endif
2146           return SignalContext::Write;
2147         default:
2148           return SignalContext::Unknown;
2149       }
2150 #    endif
2151     default:
2152       return SignalContext::Unknown;
2153   }
2154 #  else
2155   (void)ucontext;
2156   return Unknown;  // FIXME: Implement.
2157 #  endif
2158 }
2159 
2160 bool SignalContext::IsTrueFaultingAddress() const {
2161   auto si = static_cast<const siginfo_t *>(siginfo);
2162   // SIGSEGV signals without a true fault address have si_code set to 128.
2163   return si->si_signo == SIGSEGV && si->si_code != 128;
2164 }
2165 
2166 UNUSED
2167 static const char *RegNumToRegName(int reg) {
2168   switch (reg) {
2169 #  if SANITIZER_LINUX
2170 #    if defined(__x86_64__)
2171     case REG_RAX:
2172       return "rax";
2173     case REG_RBX:
2174       return "rbx";
2175     case REG_RCX:
2176       return "rcx";
2177     case REG_RDX:
2178       return "rdx";
2179     case REG_RDI:
2180       return "rdi";
2181     case REG_RSI:
2182       return "rsi";
2183     case REG_RBP:
2184       return "rbp";
2185     case REG_RSP:
2186       return "rsp";
2187     case REG_R8:
2188       return "r8";
2189     case REG_R9:
2190       return "r9";
2191     case REG_R10:
2192       return "r10";
2193     case REG_R11:
2194       return "r11";
2195     case REG_R12:
2196       return "r12";
2197     case REG_R13:
2198       return "r13";
2199     case REG_R14:
2200       return "r14";
2201     case REG_R15:
2202       return "r15";
2203 #    elif defined(__i386__)
2204     case REG_EAX:
2205       return "eax";
2206     case REG_EBX:
2207       return "ebx";
2208     case REG_ECX:
2209       return "ecx";
2210     case REG_EDX:
2211       return "edx";
2212     case REG_EDI:
2213       return "edi";
2214     case REG_ESI:
2215       return "esi";
2216     case REG_EBP:
2217       return "ebp";
2218     case REG_ESP:
2219       return "esp";
2220 #    endif
2221 #  endif
2222     default:
2223       return NULL;
2224   }
2225   return NULL;
2226 }
2227 
2228 #  if SANITIZER_LINUX
2229 UNUSED
2230 static void DumpSingleReg(ucontext_t *ctx, int RegNum) {
2231   const char *RegName = RegNumToRegName(RegNum);
2232 #    if defined(__x86_64__)
2233   Printf("%s%s = 0x%016llx  ", internal_strlen(RegName) == 2 ? " " : "",
2234          RegName, ctx->uc_mcontext.gregs[RegNum]);
2235 #    elif defined(__i386__)
2236   Printf("%s = 0x%08x  ", RegName, ctx->uc_mcontext.gregs[RegNum]);
2237 #    else
2238   (void)RegName;
2239 #    endif
2240 }
2241 #  endif
2242 
2243 void SignalContext::DumpAllRegisters(void *context) {
2244   ucontext_t *ucontext = (ucontext_t *)context;
2245 #  if SANITIZER_LINUX
2246 #    if defined(__x86_64__)
2247   Report("Register values:\n");
2248   DumpSingleReg(ucontext, REG_RAX);
2249   DumpSingleReg(ucontext, REG_RBX);
2250   DumpSingleReg(ucontext, REG_RCX);
2251   DumpSingleReg(ucontext, REG_RDX);
2252   Printf("\n");
2253   DumpSingleReg(ucontext, REG_RDI);
2254   DumpSingleReg(ucontext, REG_RSI);
2255   DumpSingleReg(ucontext, REG_RBP);
2256   DumpSingleReg(ucontext, REG_RSP);
2257   Printf("\n");
2258   DumpSingleReg(ucontext, REG_R8);
2259   DumpSingleReg(ucontext, REG_R9);
2260   DumpSingleReg(ucontext, REG_R10);
2261   DumpSingleReg(ucontext, REG_R11);
2262   Printf("\n");
2263   DumpSingleReg(ucontext, REG_R12);
2264   DumpSingleReg(ucontext, REG_R13);
2265   DumpSingleReg(ucontext, REG_R14);
2266   DumpSingleReg(ucontext, REG_R15);
2267   Printf("\n");
2268 #    elif defined(__i386__)
2269   // Duplication of this report print is caused by partial support
2270   // of register values dumping. In case of unsupported yet architecture let's
2271   // avoid printing 'Register values:' without actual values in the following
2272   // output.
2273   Report("Register values:\n");
2274   DumpSingleReg(ucontext, REG_EAX);
2275   DumpSingleReg(ucontext, REG_EBX);
2276   DumpSingleReg(ucontext, REG_ECX);
2277   DumpSingleReg(ucontext, REG_EDX);
2278   Printf("\n");
2279   DumpSingleReg(ucontext, REG_EDI);
2280   DumpSingleReg(ucontext, REG_ESI);
2281   DumpSingleReg(ucontext, REG_EBP);
2282   DumpSingleReg(ucontext, REG_ESP);
2283   Printf("\n");
2284 #    else
2285   (void)ucontext;
2286 #    endif
2287 #  elif SANITIZER_FREEBSD
2288 #    if defined(__x86_64__)
2289   Report("Register values:\n");
2290   Printf("rax = 0x%016lx  ", ucontext->uc_mcontext.mc_rax);
2291   Printf("rbx = 0x%016lx  ", ucontext->uc_mcontext.mc_rbx);
2292   Printf("rcx = 0x%016lx  ", ucontext->uc_mcontext.mc_rcx);
2293   Printf("rdx = 0x%016lx  ", ucontext->uc_mcontext.mc_rdx);
2294   Printf("\n");
2295   Printf("rdi = 0x%016lx  ", ucontext->uc_mcontext.mc_rdi);
2296   Printf("rsi = 0x%016lx  ", ucontext->uc_mcontext.mc_rsi);
2297   Printf("rbp = 0x%016lx  ", ucontext->uc_mcontext.mc_rbp);
2298   Printf("rsp = 0x%016lx  ", ucontext->uc_mcontext.mc_rsp);
2299   Printf("\n");
2300   Printf(" r8 = 0x%016lx  ", ucontext->uc_mcontext.mc_r8);
2301   Printf(" r9 = 0x%016lx  ", ucontext->uc_mcontext.mc_r9);
2302   Printf("r10 = 0x%016lx  ", ucontext->uc_mcontext.mc_r10);
2303   Printf("r11 = 0x%016lx  ", ucontext->uc_mcontext.mc_r11);
2304   Printf("\n");
2305   Printf("r12 = 0x%016lx  ", ucontext->uc_mcontext.mc_r12);
2306   Printf("r13 = 0x%016lx  ", ucontext->uc_mcontext.mc_r13);
2307   Printf("r14 = 0x%016lx  ", ucontext->uc_mcontext.mc_r14);
2308   Printf("r15 = 0x%016lx  ", ucontext->uc_mcontext.mc_r15);
2309   Printf("\n");
2310 #    elif defined(__i386__)
2311   Report("Register values:\n");
2312   Printf("eax = 0x%08x  ", ucontext->uc_mcontext.mc_eax);
2313   Printf("ebx = 0x%08x  ", ucontext->uc_mcontext.mc_ebx);
2314   Printf("ecx = 0x%08x  ", ucontext->uc_mcontext.mc_ecx);
2315   Printf("edx = 0x%08x  ", ucontext->uc_mcontext.mc_edx);
2316   Printf("\n");
2317   Printf("edi = 0x%08x  ", ucontext->uc_mcontext.mc_edi);
2318   Printf("esi = 0x%08x  ", ucontext->uc_mcontext.mc_esi);
2319   Printf("ebp = 0x%08x  ", ucontext->uc_mcontext.mc_ebp);
2320   Printf("esp = 0x%08x  ", ucontext->uc_mcontext.mc_esp);
2321   Printf("\n");
2322 #    else
2323   (void)ucontext;
2324 #    endif
2325 #  endif
2326   // FIXME: Implement this for other OSes and architectures.
2327 }
2328 
2329 static void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) {
2330 #  if SANITIZER_NETBSD
2331   // This covers all NetBSD architectures
2332   ucontext_t *ucontext = (ucontext_t *)context;
2333   *pc = _UC_MACHINE_PC(ucontext);
2334   *bp = _UC_MACHINE_FP(ucontext);
2335   *sp = _UC_MACHINE_SP(ucontext);
2336 #  elif defined(__arm__)
2337   ucontext_t *ucontext = (ucontext_t *)context;
2338   *pc = ucontext->uc_mcontext.arm_pc;
2339   *bp = ucontext->uc_mcontext.arm_fp;
2340   *sp = ucontext->uc_mcontext.arm_sp;
2341 #  elif defined(__aarch64__)
2342 #    if SANITIZER_FREEBSD
2343   ucontext_t *ucontext = (ucontext_t *)context;
2344   *pc = ucontext->uc_mcontext.mc_gpregs.gp_elr;
2345   *bp = ucontext->uc_mcontext.mc_gpregs.gp_x[29];
2346   *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp;
2347 #    else
2348   ucontext_t *ucontext = (ucontext_t *)context;
2349   *pc = ucontext->uc_mcontext.pc;
2350   *bp = ucontext->uc_mcontext.regs[29];
2351   *sp = ucontext->uc_mcontext.sp;
2352 #    endif
2353 #  elif defined(__hppa__)
2354   ucontext_t *ucontext = (ucontext_t *)context;
2355   *pc = ucontext->uc_mcontext.sc_iaoq[0];
2356   /* GCC uses %r3 whenever a frame pointer is needed.  */
2357   *bp = ucontext->uc_mcontext.sc_gr[3];
2358   *sp = ucontext->uc_mcontext.sc_gr[30];
2359 #  elif defined(__x86_64__)
2360 #    if SANITIZER_FREEBSD
2361   ucontext_t *ucontext = (ucontext_t *)context;
2362   *pc = ucontext->uc_mcontext.mc_rip;
2363   *bp = ucontext->uc_mcontext.mc_rbp;
2364   *sp = ucontext->uc_mcontext.mc_rsp;
2365 #    else
2366   ucontext_t *ucontext = (ucontext_t *)context;
2367   *pc = ucontext->uc_mcontext.gregs[REG_RIP];
2368   *bp = ucontext->uc_mcontext.gregs[REG_RBP];
2369   *sp = ucontext->uc_mcontext.gregs[REG_RSP];
2370 #    endif
2371 #  elif defined(__i386__)
2372 #    if SANITIZER_FREEBSD
2373   ucontext_t *ucontext = (ucontext_t *)context;
2374   *pc = ucontext->uc_mcontext.mc_eip;
2375   *bp = ucontext->uc_mcontext.mc_ebp;
2376   *sp = ucontext->uc_mcontext.mc_esp;
2377 #    else
2378   ucontext_t *ucontext = (ucontext_t *)context;
2379 #      if SANITIZER_SOLARIS
2380   /* Use the numeric values: the symbolic ones are undefined by llvm
2381      include/llvm/Support/Solaris.h.  */
2382 #        ifndef REG_EIP
2383 #          define REG_EIP 14  // REG_PC
2384 #        endif
2385 #        ifndef REG_EBP
2386 #          define REG_EBP 6  // REG_FP
2387 #        endif
2388 #        ifndef REG_UESP
2389 #          define REG_UESP 17  // REG_SP
2390 #        endif
2391 #      endif
2392   *pc = ucontext->uc_mcontext.gregs[REG_EIP];
2393   *bp = ucontext->uc_mcontext.gregs[REG_EBP];
2394   *sp = ucontext->uc_mcontext.gregs[REG_UESP];
2395 #    endif
2396 #  elif defined(__powerpc__) || defined(__powerpc64__)
2397 #    if SANITIZER_FREEBSD
2398   ucontext_t *ucontext = (ucontext_t *)context;
2399   *pc = ucontext->uc_mcontext.mc_srr0;
2400   *sp = ucontext->uc_mcontext.mc_frame[1];
2401   *bp = ucontext->uc_mcontext.mc_frame[31];
2402 #    else
2403   ucontext_t *ucontext = (ucontext_t *)context;
2404   *pc = ucontext->uc_mcontext.regs->nip;
2405   *sp = ucontext->uc_mcontext.regs->gpr[PT_R1];
2406   // The powerpc{,64}-linux ABIs do not specify r31 as the frame
2407   // pointer, but GCC always uses r31 when we need a frame pointer.
2408   *bp = ucontext->uc_mcontext.regs->gpr[PT_R31];
2409 #    endif
2410 #  elif defined(__sparc__)
2411 #    if defined(__arch64__) || defined(__sparcv9)
2412 #      define STACK_BIAS 2047
2413 #    else
2414 #      define STACK_BIAS 0
2415 #    endif
2416 #    if SANITIZER_SOLARIS
2417   ucontext_t *ucontext = (ucontext_t *)context;
2418   *pc = ucontext->uc_mcontext.gregs[REG_PC];
2419   *sp = ucontext->uc_mcontext.gregs[REG_O6] + STACK_BIAS;
2420 #    else
2421   // Historical BSDism here.
2422   struct sigcontext *scontext = (struct sigcontext *)context;
2423 #      if defined(__arch64__)
2424   *pc = scontext->sigc_regs.tpc;
2425   *sp = scontext->sigc_regs.u_regs[14] + STACK_BIAS;
2426 #      else
2427   *pc = scontext->si_regs.pc;
2428   *sp = scontext->si_regs.u_regs[14];
2429 #      endif
2430 #    endif
2431   *bp = (uptr)((uhwptr *)*sp)[14] + STACK_BIAS;
2432 #  elif defined(__mips__)
2433   ucontext_t *ucontext = (ucontext_t *)context;
2434   *pc = ucontext->uc_mcontext.pc;
2435   *bp = ucontext->uc_mcontext.gregs[30];
2436   *sp = ucontext->uc_mcontext.gregs[29];
2437 #  elif defined(__s390__)
2438   ucontext_t *ucontext = (ucontext_t *)context;
2439 #    if defined(__s390x__)
2440   *pc = ucontext->uc_mcontext.psw.addr;
2441 #    else
2442   *pc = ucontext->uc_mcontext.psw.addr & 0x7fffffff;
2443 #    endif
2444   *bp = ucontext->uc_mcontext.gregs[11];
2445   *sp = ucontext->uc_mcontext.gregs[15];
2446 #  elif defined(__riscv)
2447   ucontext_t *ucontext = (ucontext_t *)context;
2448 #    if SANITIZER_FREEBSD
2449   *pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc;
2450   *bp = ucontext->uc_mcontext.mc_gpregs.gp_s[0];
2451   *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp;
2452 #    else
2453   *pc = ucontext->uc_mcontext.__gregs[REG_PC];
2454   *bp = ucontext->uc_mcontext.__gregs[REG_S0];
2455   *sp = ucontext->uc_mcontext.__gregs[REG_SP];
2456 #    endif
2457 #  elif defined(__hexagon__)
2458   ucontext_t *ucontext = (ucontext_t *)context;
2459   *pc = ucontext->uc_mcontext.pc;
2460   *bp = ucontext->uc_mcontext.r30;
2461   *sp = ucontext->uc_mcontext.r29;
2462 #  elif defined(__loongarch__)
2463   ucontext_t *ucontext = (ucontext_t *)context;
2464   *pc = ucontext->uc_mcontext.__pc;
2465   *bp = ucontext->uc_mcontext.__gregs[22];
2466   *sp = ucontext->uc_mcontext.__gregs[3];
2467 #  else
2468 #    error "Unsupported arch"
2469 #  endif
2470 }
2471 
2472 void SignalContext::InitPcSpBp() { GetPcSpBp(context, &pc, &sp, &bp); }
2473 
2474 void InitializePlatformEarly() {
2475   // Do nothing.
2476 }
2477 
2478 void CheckASLR() {
2479 #  if SANITIZER_NETBSD
2480   int mib[3];
2481   int paxflags;
2482   uptr len = sizeof(paxflags);
2483 
2484   mib[0] = CTL_PROC;
2485   mib[1] = internal_getpid();
2486   mib[2] = PROC_PID_PAXFLAGS;
2487 
2488   if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) {
2489     Printf("sysctl failed\n");
2490     Die();
2491   }
2492 
2493   if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_ASLR)) {
2494     Printf(
2495         "This sanitizer is not compatible with enabled ASLR.\n"
2496         "To disable ASLR, please run \"paxctl +a %s\" and try again.\n",
2497         GetArgv()[0]);
2498     Die();
2499   }
2500 #  elif SANITIZER_FREEBSD
2501   int aslr_status;
2502   int r = internal_procctl(P_PID, 0, PROC_ASLR_STATUS, &aslr_status);
2503   if (UNLIKELY(r == -1)) {
2504     // We're making things less 'dramatic' here since
2505     // the cmd is not necessarily guaranteed to be here
2506     // just yet regarding FreeBSD release
2507     return;
2508   }
2509   if ((aslr_status & PROC_ASLR_ACTIVE) != 0) {
2510     VReport(1,
2511             "This sanitizer is not compatible with enabled ASLR "
2512             "and binaries compiled with PIE\n"
2513             "ASLR will be disabled and the program re-executed.\n");
2514     int aslr_ctl = PROC_ASLR_FORCE_DISABLE;
2515     CHECK_NE(internal_procctl(P_PID, 0, PROC_ASLR_CTL, &aslr_ctl), -1);
2516     ReExec();
2517   }
2518 #  elif SANITIZER_PPC64V2
2519   // Disable ASLR for Linux PPC64LE.
2520   int old_personality = personality(0xffffffff);
2521   if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
2522     VReport(1,
2523             "WARNING: Program is being run with address space layout "
2524             "randomization (ASLR) enabled which prevents the thread and "
2525             "memory sanitizers from working on powerpc64le.\n"
2526             "ASLR will be disabled and the program re-executed.\n");
2527     CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
2528     ReExec();
2529   }
2530 #  else
2531   // Do nothing
2532 #  endif
2533 }
2534 
2535 void CheckMPROTECT() {
2536 #  if SANITIZER_NETBSD
2537   int mib[3];
2538   int paxflags;
2539   uptr len = sizeof(paxflags);
2540 
2541   mib[0] = CTL_PROC;
2542   mib[1] = internal_getpid();
2543   mib[2] = PROC_PID_PAXFLAGS;
2544 
2545   if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) {
2546     Printf("sysctl failed\n");
2547     Die();
2548   }
2549 
2550   if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_MPROTECT)) {
2551     Printf("This sanitizer is not compatible with enabled MPROTECT\n");
2552     Die();
2553   }
2554 #  else
2555   // Do nothing
2556 #  endif
2557 }
2558 
2559 void CheckNoDeepBind(const char *filename, int flag) {
2560 #  ifdef RTLD_DEEPBIND
2561   if (flag & RTLD_DEEPBIND) {
2562     Report(
2563         "You are trying to dlopen a %s shared library with RTLD_DEEPBIND flag"
2564         " which is incompatible with sanitizer runtime "
2565         "(see https://github.com/google/sanitizers/issues/611 for details"
2566         "). If you want to run %s library under sanitizers please remove "
2567         "RTLD_DEEPBIND from dlopen flags.\n",
2568         filename, filename);
2569     Die();
2570   }
2571 #  endif
2572 }
2573 
2574 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
2575                               uptr *largest_gap_found,
2576                               uptr *max_occupied_addr) {
2577   UNREACHABLE("FindAvailableMemoryRange is not available");
2578   return 0;
2579 }
2580 
2581 bool GetRandom(void *buffer, uptr length, bool blocking) {
2582   if (!buffer || !length || length > 256)
2583     return false;
2584 #  if SANITIZER_USE_GETENTROPY
2585   uptr rnd = getentropy(buffer, length);
2586   int rverrno = 0;
2587   if (internal_iserror(rnd, &rverrno) && rverrno == EFAULT)
2588     return false;
2589   else if (rnd == 0)
2590     return true;
2591 #  endif  // SANITIZER_USE_GETENTROPY
2592 
2593 #  if SANITIZER_USE_GETRANDOM
2594   static atomic_uint8_t skip_getrandom_syscall;
2595   if (!atomic_load_relaxed(&skip_getrandom_syscall)) {
2596     // Up to 256 bytes, getrandom will not be interrupted.
2597     uptr res = internal_syscall(SYSCALL(getrandom), buffer, length,
2598                                 blocking ? 0 : GRND_NONBLOCK);
2599     int rverrno = 0;
2600     if (internal_iserror(res, &rverrno) && rverrno == ENOSYS)
2601       atomic_store_relaxed(&skip_getrandom_syscall, 1);
2602     else if (res == length)
2603       return true;
2604   }
2605 #  endif  // SANITIZER_USE_GETRANDOM
2606   // Up to 256 bytes, a read off /dev/urandom will not be interrupted.
2607   // blocking is moot here, O_NONBLOCK has no effect when opening /dev/urandom.
2608   uptr fd = internal_open("/dev/urandom", O_RDONLY);
2609   if (internal_iserror(fd))
2610     return false;
2611   uptr res = internal_read(fd, buffer, length);
2612   if (internal_iserror(res))
2613     return false;
2614   internal_close(fd);
2615   return true;
2616 }
2617 
2618 }  // namespace __sanitizer
2619 
2620 #endif
2621