1 //===-- sanitizer_linux.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between AddressSanitizer and ThreadSanitizer 10 // run-time libraries and implements linux-specific functions from 11 // sanitizer_libc.h. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_platform.h" 15 16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \ 17 SANITIZER_SOLARIS 18 19 # include "sanitizer_common.h" 20 # include "sanitizer_flags.h" 21 # include "sanitizer_getauxval.h" 22 # include "sanitizer_internal_defs.h" 23 # include "sanitizer_libc.h" 24 # include "sanitizer_linux.h" 25 # include "sanitizer_mutex.h" 26 # include "sanitizer_placement_new.h" 27 # include "sanitizer_procmaps.h" 28 29 # if SANITIZER_LINUX && !SANITIZER_GO 30 # include <asm/param.h> 31 # endif 32 33 // For mips64, syscall(__NR_stat) fills the buffer in the 'struct kernel_stat' 34 // format. Struct kernel_stat is defined as 'struct stat' in asm/stat.h. To 35 // access stat from asm/stat.h, without conflicting with definition in 36 // sys/stat.h, we use this trick. sparc64 is similar, using 37 // syscall(__NR_stat64) and struct kernel_stat64. 38 # if SANITIZER_LINUX && (SANITIZER_MIPS64 || SANITIZER_SPARC64) 39 # include <asm/unistd.h> 40 # include <sys/types.h> 41 # define stat kernel_stat 42 # if SANITIZER_SPARC64 43 # define stat64 kernel_stat64 44 # endif 45 # if SANITIZER_GO 46 # undef st_atime 47 # undef st_mtime 48 # undef st_ctime 49 # define st_atime st_atim 50 # define st_mtime st_mtim 51 # define st_ctime st_ctim 52 # endif 53 # include <asm/stat.h> 54 # undef stat 55 # undef stat64 56 # endif 57 58 # include <dlfcn.h> 59 # include <errno.h> 60 # include <fcntl.h> 61 # include <link.h> 62 # include <pthread.h> 63 # include <sched.h> 64 # include <signal.h> 65 # include <sys/mman.h> 66 # if !SANITIZER_SOLARIS 67 # include <sys/ptrace.h> 68 # endif 69 # include <sys/resource.h> 70 # include <sys/stat.h> 71 # include <sys/syscall.h> 72 # include <sys/time.h> 73 # include <sys/types.h> 74 # include <ucontext.h> 75 # include <unistd.h> 76 77 # if SANITIZER_LINUX 78 # include <sys/utsname.h> 79 # endif 80 81 # if SANITIZER_LINUX && !SANITIZER_ANDROID 82 # include <sys/personality.h> 83 # endif 84 85 # if SANITIZER_LINUX && defined(__loongarch__) 86 # include <sys/sysmacros.h> 87 # endif 88 89 # if SANITIZER_FREEBSD 90 # include <machine/atomic.h> 91 # include <sys/exec.h> 92 # include <sys/procctl.h> 93 # include <sys/sysctl.h> 94 extern "C" { 95 // <sys/umtx.h> must be included after <errno.h> and <sys/types.h> on 96 // FreeBSD 9.2 and 10.0. 97 # include <sys/umtx.h> 98 } 99 # include <sys/thr.h> 100 # endif // SANITIZER_FREEBSD 101 102 # if SANITIZER_NETBSD 103 # include <limits.h> // For NAME_MAX 104 # include <sys/exec.h> 105 # include <sys/sysctl.h> 106 extern struct ps_strings *__ps_strings; 107 # endif // SANITIZER_NETBSD 108 109 # if SANITIZER_SOLARIS 110 # include <stdlib.h> 111 # include <thread.h> 112 # define environ _environ 113 # endif 114 115 extern char **environ; 116 117 # if SANITIZER_LINUX 118 // <linux/time.h> 119 struct kernel_timeval { 120 long tv_sec; 121 long tv_usec; 122 }; 123 124 // <linux/futex.h> is broken on some linux distributions. 125 const int FUTEX_WAIT = 0; 126 const int FUTEX_WAKE = 1; 127 const int FUTEX_PRIVATE_FLAG = 128; 128 const int FUTEX_WAIT_PRIVATE = FUTEX_WAIT | FUTEX_PRIVATE_FLAG; 129 const int FUTEX_WAKE_PRIVATE = FUTEX_WAKE | FUTEX_PRIVATE_FLAG; 130 # endif // SANITIZER_LINUX 131 132 // Are we using 32-bit or 64-bit Linux syscalls? 133 // x32 (which defines __x86_64__) has SANITIZER_WORDSIZE == 32 134 // but it still needs to use 64-bit syscalls. 135 # if SANITIZER_LINUX && (defined(__x86_64__) || defined(__powerpc64__) || \ 136 SANITIZER_WORDSIZE == 64 || \ 137 (defined(__mips__) && _MIPS_SIM == _ABIN32)) 138 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 1 139 # else 140 # define SANITIZER_LINUX_USES_64BIT_SYSCALLS 0 141 # endif 142 143 // Note : FreeBSD implemented both Linux and OpenBSD apis. 144 # if SANITIZER_LINUX && defined(__NR_getrandom) 145 # if !defined(GRND_NONBLOCK) 146 # define GRND_NONBLOCK 1 147 # endif 148 # define SANITIZER_USE_GETRANDOM 1 149 # else 150 # define SANITIZER_USE_GETRANDOM 0 151 # endif // SANITIZER_LINUX && defined(__NR_getrandom) 152 153 # if SANITIZER_FREEBSD 154 # define SANITIZER_USE_GETENTROPY 1 155 # endif 156 157 namespace __sanitizer { 158 159 void SetSigProcMask(__sanitizer_sigset_t *set, __sanitizer_sigset_t *oldset) { 160 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, set, oldset)); 161 } 162 163 // Block asynchronous signals 164 void BlockSignals(__sanitizer_sigset_t *oldset) { 165 __sanitizer_sigset_t set; 166 internal_sigfillset(&set); 167 # if SANITIZER_LINUX && !SANITIZER_ANDROID 168 // Glibc uses SIGSETXID signal during setuid call. If this signal is blocked 169 // on any thread, setuid call hangs. 170 // See test/sanitizer_common/TestCases/Linux/setuid.c. 171 internal_sigdelset(&set, 33); 172 # endif 173 # if SANITIZER_LINUX 174 // Seccomp-BPF-sandboxed processes rely on SIGSYS to handle trapped syscalls. 175 // If this signal is blocked, such calls cannot be handled and the process may 176 // hang. 177 internal_sigdelset(&set, 31); 178 179 // Don't block synchronous signals 180 internal_sigdelset(&set, SIGSEGV); 181 internal_sigdelset(&set, SIGBUS); 182 internal_sigdelset(&set, SIGILL); 183 internal_sigdelset(&set, SIGTRAP); 184 internal_sigdelset(&set, SIGABRT); 185 internal_sigdelset(&set, SIGFPE); 186 internal_sigdelset(&set, SIGPIPE); 187 # endif 188 189 SetSigProcMask(&set, oldset); 190 } 191 192 ScopedBlockSignals::ScopedBlockSignals(__sanitizer_sigset_t *copy) { 193 BlockSignals(&saved_); 194 if (copy) 195 internal_memcpy(copy, &saved_, sizeof(saved_)); 196 } 197 198 ScopedBlockSignals::~ScopedBlockSignals() { SetSigProcMask(&saved_, nullptr); } 199 200 # if SANITIZER_LINUX && defined(__x86_64__) 201 # include "sanitizer_syscall_linux_x86_64.inc" 202 # elif SANITIZER_LINUX && SANITIZER_RISCV64 203 # include "sanitizer_syscall_linux_riscv64.inc" 204 # elif SANITIZER_LINUX && defined(__aarch64__) 205 # include "sanitizer_syscall_linux_aarch64.inc" 206 # elif SANITIZER_LINUX && defined(__arm__) 207 # include "sanitizer_syscall_linux_arm.inc" 208 # elif SANITIZER_LINUX && defined(__hexagon__) 209 # include "sanitizer_syscall_linux_hexagon.inc" 210 # elif SANITIZER_LINUX && SANITIZER_LOONGARCH64 211 # include "sanitizer_syscall_linux_loongarch64.inc" 212 # else 213 # include "sanitizer_syscall_generic.inc" 214 # endif 215 216 // --------------- sanitizer_libc.h 217 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD 218 # if !SANITIZER_S390 219 uptr internal_mmap(void *addr, uptr length, int prot, int flags, int fd, 220 u64 offset) { 221 # if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS 222 return internal_syscall(SYSCALL(mmap), (uptr)addr, length, prot, flags, fd, 223 offset); 224 # else 225 // mmap2 specifies file offset in 4096-byte units. 226 CHECK(IsAligned(offset, 4096)); 227 return internal_syscall(SYSCALL(mmap2), addr, length, prot, flags, fd, 228 (OFF_T)(offset / 4096)); 229 # endif 230 } 231 # endif // !SANITIZER_S390 232 233 uptr internal_munmap(void *addr, uptr length) { 234 return internal_syscall(SYSCALL(munmap), (uptr)addr, length); 235 } 236 237 # if SANITIZER_LINUX 238 uptr internal_mremap(void *old_address, uptr old_size, uptr new_size, int flags, 239 void *new_address) { 240 return internal_syscall(SYSCALL(mremap), (uptr)old_address, old_size, 241 new_size, flags, (uptr)new_address); 242 } 243 # endif 244 245 int internal_mprotect(void *addr, uptr length, int prot) { 246 return internal_syscall(SYSCALL(mprotect), (uptr)addr, length, prot); 247 } 248 249 int internal_madvise(uptr addr, uptr length, int advice) { 250 return internal_syscall(SYSCALL(madvise), addr, length, advice); 251 } 252 253 uptr internal_close(fd_t fd) { return internal_syscall(SYSCALL(close), fd); } 254 255 uptr internal_open(const char *filename, int flags) { 256 # if SANITIZER_LINUX 257 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags); 258 # else 259 return internal_syscall(SYSCALL(open), (uptr)filename, flags); 260 # endif 261 } 262 263 uptr internal_open(const char *filename, int flags, u32 mode) { 264 # if SANITIZER_LINUX 265 return internal_syscall(SYSCALL(openat), AT_FDCWD, (uptr)filename, flags, 266 mode); 267 # else 268 return internal_syscall(SYSCALL(open), (uptr)filename, flags, mode); 269 # endif 270 } 271 272 uptr internal_read(fd_t fd, void *buf, uptr count) { 273 sptr res; 274 HANDLE_EINTR(res, 275 (sptr)internal_syscall(SYSCALL(read), fd, (uptr)buf, count)); 276 return res; 277 } 278 279 uptr internal_write(fd_t fd, const void *buf, uptr count) { 280 sptr res; 281 HANDLE_EINTR(res, 282 (sptr)internal_syscall(SYSCALL(write), fd, (uptr)buf, count)); 283 return res; 284 } 285 286 uptr internal_ftruncate(fd_t fd, uptr size) { 287 sptr res; 288 HANDLE_EINTR(res, 289 (sptr)internal_syscall(SYSCALL(ftruncate), fd, (OFF_T)size)); 290 return res; 291 } 292 293 # if !SANITIZER_LINUX_USES_64BIT_SYSCALLS && SANITIZER_LINUX 294 static void stat64_to_stat(struct stat64 *in, struct stat *out) { 295 internal_memset(out, 0, sizeof(*out)); 296 out->st_dev = in->st_dev; 297 out->st_ino = in->st_ino; 298 out->st_mode = in->st_mode; 299 out->st_nlink = in->st_nlink; 300 out->st_uid = in->st_uid; 301 out->st_gid = in->st_gid; 302 out->st_rdev = in->st_rdev; 303 out->st_size = in->st_size; 304 out->st_blksize = in->st_blksize; 305 out->st_blocks = in->st_blocks; 306 out->st_atime = in->st_atime; 307 out->st_mtime = in->st_mtime; 308 out->st_ctime = in->st_ctime; 309 } 310 # endif 311 312 # if SANITIZER_LINUX && defined(__loongarch__) 313 static void statx_to_stat(struct statx *in, struct stat *out) { 314 internal_memset(out, 0, sizeof(*out)); 315 out->st_dev = makedev(in->stx_dev_major, in->stx_dev_minor); 316 out->st_ino = in->stx_ino; 317 out->st_mode = in->stx_mode; 318 out->st_nlink = in->stx_nlink; 319 out->st_uid = in->stx_uid; 320 out->st_gid = in->stx_gid; 321 out->st_rdev = makedev(in->stx_rdev_major, in->stx_rdev_minor); 322 out->st_size = in->stx_size; 323 out->st_blksize = in->stx_blksize; 324 out->st_blocks = in->stx_blocks; 325 out->st_atime = in->stx_atime.tv_sec; 326 out->st_atim.tv_nsec = in->stx_atime.tv_nsec; 327 out->st_mtime = in->stx_mtime.tv_sec; 328 out->st_mtim.tv_nsec = in->stx_mtime.tv_nsec; 329 out->st_ctime = in->stx_ctime.tv_sec; 330 out->st_ctim.tv_nsec = in->stx_ctime.tv_nsec; 331 } 332 # endif 333 334 # if SANITIZER_MIPS64 || SANITIZER_SPARC64 335 # if SANITIZER_MIPS64 336 typedef struct kernel_stat kstat_t; 337 # else 338 typedef struct kernel_stat64 kstat_t; 339 # endif 340 // Undefine compatibility macros from <sys/stat.h> 341 // so that they would not clash with the kernel_stat 342 // st_[a|m|c]time fields 343 # if !SANITIZER_GO 344 # undef st_atime 345 # undef st_mtime 346 # undef st_ctime 347 # endif 348 # if defined(SANITIZER_ANDROID) 349 // Bionic sys/stat.h defines additional macros 350 // for compatibility with the old NDKs and 351 // they clash with the kernel_stat structure 352 // st_[a|m|c]time_nsec fields. 353 # undef st_atime_nsec 354 # undef st_mtime_nsec 355 # undef st_ctime_nsec 356 # endif 357 static void kernel_stat_to_stat(kstat_t *in, struct stat *out) { 358 internal_memset(out, 0, sizeof(*out)); 359 out->st_dev = in->st_dev; 360 out->st_ino = in->st_ino; 361 out->st_mode = in->st_mode; 362 out->st_nlink = in->st_nlink; 363 out->st_uid = in->st_uid; 364 out->st_gid = in->st_gid; 365 out->st_rdev = in->st_rdev; 366 out->st_size = in->st_size; 367 out->st_blksize = in->st_blksize; 368 out->st_blocks = in->st_blocks; 369 # if defined(__USE_MISC) || defined(__USE_XOPEN2K8) || \ 370 defined(SANITIZER_ANDROID) 371 out->st_atim.tv_sec = in->st_atime; 372 out->st_atim.tv_nsec = in->st_atime_nsec; 373 out->st_mtim.tv_sec = in->st_mtime; 374 out->st_mtim.tv_nsec = in->st_mtime_nsec; 375 out->st_ctim.tv_sec = in->st_ctime; 376 out->st_ctim.tv_nsec = in->st_ctime_nsec; 377 # else 378 out->st_atime = in->st_atime; 379 out->st_atimensec = in->st_atime_nsec; 380 out->st_mtime = in->st_mtime; 381 out->st_mtimensec = in->st_mtime_nsec; 382 out->st_ctime = in->st_ctime; 383 out->st_atimensec = in->st_ctime_nsec; 384 # endif 385 } 386 # endif 387 388 uptr internal_stat(const char *path, void *buf) { 389 # if SANITIZER_FREEBSD 390 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 0); 391 # elif SANITIZER_LINUX 392 # if defined(__loongarch__) 393 struct statx bufx; 394 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path, 395 AT_NO_AUTOMOUNT, STATX_BASIC_STATS, (uptr)&bufx); 396 statx_to_stat(&bufx, (struct stat *)buf); 397 return res; 398 # elif (SANITIZER_WORDSIZE == 64 || SANITIZER_X32 || \ 399 (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \ 400 !SANITIZER_SPARC 401 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, 402 0); 403 # elif SANITIZER_SPARC64 404 kstat_t buf64; 405 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 406 (uptr)&buf64, 0); 407 kernel_stat_to_stat(&buf64, (struct stat *)buf); 408 return res; 409 # else 410 struct stat64 buf64; 411 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 412 (uptr)&buf64, 0); 413 stat64_to_stat(&buf64, (struct stat *)buf); 414 return res; 415 # endif 416 # else 417 struct stat64 buf64; 418 int res = internal_syscall(SYSCALL(stat64), path, &buf64); 419 stat64_to_stat(&buf64, (struct stat *)buf); 420 return res; 421 # endif 422 } 423 424 uptr internal_lstat(const char *path, void *buf) { 425 # if SANITIZER_FREEBSD 426 return internal_syscall(SYSCALL(fstatat), AT_FDCWD, (uptr)path, (uptr)buf, 427 AT_SYMLINK_NOFOLLOW); 428 # elif SANITIZER_LINUX 429 # if defined(__loongarch__) 430 struct statx bufx; 431 int res = internal_syscall(SYSCALL(statx), AT_FDCWD, (uptr)path, 432 AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT, 433 STATX_BASIC_STATS, (uptr)&bufx); 434 statx_to_stat(&bufx, (struct stat *)buf); 435 return res; 436 # elif (defined(_LP64) || SANITIZER_X32 || \ 437 (defined(__mips__) && _MIPS_SIM == _ABIN32)) && \ 438 !SANITIZER_SPARC 439 return internal_syscall(SYSCALL(newfstatat), AT_FDCWD, (uptr)path, (uptr)buf, 440 AT_SYMLINK_NOFOLLOW); 441 # elif SANITIZER_SPARC64 442 kstat_t buf64; 443 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 444 (uptr)&buf64, AT_SYMLINK_NOFOLLOW); 445 kernel_stat_to_stat(&buf64, (struct stat *)buf); 446 return res; 447 # else 448 struct stat64 buf64; 449 int res = internal_syscall(SYSCALL(fstatat64), AT_FDCWD, (uptr)path, 450 (uptr)&buf64, AT_SYMLINK_NOFOLLOW); 451 stat64_to_stat(&buf64, (struct stat *)buf); 452 return res; 453 # endif 454 # else 455 struct stat64 buf64; 456 int res = internal_syscall(SYSCALL(lstat64), path, &buf64); 457 stat64_to_stat(&buf64, (struct stat *)buf); 458 return res; 459 # endif 460 } 461 462 uptr internal_fstat(fd_t fd, void *buf) { 463 # if SANITIZER_FREEBSD || SANITIZER_LINUX_USES_64BIT_SYSCALLS 464 # if SANITIZER_MIPS64 465 // For mips64, fstat syscall fills buffer in the format of kernel_stat 466 kstat_t kbuf; 467 int res = internal_syscall(SYSCALL(fstat), fd, &kbuf); 468 kernel_stat_to_stat(&kbuf, (struct stat *)buf); 469 return res; 470 # elif SANITIZER_LINUX && SANITIZER_SPARC64 471 // For sparc64, fstat64 syscall fills buffer in the format of kernel_stat64 472 kstat_t kbuf; 473 int res = internal_syscall(SYSCALL(fstat64), fd, &kbuf); 474 kernel_stat_to_stat(&kbuf, (struct stat *)buf); 475 return res; 476 # elif SANITIZER_LINUX && defined(__loongarch__) 477 struct statx bufx; 478 int res = internal_syscall(SYSCALL(statx), fd, "", AT_EMPTY_PATH, 479 STATX_BASIC_STATS, (uptr)&bufx); 480 statx_to_stat(&bufx, (struct stat *)buf); 481 return res; 482 # else 483 return internal_syscall(SYSCALL(fstat), fd, (uptr)buf); 484 # endif 485 # else 486 struct stat64 buf64; 487 int res = internal_syscall(SYSCALL(fstat64), fd, &buf64); 488 stat64_to_stat(&buf64, (struct stat *)buf); 489 return res; 490 # endif 491 } 492 493 uptr internal_filesize(fd_t fd) { 494 struct stat st; 495 if (internal_fstat(fd, &st)) 496 return -1; 497 return (uptr)st.st_size; 498 } 499 500 uptr internal_dup(int oldfd) { return internal_syscall(SYSCALL(dup), oldfd); } 501 502 uptr internal_dup2(int oldfd, int newfd) { 503 # if SANITIZER_LINUX 504 return internal_syscall(SYSCALL(dup3), oldfd, newfd, 0); 505 # else 506 return internal_syscall(SYSCALL(dup2), oldfd, newfd); 507 # endif 508 } 509 510 uptr internal_readlink(const char *path, char *buf, uptr bufsize) { 511 # if SANITIZER_LINUX 512 return internal_syscall(SYSCALL(readlinkat), AT_FDCWD, (uptr)path, (uptr)buf, 513 bufsize); 514 # else 515 return internal_syscall(SYSCALL(readlink), (uptr)path, (uptr)buf, bufsize); 516 # endif 517 } 518 519 uptr internal_unlink(const char *path) { 520 # if SANITIZER_LINUX 521 return internal_syscall(SYSCALL(unlinkat), AT_FDCWD, (uptr)path, 0); 522 # else 523 return internal_syscall(SYSCALL(unlink), (uptr)path); 524 # endif 525 } 526 527 uptr internal_rename(const char *oldpath, const char *newpath) { 528 # if (defined(__riscv) || defined(__loongarch__)) && defined(__linux__) 529 return internal_syscall(SYSCALL(renameat2), AT_FDCWD, (uptr)oldpath, AT_FDCWD, 530 (uptr)newpath, 0); 531 # elif SANITIZER_LINUX 532 return internal_syscall(SYSCALL(renameat), AT_FDCWD, (uptr)oldpath, AT_FDCWD, 533 (uptr)newpath); 534 # else 535 return internal_syscall(SYSCALL(rename), (uptr)oldpath, (uptr)newpath); 536 # endif 537 } 538 539 uptr internal_sched_yield() { return internal_syscall(SYSCALL(sched_yield)); } 540 541 void internal_usleep(u64 useconds) { 542 struct timespec ts; 543 ts.tv_sec = useconds / 1000000; 544 ts.tv_nsec = (useconds % 1000000) * 1000; 545 internal_syscall(SYSCALL(nanosleep), &ts, &ts); 546 } 547 548 uptr internal_execve(const char *filename, char *const argv[], 549 char *const envp[]) { 550 return internal_syscall(SYSCALL(execve), (uptr)filename, (uptr)argv, 551 (uptr)envp); 552 } 553 # endif // !SANITIZER_SOLARIS && !SANITIZER_NETBSD 554 555 # if !SANITIZER_NETBSD 556 void internal__exit(int exitcode) { 557 # if SANITIZER_FREEBSD || SANITIZER_SOLARIS 558 internal_syscall(SYSCALL(exit), exitcode); 559 # else 560 internal_syscall(SYSCALL(exit_group), exitcode); 561 # endif 562 Die(); // Unreachable. 563 } 564 # endif // !SANITIZER_NETBSD 565 566 // ----------------- sanitizer_common.h 567 bool FileExists(const char *filename) { 568 if (ShouldMockFailureToOpen(filename)) 569 return false; 570 struct stat st; 571 if (internal_stat(filename, &st)) 572 return false; 573 // Sanity check: filename is a regular file. 574 return S_ISREG(st.st_mode); 575 } 576 577 bool DirExists(const char *path) { 578 struct stat st; 579 if (internal_stat(path, &st)) 580 return false; 581 return S_ISDIR(st.st_mode); 582 } 583 584 # if !SANITIZER_NETBSD 585 tid_t GetTid() { 586 # if SANITIZER_FREEBSD 587 long Tid; 588 thr_self(&Tid); 589 return Tid; 590 # elif SANITIZER_SOLARIS 591 return thr_self(); 592 # else 593 return internal_syscall(SYSCALL(gettid)); 594 # endif 595 } 596 597 int TgKill(pid_t pid, tid_t tid, int sig) { 598 # if SANITIZER_LINUX 599 return internal_syscall(SYSCALL(tgkill), pid, tid, sig); 600 # elif SANITIZER_FREEBSD 601 return internal_syscall(SYSCALL(thr_kill2), pid, tid, sig); 602 # elif SANITIZER_SOLARIS 603 (void)pid; 604 errno = thr_kill(tid, sig); 605 // TgKill is expected to return -1 on error, not an errno. 606 return errno != 0 ? -1 : 0; 607 # endif 608 } 609 # endif 610 611 # if SANITIZER_GLIBC 612 u64 NanoTime() { 613 kernel_timeval tv; 614 internal_memset(&tv, 0, sizeof(tv)); 615 internal_syscall(SYSCALL(gettimeofday), &tv, 0); 616 return (u64)tv.tv_sec * 1000 * 1000 * 1000 + tv.tv_usec * 1000; 617 } 618 // Used by real_clock_gettime. 619 uptr internal_clock_gettime(__sanitizer_clockid_t clk_id, void *tp) { 620 return internal_syscall(SYSCALL(clock_gettime), clk_id, tp); 621 } 622 # elif !SANITIZER_SOLARIS && !SANITIZER_NETBSD 623 u64 NanoTime() { 624 struct timespec ts; 625 clock_gettime(CLOCK_REALTIME, &ts); 626 return (u64)ts.tv_sec * 1000 * 1000 * 1000 + ts.tv_nsec; 627 } 628 # endif 629 630 // Like getenv, but reads env directly from /proc (on Linux) or parses the 631 // 'environ' array (on some others) and does not use libc. This function 632 // should be called first inside __asan_init. 633 const char *GetEnv(const char *name) { 634 # if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_SOLARIS 635 if (::environ != 0) { 636 uptr NameLen = internal_strlen(name); 637 for (char **Env = ::environ; *Env != 0; Env++) { 638 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') 639 return (*Env) + NameLen + 1; 640 } 641 } 642 return 0; // Not found. 643 # elif SANITIZER_LINUX 644 static char *environ; 645 static uptr len; 646 static bool inited; 647 if (!inited) { 648 inited = true; 649 uptr environ_size; 650 if (!ReadFileToBuffer("/proc/self/environ", &environ, &environ_size, &len)) 651 environ = nullptr; 652 } 653 if (!environ || len == 0) 654 return nullptr; 655 uptr namelen = internal_strlen(name); 656 const char *p = environ; 657 while (*p != '\0') { // will happen at the \0\0 that terminates the buffer 658 // proc file has the format NAME=value\0NAME=value\0NAME=value\0... 659 const char *endp = (char *)internal_memchr(p, '\0', len - (p - environ)); 660 if (!endp) // this entry isn't NUL terminated 661 return nullptr; 662 else if (!internal_memcmp(p, name, namelen) && p[namelen] == '=') // Match. 663 return p + namelen + 1; // point after = 664 p = endp + 1; 665 } 666 return nullptr; // Not found. 667 # else 668 # error "Unsupported platform" 669 # endif 670 } 671 672 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD && !SANITIZER_GO 673 extern "C" { 674 SANITIZER_WEAK_ATTRIBUTE extern void *__libc_stack_end; 675 } 676 # endif 677 678 # if !SANITIZER_FREEBSD && !SANITIZER_NETBSD 679 static void ReadNullSepFileToArray(const char *path, char ***arr, 680 int arr_size) { 681 char *buff; 682 uptr buff_size; 683 uptr buff_len; 684 *arr = (char **)MmapOrDie(arr_size * sizeof(char *), "NullSepFileArray"); 685 if (!ReadFileToBuffer(path, &buff, &buff_size, &buff_len, 1024 * 1024)) { 686 (*arr)[0] = nullptr; 687 return; 688 } 689 (*arr)[0] = buff; 690 int count, i; 691 for (count = 1, i = 1;; i++) { 692 if (buff[i] == 0) { 693 if (buff[i + 1] == 0) 694 break; 695 (*arr)[count] = &buff[i + 1]; 696 CHECK_LE(count, arr_size - 1); // FIXME: make this more flexible. 697 count++; 698 } 699 } 700 (*arr)[count] = nullptr; 701 } 702 # endif 703 704 static void GetArgsAndEnv(char ***argv, char ***envp) { 705 # if SANITIZER_FREEBSD 706 // On FreeBSD, retrieving the argument and environment arrays is done via the 707 // kern.ps_strings sysctl, which returns a pointer to a structure containing 708 // this information. See also <sys/exec.h>. 709 ps_strings *pss; 710 uptr sz = sizeof(pss); 711 if (internal_sysctlbyname("kern.ps_strings", &pss, &sz, NULL, 0) == -1) { 712 Printf("sysctl kern.ps_strings failed\n"); 713 Die(); 714 } 715 *argv = pss->ps_argvstr; 716 *envp = pss->ps_envstr; 717 # elif SANITIZER_NETBSD 718 *argv = __ps_strings->ps_argvstr; 719 *envp = __ps_strings->ps_envstr; 720 # else // SANITIZER_FREEBSD 721 # if !SANITIZER_GO 722 if (&__libc_stack_end) { 723 uptr *stack_end = (uptr *)__libc_stack_end; 724 // Normally argc can be obtained from *stack_end, however, on ARM glibc's 725 // _start clobbers it: 726 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/arm/start.S;hb=refs/heads/release/2.31/master#l75 727 // Do not special-case ARM and infer argc from argv everywhere. 728 int argc = 0; 729 while (stack_end[argc + 1]) argc++; 730 *argv = (char **)(stack_end + 1); 731 *envp = (char **)(stack_end + argc + 2); 732 } else { 733 # endif // !SANITIZER_GO 734 static const int kMaxArgv = 2000, kMaxEnvp = 2000; 735 ReadNullSepFileToArray("/proc/self/cmdline", argv, kMaxArgv); 736 ReadNullSepFileToArray("/proc/self/environ", envp, kMaxEnvp); 737 # if !SANITIZER_GO 738 } 739 # endif // !SANITIZER_GO 740 # endif // SANITIZER_FREEBSD 741 } 742 743 char **GetArgv() { 744 char **argv, **envp; 745 GetArgsAndEnv(&argv, &envp); 746 return argv; 747 } 748 749 char **GetEnviron() { 750 char **argv, **envp; 751 GetArgsAndEnv(&argv, &envp); 752 return envp; 753 } 754 755 # if !SANITIZER_SOLARIS 756 void FutexWait(atomic_uint32_t *p, u32 cmp) { 757 # if SANITIZER_FREEBSD 758 _umtx_op(p, UMTX_OP_WAIT_UINT, cmp, 0, 0); 759 # elif SANITIZER_NETBSD 760 sched_yield(); /* No userspace futex-like synchronization */ 761 # else 762 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAIT_PRIVATE, cmp, 0, 0, 0); 763 # endif 764 } 765 766 void FutexWake(atomic_uint32_t *p, u32 count) { 767 # if SANITIZER_FREEBSD 768 _umtx_op(p, UMTX_OP_WAKE, count, 0, 0); 769 # elif SANITIZER_NETBSD 770 /* No userspace futex-like synchronization */ 771 # else 772 internal_syscall(SYSCALL(futex), (uptr)p, FUTEX_WAKE_PRIVATE, count, 0, 0, 0); 773 # endif 774 } 775 776 # endif // !SANITIZER_SOLARIS 777 778 // ----------------- sanitizer_linux.h 779 // The actual size of this structure is specified by d_reclen. 780 // Note that getdents64 uses a different structure format. We only provide the 781 // 32-bit syscall here. 782 # if SANITIZER_NETBSD 783 // Not used 784 # else 785 struct linux_dirent { 786 # if SANITIZER_X32 || SANITIZER_LINUX 787 u64 d_ino; 788 u64 d_off; 789 # else 790 unsigned long d_ino; 791 unsigned long d_off; 792 # endif 793 unsigned short d_reclen; 794 # if SANITIZER_LINUX 795 unsigned char d_type; 796 # endif 797 char d_name[256]; 798 }; 799 # endif 800 801 # if !SANITIZER_SOLARIS && !SANITIZER_NETBSD 802 // Syscall wrappers. 803 uptr internal_ptrace(int request, int pid, void *addr, void *data) { 804 return internal_syscall(SYSCALL(ptrace), request, pid, (uptr)addr, 805 (uptr)data); 806 } 807 808 uptr internal_waitpid(int pid, int *status, int options) { 809 return internal_syscall(SYSCALL(wait4), pid, (uptr)status, options, 810 0 /* rusage */); 811 } 812 813 uptr internal_getpid() { return internal_syscall(SYSCALL(getpid)); } 814 815 uptr internal_getppid() { return internal_syscall(SYSCALL(getppid)); } 816 817 int internal_dlinfo(void *handle, int request, void *p) { 818 # if SANITIZER_FREEBSD 819 return dlinfo(handle, request, p); 820 # else 821 UNIMPLEMENTED(); 822 # endif 823 } 824 825 uptr internal_getdents(fd_t fd, struct linux_dirent *dirp, unsigned int count) { 826 # if SANITIZER_FREEBSD 827 return internal_syscall(SYSCALL(getdirentries), fd, (uptr)dirp, count, NULL); 828 # elif SANITIZER_LINUX 829 return internal_syscall(SYSCALL(getdents64), fd, (uptr)dirp, count); 830 # else 831 return internal_syscall(SYSCALL(getdents), fd, (uptr)dirp, count); 832 # endif 833 } 834 835 uptr internal_lseek(fd_t fd, OFF_T offset, int whence) { 836 return internal_syscall(SYSCALL(lseek), fd, offset, whence); 837 } 838 839 # if SANITIZER_LINUX 840 uptr internal_prctl(int option, uptr arg2, uptr arg3, uptr arg4, uptr arg5) { 841 return internal_syscall(SYSCALL(prctl), option, arg2, arg3, arg4, arg5); 842 } 843 # if defined(__x86_64__) 844 # include <asm/unistd_64.h> 845 // Currently internal_arch_prctl() is only needed on x86_64. 846 uptr internal_arch_prctl(int option, uptr arg2) { 847 return internal_syscall(__NR_arch_prctl, option, arg2); 848 } 849 # endif 850 # endif 851 852 uptr internal_sigaltstack(const void *ss, void *oss) { 853 return internal_syscall(SYSCALL(sigaltstack), (uptr)ss, (uptr)oss); 854 } 855 856 extern "C" pid_t __fork(void); 857 858 int internal_fork() { 859 # if SANITIZER_LINUX 860 # if SANITIZER_S390 861 return internal_syscall(SYSCALL(clone), 0, SIGCHLD); 862 # elif SANITIZER_SPARC 863 // The clone syscall interface on SPARC differs massively from the rest, 864 // so fall back to __fork. 865 return __fork(); 866 # else 867 return internal_syscall(SYSCALL(clone), SIGCHLD, 0); 868 # endif 869 # else 870 return internal_syscall(SYSCALL(fork)); 871 # endif 872 } 873 874 # if SANITIZER_FREEBSD 875 int internal_sysctl(const int *name, unsigned int namelen, void *oldp, 876 uptr *oldlenp, const void *newp, uptr newlen) { 877 return internal_syscall(SYSCALL(__sysctl), name, namelen, oldp, 878 (size_t *)oldlenp, newp, (size_t)newlen); 879 } 880 881 int internal_sysctlbyname(const char *sname, void *oldp, uptr *oldlenp, 882 const void *newp, uptr newlen) { 883 // Note: this function can be called during startup, so we need to avoid 884 // calling any interceptable functions. On FreeBSD >= 1300045 sysctlbyname() 885 // is a real syscall, but for older versions it calls sysctlnametomib() 886 // followed by sysctl(). To avoid calling the intercepted version and 887 // asserting if this happens during startup, call the real sysctlnametomib() 888 // followed by internal_sysctl() if the syscall is not available. 889 # ifdef SYS___sysctlbyname 890 return internal_syscall(SYSCALL(__sysctlbyname), sname, 891 internal_strlen(sname), oldp, (size_t *)oldlenp, newp, 892 (size_t)newlen); 893 # else 894 static decltype(sysctlnametomib) *real_sysctlnametomib = nullptr; 895 if (!real_sysctlnametomib) 896 real_sysctlnametomib = 897 (decltype(sysctlnametomib) *)dlsym(RTLD_NEXT, "sysctlnametomib"); 898 CHECK(real_sysctlnametomib); 899 900 int oid[CTL_MAXNAME]; 901 size_t len = CTL_MAXNAME; 902 if (real_sysctlnametomib(sname, oid, &len) == -1) 903 return (-1); 904 return internal_sysctl(oid, len, oldp, oldlenp, newp, newlen); 905 # endif 906 } 907 # endif 908 909 # if SANITIZER_LINUX 910 # define SA_RESTORER 0x04000000 911 // Doesn't set sa_restorer if the caller did not set it, so use with caution 912 //(see below). 913 int internal_sigaction_norestorer(int signum, const void *act, void *oldact) { 914 __sanitizer_kernel_sigaction_t k_act, k_oldact; 915 internal_memset(&k_act, 0, sizeof(__sanitizer_kernel_sigaction_t)); 916 internal_memset(&k_oldact, 0, sizeof(__sanitizer_kernel_sigaction_t)); 917 const __sanitizer_sigaction *u_act = (const __sanitizer_sigaction *)act; 918 __sanitizer_sigaction *u_oldact = (__sanitizer_sigaction *)oldact; 919 if (u_act) { 920 k_act.handler = u_act->handler; 921 k_act.sigaction = u_act->sigaction; 922 internal_memcpy(&k_act.sa_mask, &u_act->sa_mask, 923 sizeof(__sanitizer_kernel_sigset_t)); 924 // Without SA_RESTORER kernel ignores the calls (probably returns EINVAL). 925 k_act.sa_flags = u_act->sa_flags | SA_RESTORER; 926 // FIXME: most often sa_restorer is unset, however the kernel requires it 927 // to point to a valid signal restorer that calls the rt_sigreturn syscall. 928 // If sa_restorer passed to the kernel is NULL, the program may crash upon 929 // signal delivery or fail to unwind the stack in the signal handler. 930 // libc implementation of sigaction() passes its own restorer to 931 // rt_sigaction, so we need to do the same (we'll need to reimplement the 932 // restorers; for x86_64 the restorer address can be obtained from 933 // oldact->sa_restorer upon a call to sigaction(xxx, NULL, oldact). 934 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32 935 k_act.sa_restorer = u_act->sa_restorer; 936 # endif 937 } 938 939 uptr result = internal_syscall(SYSCALL(rt_sigaction), (uptr)signum, 940 (uptr)(u_act ? &k_act : nullptr), 941 (uptr)(u_oldact ? &k_oldact : nullptr), 942 (uptr)sizeof(__sanitizer_kernel_sigset_t)); 943 944 if ((result == 0) && u_oldact) { 945 u_oldact->handler = k_oldact.handler; 946 u_oldact->sigaction = k_oldact.sigaction; 947 internal_memcpy(&u_oldact->sa_mask, &k_oldact.sa_mask, 948 sizeof(__sanitizer_kernel_sigset_t)); 949 u_oldact->sa_flags = k_oldact.sa_flags; 950 # if !SANITIZER_ANDROID || !SANITIZER_MIPS32 951 u_oldact->sa_restorer = k_oldact.sa_restorer; 952 # endif 953 } 954 return result; 955 } 956 # endif // SANITIZER_LINUX 957 958 uptr internal_sigprocmask(int how, __sanitizer_sigset_t *set, 959 __sanitizer_sigset_t *oldset) { 960 # if SANITIZER_FREEBSD 961 return internal_syscall(SYSCALL(sigprocmask), how, set, oldset); 962 # else 963 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 964 __sanitizer_kernel_sigset_t *k_oldset = (__sanitizer_kernel_sigset_t *)oldset; 965 return internal_syscall(SYSCALL(rt_sigprocmask), (uptr)how, (uptr)k_set, 966 (uptr)k_oldset, sizeof(__sanitizer_kernel_sigset_t)); 967 # endif 968 } 969 970 void internal_sigfillset(__sanitizer_sigset_t *set) { 971 internal_memset(set, 0xff, sizeof(*set)); 972 } 973 974 void internal_sigemptyset(__sanitizer_sigset_t *set) { 975 internal_memset(set, 0, sizeof(*set)); 976 } 977 978 # if SANITIZER_LINUX 979 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) { 980 signum -= 1; 981 CHECK_GE(signum, 0); 982 CHECK_LT(signum, sizeof(*set) * 8); 983 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 984 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); 985 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); 986 k_set->sig[idx] &= ~((uptr)1 << bit); 987 } 988 989 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) { 990 signum -= 1; 991 CHECK_GE(signum, 0); 992 CHECK_LT(signum, sizeof(*set) * 8); 993 __sanitizer_kernel_sigset_t *k_set = (__sanitizer_kernel_sigset_t *)set; 994 const uptr idx = signum / (sizeof(k_set->sig[0]) * 8); 995 const uptr bit = signum % (sizeof(k_set->sig[0]) * 8); 996 return k_set->sig[idx] & ((uptr)1 << bit); 997 } 998 # elif SANITIZER_FREEBSD 999 uptr internal_procctl(int type, int id, int cmd, void *data) { 1000 return internal_syscall(SYSCALL(procctl), type, id, cmd, data); 1001 } 1002 1003 void internal_sigdelset(__sanitizer_sigset_t *set, int signum) { 1004 sigset_t *rset = reinterpret_cast<sigset_t *>(set); 1005 sigdelset(rset, signum); 1006 } 1007 1008 bool internal_sigismember(__sanitizer_sigset_t *set, int signum) { 1009 sigset_t *rset = reinterpret_cast<sigset_t *>(set); 1010 return sigismember(rset, signum); 1011 } 1012 # endif 1013 # endif // !SANITIZER_SOLARIS 1014 1015 # if !SANITIZER_NETBSD 1016 // ThreadLister implementation. 1017 ThreadLister::ThreadLister(pid_t pid) : pid_(pid), buffer_(4096) { 1018 char task_directory_path[80]; 1019 internal_snprintf(task_directory_path, sizeof(task_directory_path), 1020 "/proc/%d/task/", pid); 1021 descriptor_ = internal_open(task_directory_path, O_RDONLY | O_DIRECTORY); 1022 if (internal_iserror(descriptor_)) { 1023 Report("Can't open /proc/%d/task for reading.\n", pid); 1024 } 1025 } 1026 1027 ThreadLister::Result ThreadLister::ListThreads( 1028 InternalMmapVector<tid_t> *threads) { 1029 if (internal_iserror(descriptor_)) 1030 return Error; 1031 internal_lseek(descriptor_, 0, SEEK_SET); 1032 threads->clear(); 1033 1034 Result result = Ok; 1035 for (bool first_read = true;; first_read = false) { 1036 // Resize to max capacity if it was downsized by IsAlive. 1037 buffer_.resize(buffer_.capacity()); 1038 CHECK_GE(buffer_.size(), 4096); 1039 uptr read = internal_getdents( 1040 descriptor_, (struct linux_dirent *)buffer_.data(), buffer_.size()); 1041 if (!read) 1042 return result; 1043 if (internal_iserror(read)) { 1044 Report("Can't read directory entries from /proc/%d/task.\n", pid_); 1045 return Error; 1046 } 1047 1048 for (uptr begin = (uptr)buffer_.data(), end = begin + read; begin < end;) { 1049 struct linux_dirent *entry = (struct linux_dirent *)begin; 1050 begin += entry->d_reclen; 1051 if (entry->d_ino == 1) { 1052 // Inode 1 is for bad blocks and also can be a reason for early return. 1053 // Should be emitted if kernel tried to output terminating thread. 1054 // See proc_task_readdir implementation in Linux. 1055 result = Incomplete; 1056 } 1057 if (entry->d_ino && *entry->d_name >= '0' && *entry->d_name <= '9') 1058 threads->push_back(internal_atoll(entry->d_name)); 1059 } 1060 1061 // Now we are going to detect short-read or early EOF. In such cases Linux 1062 // can return inconsistent list with missing alive threads. 1063 // Code will just remember that the list can be incomplete but it will 1064 // continue reads to return as much as possible. 1065 if (!first_read) { 1066 // The first one was a short-read by definition. 1067 result = Incomplete; 1068 } else if (read > buffer_.size() - 1024) { 1069 // Read was close to the buffer size. So double the size and assume the 1070 // worst. 1071 buffer_.resize(buffer_.size() * 2); 1072 result = Incomplete; 1073 } else if (!threads->empty() && !IsAlive(threads->back())) { 1074 // Maybe Linux early returned from read on terminated thread (!pid_alive) 1075 // and failed to restore read position. 1076 // See next_tid and proc_task_instantiate in Linux. 1077 result = Incomplete; 1078 } 1079 } 1080 } 1081 1082 bool ThreadLister::IsAlive(int tid) { 1083 // /proc/%d/task/%d/status uses same call to detect alive threads as 1084 // proc_task_readdir. See task_state implementation in Linux. 1085 char path[80]; 1086 internal_snprintf(path, sizeof(path), "/proc/%d/task/%d/status", pid_, tid); 1087 if (!ReadFileToVector(path, &buffer_) || buffer_.empty()) 1088 return false; 1089 buffer_.push_back(0); 1090 static const char kPrefix[] = "\nPPid:"; 1091 const char *field = internal_strstr(buffer_.data(), kPrefix); 1092 if (!field) 1093 return false; 1094 field += internal_strlen(kPrefix); 1095 return (int)internal_atoll(field) != 0; 1096 } 1097 1098 ThreadLister::~ThreadLister() { 1099 if (!internal_iserror(descriptor_)) 1100 internal_close(descriptor_); 1101 } 1102 # endif 1103 1104 # if SANITIZER_WORDSIZE == 32 1105 // Take care of unusable kernel area in top gigabyte. 1106 static uptr GetKernelAreaSize() { 1107 # if SANITIZER_LINUX && !SANITIZER_X32 1108 const uptr gbyte = 1UL << 30; 1109 1110 // Firstly check if there are writable segments 1111 // mapped to top gigabyte (e.g. stack). 1112 MemoryMappingLayout proc_maps(/*cache_enabled*/ true); 1113 if (proc_maps.Error()) 1114 return 0; 1115 MemoryMappedSegment segment; 1116 while (proc_maps.Next(&segment)) { 1117 if ((segment.end >= 3 * gbyte) && segment.IsWritable()) 1118 return 0; 1119 } 1120 1121 # if !SANITIZER_ANDROID 1122 // Even if nothing is mapped, top Gb may still be accessible 1123 // if we are running on 64-bit kernel. 1124 // Uname may report misleading results if personality type 1125 // is modified (e.g. under schroot) so check this as well. 1126 struct utsname uname_info; 1127 int pers = personality(0xffffffffUL); 1128 if (!(pers & PER_MASK) && internal_uname(&uname_info) == 0 && 1129 internal_strstr(uname_info.machine, "64")) 1130 return 0; 1131 # endif // SANITIZER_ANDROID 1132 1133 // Top gigabyte is reserved for kernel. 1134 return gbyte; 1135 # else 1136 return 0; 1137 # endif // SANITIZER_LINUX && !SANITIZER_X32 1138 } 1139 # endif // SANITIZER_WORDSIZE == 32 1140 1141 uptr GetMaxVirtualAddress() { 1142 # if SANITIZER_NETBSD && defined(__x86_64__) 1143 return 0x7f7ffffff000ULL; // (0x00007f8000000000 - PAGE_SIZE) 1144 # elif SANITIZER_WORDSIZE == 64 1145 # if defined(__powerpc64__) || defined(__aarch64__) || \ 1146 defined(__loongarch__) || SANITIZER_RISCV64 1147 // On PowerPC64 we have two different address space layouts: 44- and 46-bit. 1148 // We somehow need to figure out which one we are using now and choose 1149 // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL. 1150 // Note that with 'ulimit -s unlimited' the stack is moved away from the top 1151 // of the address space, so simply checking the stack address is not enough. 1152 // This should (does) work for both PowerPC64 Endian modes. 1153 // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit. 1154 // loongarch64 also has multiple address space layouts: default is 47-bit. 1155 // RISC-V 64 also has multiple address space layouts: 39, 48 and 57-bit. 1156 return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1; 1157 # elif SANITIZER_MIPS64 1158 return (1ULL << 40) - 1; // 0x000000ffffffffffUL; 1159 # elif defined(__s390x__) 1160 return (1ULL << 53) - 1; // 0x001fffffffffffffUL; 1161 # elif defined(__sparc__) 1162 return ~(uptr)0; 1163 # else 1164 return (1ULL << 47) - 1; // 0x00007fffffffffffUL; 1165 # endif 1166 # else // SANITIZER_WORDSIZE == 32 1167 # if defined(__s390__) 1168 return (1ULL << 31) - 1; // 0x7fffffff; 1169 # else 1170 return (1ULL << 32) - 1; // 0xffffffff; 1171 # endif 1172 # endif // SANITIZER_WORDSIZE 1173 } 1174 1175 uptr GetMaxUserVirtualAddress() { 1176 uptr addr = GetMaxVirtualAddress(); 1177 # if SANITIZER_WORDSIZE == 32 && !defined(__s390__) 1178 if (!common_flags()->full_address_space) 1179 addr -= GetKernelAreaSize(); 1180 CHECK_LT(reinterpret_cast<uptr>(&addr), addr); 1181 # endif 1182 return addr; 1183 } 1184 1185 # if !SANITIZER_ANDROID || defined(__aarch64__) 1186 uptr GetPageSize() { 1187 # if SANITIZER_LINUX && (defined(__x86_64__) || defined(__i386__)) && \ 1188 defined(EXEC_PAGESIZE) 1189 return EXEC_PAGESIZE; 1190 # elif SANITIZER_FREEBSD || SANITIZER_NETBSD 1191 // Use sysctl as sysconf can trigger interceptors internally. 1192 int pz = 0; 1193 uptr pzl = sizeof(pz); 1194 int mib[2] = {CTL_HW, HW_PAGESIZE}; 1195 int rv = internal_sysctl(mib, 2, &pz, &pzl, nullptr, 0); 1196 CHECK_EQ(rv, 0); 1197 return (uptr)pz; 1198 # elif SANITIZER_USE_GETAUXVAL 1199 return getauxval(AT_PAGESZ); 1200 # else 1201 return sysconf(_SC_PAGESIZE); // EXEC_PAGESIZE may not be trustworthy. 1202 # endif 1203 } 1204 # endif 1205 1206 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { 1207 # if SANITIZER_SOLARIS 1208 const char *default_module_name = getexecname(); 1209 CHECK_NE(default_module_name, NULL); 1210 return internal_snprintf(buf, buf_len, "%s", default_module_name); 1211 # else 1212 # if SANITIZER_FREEBSD || SANITIZER_NETBSD 1213 # if SANITIZER_FREEBSD 1214 const int Mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1}; 1215 # else 1216 const int Mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME}; 1217 # endif 1218 const char *default_module_name = "kern.proc.pathname"; 1219 uptr Size = buf_len; 1220 bool IsErr = 1221 (internal_sysctl(Mib, ARRAY_SIZE(Mib), buf, &Size, NULL, 0) != 0); 1222 int readlink_error = IsErr ? errno : 0; 1223 uptr module_name_len = Size; 1224 # else 1225 const char *default_module_name = "/proc/self/exe"; 1226 uptr module_name_len = internal_readlink(default_module_name, buf, buf_len); 1227 int readlink_error; 1228 bool IsErr = internal_iserror(module_name_len, &readlink_error); 1229 # endif 1230 if (IsErr) { 1231 // We can't read binary name for some reason, assume it's unknown. 1232 Report( 1233 "WARNING: reading executable name failed with errno %d, " 1234 "some stack frames may not be symbolized\n", 1235 readlink_error); 1236 module_name_len = 1237 internal_snprintf(buf, buf_len, "%s", default_module_name); 1238 CHECK_LT(module_name_len, buf_len); 1239 } 1240 return module_name_len; 1241 # endif 1242 } 1243 1244 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { 1245 # if SANITIZER_LINUX 1246 char *tmpbuf; 1247 uptr tmpsize; 1248 uptr tmplen; 1249 if (ReadFileToBuffer("/proc/self/cmdline", &tmpbuf, &tmpsize, &tmplen, 1250 1024 * 1024)) { 1251 internal_strncpy(buf, tmpbuf, buf_len); 1252 UnmapOrDie(tmpbuf, tmpsize); 1253 return internal_strlen(buf); 1254 } 1255 # endif 1256 return ReadBinaryName(buf, buf_len); 1257 } 1258 1259 // Match full names of the form /path/to/base_name{-,.}* 1260 bool LibraryNameIs(const char *full_name, const char *base_name) { 1261 const char *name = full_name; 1262 // Strip path. 1263 while (*name != '\0') name++; 1264 while (name > full_name && *name != '/') name--; 1265 if (*name == '/') 1266 name++; 1267 uptr base_name_length = internal_strlen(base_name); 1268 if (internal_strncmp(name, base_name, base_name_length)) 1269 return false; 1270 return (name[base_name_length] == '-' || name[base_name_length] == '.'); 1271 } 1272 1273 # if !SANITIZER_ANDROID 1274 // Call cb for each region mapped by map. 1275 void ForEachMappedRegion(link_map *map, void (*cb)(const void *, uptr)) { 1276 CHECK_NE(map, nullptr); 1277 # if !SANITIZER_FREEBSD 1278 typedef ElfW(Phdr) Elf_Phdr; 1279 typedef ElfW(Ehdr) Elf_Ehdr; 1280 # endif // !SANITIZER_FREEBSD 1281 char *base = (char *)map->l_addr; 1282 Elf_Ehdr *ehdr = (Elf_Ehdr *)base; 1283 char *phdrs = base + ehdr->e_phoff; 1284 char *phdrs_end = phdrs + ehdr->e_phnum * ehdr->e_phentsize; 1285 1286 // Find the segment with the minimum base so we can "relocate" the p_vaddr 1287 // fields. Typically ET_DYN objects (DSOs) have base of zero and ET_EXEC 1288 // objects have a non-zero base. 1289 uptr preferred_base = (uptr)-1; 1290 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { 1291 Elf_Phdr *phdr = (Elf_Phdr *)iter; 1292 if (phdr->p_type == PT_LOAD && preferred_base > (uptr)phdr->p_vaddr) 1293 preferred_base = (uptr)phdr->p_vaddr; 1294 } 1295 1296 // Compute the delta from the real base to get a relocation delta. 1297 sptr delta = (uptr)base - preferred_base; 1298 // Now we can figure out what the loader really mapped. 1299 for (char *iter = phdrs; iter != phdrs_end; iter += ehdr->e_phentsize) { 1300 Elf_Phdr *phdr = (Elf_Phdr *)iter; 1301 if (phdr->p_type == PT_LOAD) { 1302 uptr seg_start = phdr->p_vaddr + delta; 1303 uptr seg_end = seg_start + phdr->p_memsz; 1304 // None of these values are aligned. We consider the ragged edges of the 1305 // load command as defined, since they are mapped from the file. 1306 seg_start = RoundDownTo(seg_start, GetPageSizeCached()); 1307 seg_end = RoundUpTo(seg_end, GetPageSizeCached()); 1308 cb((void *)seg_start, seg_end - seg_start); 1309 } 1310 } 1311 } 1312 # endif 1313 1314 # if SANITIZER_LINUX 1315 # if defined(__x86_64__) 1316 // We cannot use glibc's clone wrapper, because it messes with the child 1317 // task's TLS. It writes the PID and TID of the child task to its thread 1318 // descriptor, but in our case the child task shares the thread descriptor with 1319 // the parent (because we don't know how to allocate a new thread 1320 // descriptor to keep glibc happy). So the stock version of clone(), when 1321 // used with CLONE_VM, would end up corrupting the parent's thread descriptor. 1322 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1323 int *parent_tidptr, void *newtls, int *child_tidptr) { 1324 long long res; 1325 if (!fn || !child_stack) 1326 return -EINVAL; 1327 CHECK_EQ(0, (uptr)child_stack % 16); 1328 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1329 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1330 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1331 register void *r8 __asm__("r8") = newtls; 1332 register int *r10 __asm__("r10") = child_tidptr; 1333 __asm__ __volatile__( 1334 /* %rax = syscall(%rax = SYSCALL(clone), 1335 * %rdi = flags, 1336 * %rsi = child_stack, 1337 * %rdx = parent_tidptr, 1338 * %r8 = new_tls, 1339 * %r10 = child_tidptr) 1340 */ 1341 "syscall\n" 1342 1343 /* if (%rax != 0) 1344 * return; 1345 */ 1346 "testq %%rax,%%rax\n" 1347 "jnz 1f\n" 1348 1349 /* In the child. Terminate unwind chain. */ 1350 // XXX: We should also terminate the CFI unwind chain 1351 // here. Unfortunately clang 3.2 doesn't support the 1352 // necessary CFI directives, so we skip that part. 1353 "xorq %%rbp,%%rbp\n" 1354 1355 /* Call "fn(arg)". */ 1356 "popq %%rax\n" 1357 "popq %%rdi\n" 1358 "call *%%rax\n" 1359 1360 /* Call _exit(%rax). */ 1361 "movq %%rax,%%rdi\n" 1362 "movq %2,%%rax\n" 1363 "syscall\n" 1364 1365 /* Return to parent. */ 1366 "1:\n" 1367 : "=a"(res) 1368 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "S"(child_stack), "D"(flags), 1369 "d"(parent_tidptr), "r"(r8), "r"(r10) 1370 : "memory", "r11", "rcx"); 1371 return res; 1372 } 1373 # elif defined(__mips__) 1374 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1375 int *parent_tidptr, void *newtls, int *child_tidptr) { 1376 long long res; 1377 if (!fn || !child_stack) 1378 return -EINVAL; 1379 CHECK_EQ(0, (uptr)child_stack % 16); 1380 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1381 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1382 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1383 register void *a3 __asm__("$7") = newtls; 1384 register int *a4 __asm__("$8") = child_tidptr; 1385 // We don't have proper CFI directives here because it requires alot of code 1386 // for very marginal benefits. 1387 __asm__ __volatile__( 1388 /* $v0 = syscall($v0 = __NR_clone, 1389 * $a0 = flags, 1390 * $a1 = child_stack, 1391 * $a2 = parent_tidptr, 1392 * $a3 = new_tls, 1393 * $a4 = child_tidptr) 1394 */ 1395 ".cprestore 16;\n" 1396 "move $4,%1;\n" 1397 "move $5,%2;\n" 1398 "move $6,%3;\n" 1399 "move $7,%4;\n" 1400 /* Store the fifth argument on stack 1401 * if we are using 32-bit abi. 1402 */ 1403 # if SANITIZER_WORDSIZE == 32 1404 "lw %5,16($29);\n" 1405 # else 1406 "move $8,%5;\n" 1407 # endif 1408 "li $2,%6;\n" 1409 "syscall;\n" 1410 1411 /* if ($v0 != 0) 1412 * return; 1413 */ 1414 "bnez $2,1f;\n" 1415 1416 /* Call "fn(arg)". */ 1417 # if SANITIZER_WORDSIZE == 32 1418 # ifdef __BIG_ENDIAN__ 1419 "lw $25,4($29);\n" 1420 "lw $4,12($29);\n" 1421 # else 1422 "lw $25,0($29);\n" 1423 "lw $4,8($29);\n" 1424 # endif 1425 # else 1426 "ld $25,0($29);\n" 1427 "ld $4,8($29);\n" 1428 # endif 1429 "jal $25;\n" 1430 1431 /* Call _exit($v0). */ 1432 "move $4,$2;\n" 1433 "li $2,%7;\n" 1434 "syscall;\n" 1435 1436 /* Return to parent. */ 1437 "1:\n" 1438 : "=r"(res) 1439 : "r"(flags), "r"(child_stack), "r"(parent_tidptr), "r"(a3), "r"(a4), 1440 "i"(__NR_clone), "i"(__NR_exit) 1441 : "memory", "$29"); 1442 return res; 1443 } 1444 # elif SANITIZER_RISCV64 1445 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1446 int *parent_tidptr, void *newtls, int *child_tidptr) { 1447 if (!fn || !child_stack) 1448 return -EINVAL; 1449 1450 CHECK_EQ(0, (uptr)child_stack % 16); 1451 1452 register int res __asm__("a0"); 1453 register int __flags __asm__("a0") = flags; 1454 register void *__stack __asm__("a1") = child_stack; 1455 register int *__ptid __asm__("a2") = parent_tidptr; 1456 register void *__tls __asm__("a3") = newtls; 1457 register int *__ctid __asm__("a4") = child_tidptr; 1458 register int (*__fn)(void *) __asm__("a5") = fn; 1459 register void *__arg __asm__("a6") = arg; 1460 register int nr_clone __asm__("a7") = __NR_clone; 1461 1462 __asm__ __volatile__( 1463 "ecall\n" 1464 1465 /* if (a0 != 0) 1466 * return a0; 1467 */ 1468 "bnez a0, 1f\n" 1469 1470 // In the child, now. Call "fn(arg)". 1471 "mv a0, a6\n" 1472 "jalr a5\n" 1473 1474 // Call _exit(a0). 1475 "addi a7, zero, %9\n" 1476 "ecall\n" 1477 "1:\n" 1478 1479 : "=r"(res) 1480 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__tls), "r"(__ctid), 1481 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit) 1482 : "memory"); 1483 return res; 1484 } 1485 # elif defined(__aarch64__) 1486 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1487 int *parent_tidptr, void *newtls, int *child_tidptr) { 1488 register long long res __asm__("x0"); 1489 if (!fn || !child_stack) 1490 return -EINVAL; 1491 CHECK_EQ(0, (uptr)child_stack % 16); 1492 child_stack = (char *)child_stack - 2 * sizeof(unsigned long long); 1493 ((unsigned long long *)child_stack)[0] = (uptr)fn; 1494 ((unsigned long long *)child_stack)[1] = (uptr)arg; 1495 1496 register int (*__fn)(void *) __asm__("x0") = fn; 1497 register void *__stack __asm__("x1") = child_stack; 1498 register int __flags __asm__("x2") = flags; 1499 register void *__arg __asm__("x3") = arg; 1500 register int *__ptid __asm__("x4") = parent_tidptr; 1501 register void *__tls __asm__("x5") = newtls; 1502 register int *__ctid __asm__("x6") = child_tidptr; 1503 1504 __asm__ __volatile__( 1505 "mov x0,x2\n" /* flags */ 1506 "mov x2,x4\n" /* ptid */ 1507 "mov x3,x5\n" /* tls */ 1508 "mov x4,x6\n" /* ctid */ 1509 "mov x8,%9\n" /* clone */ 1510 1511 "svc 0x0\n" 1512 1513 /* if (%r0 != 0) 1514 * return %r0; 1515 */ 1516 "cmp x0, #0\n" 1517 "bne 1f\n" 1518 1519 /* In the child, now. Call "fn(arg)". */ 1520 "ldp x1, x0, [sp], #16\n" 1521 "blr x1\n" 1522 1523 /* Call _exit(%r0). */ 1524 "mov x8, %10\n" 1525 "svc 0x0\n" 1526 "1:\n" 1527 1528 : "=r"(res) 1529 : "i"(-EINVAL), "r"(__fn), "r"(__stack), "r"(__flags), "r"(__arg), 1530 "r"(__ptid), "r"(__tls), "r"(__ctid), "i"(__NR_clone), "i"(__NR_exit) 1531 : "x30", "memory"); 1532 return res; 1533 } 1534 # elif SANITIZER_LOONGARCH64 1535 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1536 int *parent_tidptr, void *newtls, int *child_tidptr) { 1537 if (!fn || !child_stack) 1538 return -EINVAL; 1539 1540 CHECK_EQ(0, (uptr)child_stack % 16); 1541 1542 register int res __asm__("$a0"); 1543 register int __flags __asm__("$a0") = flags; 1544 register void *__stack __asm__("$a1") = child_stack; 1545 register int *__ptid __asm__("$a2") = parent_tidptr; 1546 register int *__ctid __asm__("$a3") = child_tidptr; 1547 register void *__tls __asm__("$a4") = newtls; 1548 register int (*__fn)(void *) __asm__("$a5") = fn; 1549 register void *__arg __asm__("$a6") = arg; 1550 register int nr_clone __asm__("$a7") = __NR_clone; 1551 1552 __asm__ __volatile__( 1553 "syscall 0\n" 1554 1555 // if ($a0 != 0) 1556 // return $a0; 1557 "bnez $a0, 1f\n" 1558 1559 // In the child, now. Call "fn(arg)". 1560 "move $a0, $a6\n" 1561 "jirl $ra, $a5, 0\n" 1562 1563 // Call _exit($a0). 1564 "addi.d $a7, $zero, %9\n" 1565 "syscall 0\n" 1566 1567 "1:\n" 1568 1569 : "=r"(res) 1570 : "0"(__flags), "r"(__stack), "r"(__ptid), "r"(__ctid), "r"(__tls), 1571 "r"(__fn), "r"(__arg), "r"(nr_clone), "i"(__NR_exit) 1572 : "memory", "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7", 1573 "$t8"); 1574 return res; 1575 } 1576 # elif defined(__powerpc64__) 1577 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1578 int *parent_tidptr, void *newtls, int *child_tidptr) { 1579 long long res; 1580 // Stack frame structure. 1581 # if SANITIZER_PPC64V1 1582 // Back chain == 0 (SP + 112) 1583 // Frame (112 bytes): 1584 // Parameter save area (SP + 48), 8 doublewords 1585 // TOC save area (SP + 40) 1586 // Link editor doubleword (SP + 32) 1587 // Compiler doubleword (SP + 24) 1588 // LR save area (SP + 16) 1589 // CR save area (SP + 8) 1590 // Back chain (SP + 0) 1591 # define FRAME_SIZE 112 1592 # define FRAME_TOC_SAVE_OFFSET 40 1593 # elif SANITIZER_PPC64V2 1594 // Back chain == 0 (SP + 32) 1595 // Frame (32 bytes): 1596 // TOC save area (SP + 24) 1597 // LR save area (SP + 16) 1598 // CR save area (SP + 8) 1599 // Back chain (SP + 0) 1600 # define FRAME_SIZE 32 1601 # define FRAME_TOC_SAVE_OFFSET 24 1602 # else 1603 # error "Unsupported PPC64 ABI" 1604 # endif 1605 if (!fn || !child_stack) 1606 return -EINVAL; 1607 CHECK_EQ(0, (uptr)child_stack % 16); 1608 1609 register int (*__fn)(void *) __asm__("r3") = fn; 1610 register void *__cstack __asm__("r4") = child_stack; 1611 register int __flags __asm__("r5") = flags; 1612 register void *__arg __asm__("r6") = arg; 1613 register int *__ptidptr __asm__("r7") = parent_tidptr; 1614 register void *__newtls __asm__("r8") = newtls; 1615 register int *__ctidptr __asm__("r9") = child_tidptr; 1616 1617 __asm__ __volatile__( 1618 /* fn and arg are saved across the syscall */ 1619 "mr 28, %5\n\t" 1620 "mr 27, %8\n\t" 1621 1622 /* syscall 1623 r0 == __NR_clone 1624 r3 == flags 1625 r4 == child_stack 1626 r5 == parent_tidptr 1627 r6 == newtls 1628 r7 == child_tidptr */ 1629 "mr 3, %7\n\t" 1630 "mr 5, %9\n\t" 1631 "mr 6, %10\n\t" 1632 "mr 7, %11\n\t" 1633 "li 0, %3\n\t" 1634 "sc\n\t" 1635 1636 /* Test if syscall was successful */ 1637 "cmpdi cr1, 3, 0\n\t" 1638 "crandc cr1*4+eq, cr1*4+eq, cr0*4+so\n\t" 1639 "bne- cr1, 1f\n\t" 1640 1641 /* Set up stack frame */ 1642 "li 29, 0\n\t" 1643 "stdu 29, -8(1)\n\t" 1644 "stdu 1, -%12(1)\n\t" 1645 /* Do the function call */ 1646 "std 2, %13(1)\n\t" 1647 # if SANITIZER_PPC64V1 1648 "ld 0, 0(28)\n\t" 1649 "ld 2, 8(28)\n\t" 1650 "mtctr 0\n\t" 1651 # elif SANITIZER_PPC64V2 1652 "mr 12, 28\n\t" 1653 "mtctr 12\n\t" 1654 # else 1655 # error "Unsupported PPC64 ABI" 1656 # endif 1657 "mr 3, 27\n\t" 1658 "bctrl\n\t" 1659 "ld 2, %13(1)\n\t" 1660 1661 /* Call _exit(r3) */ 1662 "li 0, %4\n\t" 1663 "sc\n\t" 1664 1665 /* Return to parent */ 1666 "1:\n\t" 1667 "mr %0, 3\n\t" 1668 : "=r"(res) 1669 : "0"(-1), "i"(EINVAL), "i"(__NR_clone), "i"(__NR_exit), "r"(__fn), 1670 "r"(__cstack), "r"(__flags), "r"(__arg), "r"(__ptidptr), "r"(__newtls), 1671 "r"(__ctidptr), "i"(FRAME_SIZE), "i"(FRAME_TOC_SAVE_OFFSET) 1672 : "cr0", "cr1", "memory", "ctr", "r0", "r27", "r28", "r29"); 1673 return res; 1674 } 1675 # elif defined(__i386__) 1676 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1677 int *parent_tidptr, void *newtls, int *child_tidptr) { 1678 int res; 1679 if (!fn || !child_stack) 1680 return -EINVAL; 1681 CHECK_EQ(0, (uptr)child_stack % 16); 1682 child_stack = (char *)child_stack - 7 * sizeof(unsigned int); 1683 ((unsigned int *)child_stack)[0] = (uptr)flags; 1684 ((unsigned int *)child_stack)[1] = (uptr)0; 1685 ((unsigned int *)child_stack)[2] = (uptr)fn; 1686 ((unsigned int *)child_stack)[3] = (uptr)arg; 1687 __asm__ __volatile__( 1688 /* %eax = syscall(%eax = SYSCALL(clone), 1689 * %ebx = flags, 1690 * %ecx = child_stack, 1691 * %edx = parent_tidptr, 1692 * %esi = new_tls, 1693 * %edi = child_tidptr) 1694 */ 1695 1696 /* Obtain flags */ 1697 "movl (%%ecx), %%ebx\n" 1698 /* Do the system call */ 1699 "pushl %%ebx\n" 1700 "pushl %%esi\n" 1701 "pushl %%edi\n" 1702 /* Remember the flag value. */ 1703 "movl %%ebx, (%%ecx)\n" 1704 "int $0x80\n" 1705 "popl %%edi\n" 1706 "popl %%esi\n" 1707 "popl %%ebx\n" 1708 1709 /* if (%eax != 0) 1710 * return; 1711 */ 1712 1713 "test %%eax,%%eax\n" 1714 "jnz 1f\n" 1715 1716 /* terminate the stack frame */ 1717 "xorl %%ebp,%%ebp\n" 1718 /* Call FN. */ 1719 "call *%%ebx\n" 1720 # ifdef PIC 1721 "call here\n" 1722 "here:\n" 1723 "popl %%ebx\n" 1724 "addl $_GLOBAL_OFFSET_TABLE_+[.-here], %%ebx\n" 1725 # endif 1726 /* Call exit */ 1727 "movl %%eax, %%ebx\n" 1728 "movl %2, %%eax\n" 1729 "int $0x80\n" 1730 "1:\n" 1731 : "=a"(res) 1732 : "a"(SYSCALL(clone)), "i"(SYSCALL(exit)), "c"(child_stack), 1733 "d"(parent_tidptr), "S"(newtls), "D"(child_tidptr) 1734 : "memory"); 1735 return res; 1736 } 1737 # elif defined(__arm__) 1738 uptr internal_clone(int (*fn)(void *), void *child_stack, int flags, void *arg, 1739 int *parent_tidptr, void *newtls, int *child_tidptr) { 1740 unsigned int res; 1741 if (!fn || !child_stack) 1742 return -EINVAL; 1743 child_stack = (char *)child_stack - 2 * sizeof(unsigned int); 1744 ((unsigned int *)child_stack)[0] = (uptr)fn; 1745 ((unsigned int *)child_stack)[1] = (uptr)arg; 1746 register int r0 __asm__("r0") = flags; 1747 register void *r1 __asm__("r1") = child_stack; 1748 register int *r2 __asm__("r2") = parent_tidptr; 1749 register void *r3 __asm__("r3") = newtls; 1750 register int *r4 __asm__("r4") = child_tidptr; 1751 register int r7 __asm__("r7") = __NR_clone; 1752 1753 # if __ARM_ARCH > 4 || defined(__ARM_ARCH_4T__) 1754 # define ARCH_HAS_BX 1755 # endif 1756 # if __ARM_ARCH > 4 1757 # define ARCH_HAS_BLX 1758 # endif 1759 1760 # ifdef ARCH_HAS_BX 1761 # ifdef ARCH_HAS_BLX 1762 # define BLX(R) "blx " #R "\n" 1763 # else 1764 # define BLX(R) "mov lr, pc; bx " #R "\n" 1765 # endif 1766 # else 1767 # define BLX(R) "mov lr, pc; mov pc," #R "\n" 1768 # endif 1769 1770 __asm__ __volatile__( 1771 /* %r0 = syscall(%r7 = SYSCALL(clone), 1772 * %r0 = flags, 1773 * %r1 = child_stack, 1774 * %r2 = parent_tidptr, 1775 * %r3 = new_tls, 1776 * %r4 = child_tidptr) 1777 */ 1778 1779 /* Do the system call */ 1780 "swi 0x0\n" 1781 1782 /* if (%r0 != 0) 1783 * return %r0; 1784 */ 1785 "cmp r0, #0\n" 1786 "bne 1f\n" 1787 1788 /* In the child, now. Call "fn(arg)". */ 1789 "ldr r0, [sp, #4]\n" 1790 "ldr ip, [sp], #8\n" BLX(ip) 1791 /* Call _exit(%r0). */ 1792 "mov r7, %7\n" 1793 "swi 0x0\n" 1794 "1:\n" 1795 "mov %0, r0\n" 1796 : "=r"(res) 1797 : "r"(r0), "r"(r1), "r"(r2), "r"(r3), "r"(r4), "r"(r7), "i"(__NR_exit) 1798 : "memory"); 1799 return res; 1800 } 1801 # endif 1802 # endif // SANITIZER_LINUX 1803 1804 # if SANITIZER_LINUX 1805 int internal_uname(struct utsname *buf) { 1806 return internal_syscall(SYSCALL(uname), buf); 1807 } 1808 # endif 1809 1810 # if SANITIZER_ANDROID 1811 # if __ANDROID_API__ < 21 1812 extern "C" __attribute__((weak)) int dl_iterate_phdr( 1813 int (*)(struct dl_phdr_info *, size_t, void *), void *); 1814 # endif 1815 1816 static int dl_iterate_phdr_test_cb(struct dl_phdr_info *info, size_t size, 1817 void *data) { 1818 // Any name starting with "lib" indicates a bug in L where library base names 1819 // are returned instead of paths. 1820 if (info->dlpi_name && info->dlpi_name[0] == 'l' && 1821 info->dlpi_name[1] == 'i' && info->dlpi_name[2] == 'b') { 1822 *(bool *)data = true; 1823 return 1; 1824 } 1825 return 0; 1826 } 1827 1828 static atomic_uint32_t android_api_level; 1829 1830 static AndroidApiLevel AndroidDetectApiLevelStatic() { 1831 # if __ANDROID_API__ <= 19 1832 return ANDROID_KITKAT; 1833 # elif __ANDROID_API__ <= 22 1834 return ANDROID_LOLLIPOP_MR1; 1835 # else 1836 return ANDROID_POST_LOLLIPOP; 1837 # endif 1838 } 1839 1840 static AndroidApiLevel AndroidDetectApiLevel() { 1841 if (!&dl_iterate_phdr) 1842 return ANDROID_KITKAT; // K or lower 1843 bool base_name_seen = false; 1844 dl_iterate_phdr(dl_iterate_phdr_test_cb, &base_name_seen); 1845 if (base_name_seen) 1846 return ANDROID_LOLLIPOP_MR1; // L MR1 1847 return ANDROID_POST_LOLLIPOP; // post-L 1848 // Plain L (API level 21) is completely broken wrt ASan and not very 1849 // interesting to detect. 1850 } 1851 1852 extern "C" __attribute__((weak)) void *_DYNAMIC; 1853 1854 AndroidApiLevel AndroidGetApiLevel() { 1855 AndroidApiLevel level = 1856 (AndroidApiLevel)atomic_load(&android_api_level, memory_order_relaxed); 1857 if (level) 1858 return level; 1859 level = &_DYNAMIC == nullptr ? AndroidDetectApiLevelStatic() 1860 : AndroidDetectApiLevel(); 1861 atomic_store(&android_api_level, level, memory_order_relaxed); 1862 return level; 1863 } 1864 1865 # endif 1866 1867 static HandleSignalMode GetHandleSignalModeImpl(int signum) { 1868 switch (signum) { 1869 case SIGABRT: 1870 return common_flags()->handle_abort; 1871 case SIGILL: 1872 return common_flags()->handle_sigill; 1873 case SIGTRAP: 1874 return common_flags()->handle_sigtrap; 1875 case SIGFPE: 1876 return common_flags()->handle_sigfpe; 1877 case SIGSEGV: 1878 return common_flags()->handle_segv; 1879 case SIGBUS: 1880 return common_flags()->handle_sigbus; 1881 } 1882 return kHandleSignalNo; 1883 } 1884 1885 HandleSignalMode GetHandleSignalMode(int signum) { 1886 HandleSignalMode result = GetHandleSignalModeImpl(signum); 1887 if (result == kHandleSignalYes && !common_flags()->allow_user_segv_handler) 1888 return kHandleSignalExclusive; 1889 return result; 1890 } 1891 1892 # if !SANITIZER_GO 1893 void *internal_start_thread(void *(*func)(void *arg), void *arg) { 1894 if (&internal_pthread_create == 0) 1895 return nullptr; 1896 // Start the thread with signals blocked, otherwise it can steal user signals. 1897 ScopedBlockSignals block(nullptr); 1898 void *th; 1899 internal_pthread_create(&th, nullptr, func, arg); 1900 return th; 1901 } 1902 1903 void internal_join_thread(void *th) { 1904 if (&internal_pthread_join) 1905 internal_pthread_join(th, nullptr); 1906 } 1907 # else 1908 void *internal_start_thread(void *(*func)(void *), void *arg) { return 0; } 1909 1910 void internal_join_thread(void *th) {} 1911 # endif 1912 1913 # if SANITIZER_LINUX && defined(__aarch64__) 1914 // Android headers in the older NDK releases miss this definition. 1915 struct __sanitizer_esr_context { 1916 struct _aarch64_ctx head; 1917 uint64_t esr; 1918 }; 1919 1920 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { 1921 static const u32 kEsrMagic = 0x45535201; 1922 u8 *aux = reinterpret_cast<u8 *>(ucontext->uc_mcontext.__reserved); 1923 while (true) { 1924 _aarch64_ctx *ctx = (_aarch64_ctx *)aux; 1925 if (ctx->size == 0) 1926 break; 1927 if (ctx->magic == kEsrMagic) { 1928 *esr = ((__sanitizer_esr_context *)ctx)->esr; 1929 return true; 1930 } 1931 aux += ctx->size; 1932 } 1933 return false; 1934 } 1935 # elif SANITIZER_FREEBSD && defined(__aarch64__) 1936 // FreeBSD doesn't provide ESR in the ucontext. 1937 static bool Aarch64GetESR(ucontext_t *ucontext, u64 *esr) { return false; } 1938 # endif 1939 1940 using Context = ucontext_t; 1941 1942 SignalContext::WriteFlag SignalContext::GetWriteFlag() const { 1943 Context *ucontext = (Context *)context; 1944 # if defined(__x86_64__) || defined(__i386__) 1945 static const uptr PF_WRITE = 1U << 1; 1946 # if SANITIZER_FREEBSD 1947 uptr err = ucontext->uc_mcontext.mc_err; 1948 # elif SANITIZER_NETBSD 1949 uptr err = ucontext->uc_mcontext.__gregs[_REG_ERR]; 1950 # elif SANITIZER_SOLARIS && defined(__i386__) 1951 const int Err = 13; 1952 uptr err = ucontext->uc_mcontext.gregs[Err]; 1953 # else 1954 uptr err = ucontext->uc_mcontext.gregs[REG_ERR]; 1955 # endif // SANITIZER_FREEBSD 1956 return err & PF_WRITE ? Write : Read; 1957 # elif defined(__mips__) 1958 uint32_t *exception_source; 1959 uint32_t faulty_instruction; 1960 uint32_t op_code; 1961 1962 exception_source = (uint32_t *)ucontext->uc_mcontext.pc; 1963 faulty_instruction = (uint32_t)(*exception_source); 1964 1965 op_code = (faulty_instruction >> 26) & 0x3f; 1966 1967 // FIXME: Add support for FPU, microMIPS, DSP, MSA memory instructions. 1968 switch (op_code) { 1969 case 0x28: // sb 1970 case 0x29: // sh 1971 case 0x2b: // sw 1972 case 0x3f: // sd 1973 # if __mips_isa_rev < 6 1974 case 0x2c: // sdl 1975 case 0x2d: // sdr 1976 case 0x2a: // swl 1977 case 0x2e: // swr 1978 # endif 1979 return SignalContext::Write; 1980 1981 case 0x20: // lb 1982 case 0x24: // lbu 1983 case 0x21: // lh 1984 case 0x25: // lhu 1985 case 0x23: // lw 1986 case 0x27: // lwu 1987 case 0x37: // ld 1988 # if __mips_isa_rev < 6 1989 case 0x1a: // ldl 1990 case 0x1b: // ldr 1991 case 0x22: // lwl 1992 case 0x26: // lwr 1993 # endif 1994 return SignalContext::Read; 1995 # if __mips_isa_rev == 6 1996 case 0x3b: // pcrel 1997 op_code = (faulty_instruction >> 19) & 0x3; 1998 switch (op_code) { 1999 case 0x1: // lwpc 2000 case 0x2: // lwupc 2001 return SignalContext::Read; 2002 } 2003 # endif 2004 } 2005 return SignalContext::Unknown; 2006 # elif defined(__arm__) 2007 static const uptr FSR_WRITE = 1U << 11; 2008 uptr fsr = ucontext->uc_mcontext.error_code; 2009 return fsr & FSR_WRITE ? Write : Read; 2010 # elif defined(__aarch64__) 2011 static const u64 ESR_ELx_WNR = 1U << 6; 2012 u64 esr; 2013 if (!Aarch64GetESR(ucontext, &esr)) 2014 return Unknown; 2015 return esr & ESR_ELx_WNR ? Write : Read; 2016 # elif defined(__loongarch__) 2017 // In the musl environment, the Linux kernel uapi sigcontext.h is not 2018 // included in signal.h. To avoid missing the SC_ADDRERR_{RD,WR} macros, 2019 // copy them here. The LoongArch Linux kernel uapi is already stable, 2020 // so there's no need to worry about the value changing. 2021 # ifndef SC_ADDRERR_RD 2022 // Address error was due to memory load 2023 # define SC_ADDRERR_RD (1 << 30) 2024 # endif 2025 # ifndef SC_ADDRERR_WR 2026 // Address error was due to memory store 2027 # define SC_ADDRERR_WR (1 << 31) 2028 # endif 2029 u32 flags = ucontext->uc_mcontext.__flags; 2030 if (flags & SC_ADDRERR_RD) 2031 return SignalContext::Read; 2032 if (flags & SC_ADDRERR_WR) 2033 return SignalContext::Write; 2034 return SignalContext::Unknown; 2035 # elif defined(__sparc__) 2036 // Decode the instruction to determine the access type. 2037 // From OpenSolaris $SRC/uts/sun4/os/trap.c (get_accesstype). 2038 # if SANITIZER_SOLARIS 2039 uptr pc = ucontext->uc_mcontext.gregs[REG_PC]; 2040 # else 2041 // Historical BSDism here. 2042 struct sigcontext *scontext = (struct sigcontext *)context; 2043 # if defined(__arch64__) 2044 uptr pc = scontext->sigc_regs.tpc; 2045 # else 2046 uptr pc = scontext->si_regs.pc; 2047 # endif 2048 # endif 2049 u32 instr = *(u32 *)pc; 2050 return (instr >> 21) & 1 ? Write : Read; 2051 # elif defined(__riscv) 2052 # if SANITIZER_FREEBSD 2053 unsigned long pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc; 2054 # else 2055 unsigned long pc = ucontext->uc_mcontext.__gregs[REG_PC]; 2056 # endif 2057 unsigned faulty_instruction = *(uint16_t *)pc; 2058 2059 # if defined(__riscv_compressed) 2060 if ((faulty_instruction & 0x3) != 0x3) { // it's a compressed instruction 2061 // set op_bits to the instruction bits [1, 0, 15, 14, 13] 2062 unsigned op_bits = 2063 ((faulty_instruction & 0x3) << 3) | (faulty_instruction >> 13); 2064 unsigned rd = faulty_instruction & 0xF80; // bits 7-11, inclusive 2065 switch (op_bits) { 2066 case 0b10'010: // c.lwsp (rd != x0) 2067 # if __riscv_xlen == 64 2068 case 0b10'011: // c.ldsp (rd != x0) 2069 # endif 2070 return rd ? SignalContext::Read : SignalContext::Unknown; 2071 case 0b00'010: // c.lw 2072 # if __riscv_flen >= 32 && __riscv_xlen == 32 2073 case 0b10'011: // c.flwsp 2074 # endif 2075 # if __riscv_flen >= 32 || __riscv_xlen == 64 2076 case 0b00'011: // c.flw / c.ld 2077 # endif 2078 # if __riscv_flen == 64 2079 case 0b00'001: // c.fld 2080 case 0b10'001: // c.fldsp 2081 # endif 2082 return SignalContext::Read; 2083 case 0b00'110: // c.sw 2084 case 0b10'110: // c.swsp 2085 # if __riscv_flen >= 32 || __riscv_xlen == 64 2086 case 0b00'111: // c.fsw / c.sd 2087 case 0b10'111: // c.fswsp / c.sdsp 2088 # endif 2089 # if __riscv_flen == 64 2090 case 0b00'101: // c.fsd 2091 case 0b10'101: // c.fsdsp 2092 # endif 2093 return SignalContext::Write; 2094 default: 2095 return SignalContext::Unknown; 2096 } 2097 } 2098 # endif 2099 2100 unsigned opcode = faulty_instruction & 0x7f; // lower 7 bits 2101 unsigned funct3 = (faulty_instruction >> 12) & 0x7; // bits 12-14, inclusive 2102 switch (opcode) { 2103 case 0b0000011: // loads 2104 switch (funct3) { 2105 case 0b000: // lb 2106 case 0b001: // lh 2107 case 0b010: // lw 2108 # if __riscv_xlen == 64 2109 case 0b011: // ld 2110 # endif 2111 case 0b100: // lbu 2112 case 0b101: // lhu 2113 return SignalContext::Read; 2114 default: 2115 return SignalContext::Unknown; 2116 } 2117 case 0b0100011: // stores 2118 switch (funct3) { 2119 case 0b000: // sb 2120 case 0b001: // sh 2121 case 0b010: // sw 2122 # if __riscv_xlen == 64 2123 case 0b011: // sd 2124 # endif 2125 return SignalContext::Write; 2126 default: 2127 return SignalContext::Unknown; 2128 } 2129 # if __riscv_flen >= 32 2130 case 0b0000111: // floating-point loads 2131 switch (funct3) { 2132 case 0b010: // flw 2133 # if __riscv_flen == 64 2134 case 0b011: // fld 2135 # endif 2136 return SignalContext::Read; 2137 default: 2138 return SignalContext::Unknown; 2139 } 2140 case 0b0100111: // floating-point stores 2141 switch (funct3) { 2142 case 0b010: // fsw 2143 # if __riscv_flen == 64 2144 case 0b011: // fsd 2145 # endif 2146 return SignalContext::Write; 2147 default: 2148 return SignalContext::Unknown; 2149 } 2150 # endif 2151 default: 2152 return SignalContext::Unknown; 2153 } 2154 # else 2155 (void)ucontext; 2156 return Unknown; // FIXME: Implement. 2157 # endif 2158 } 2159 2160 bool SignalContext::IsTrueFaultingAddress() const { 2161 auto si = static_cast<const siginfo_t *>(siginfo); 2162 // SIGSEGV signals without a true fault address have si_code set to 128. 2163 return si->si_signo == SIGSEGV && si->si_code != 128; 2164 } 2165 2166 UNUSED 2167 static const char *RegNumToRegName(int reg) { 2168 switch (reg) { 2169 # if SANITIZER_LINUX 2170 # if defined(__x86_64__) 2171 case REG_RAX: 2172 return "rax"; 2173 case REG_RBX: 2174 return "rbx"; 2175 case REG_RCX: 2176 return "rcx"; 2177 case REG_RDX: 2178 return "rdx"; 2179 case REG_RDI: 2180 return "rdi"; 2181 case REG_RSI: 2182 return "rsi"; 2183 case REG_RBP: 2184 return "rbp"; 2185 case REG_RSP: 2186 return "rsp"; 2187 case REG_R8: 2188 return "r8"; 2189 case REG_R9: 2190 return "r9"; 2191 case REG_R10: 2192 return "r10"; 2193 case REG_R11: 2194 return "r11"; 2195 case REG_R12: 2196 return "r12"; 2197 case REG_R13: 2198 return "r13"; 2199 case REG_R14: 2200 return "r14"; 2201 case REG_R15: 2202 return "r15"; 2203 # elif defined(__i386__) 2204 case REG_EAX: 2205 return "eax"; 2206 case REG_EBX: 2207 return "ebx"; 2208 case REG_ECX: 2209 return "ecx"; 2210 case REG_EDX: 2211 return "edx"; 2212 case REG_EDI: 2213 return "edi"; 2214 case REG_ESI: 2215 return "esi"; 2216 case REG_EBP: 2217 return "ebp"; 2218 case REG_ESP: 2219 return "esp"; 2220 # endif 2221 # endif 2222 default: 2223 return NULL; 2224 } 2225 return NULL; 2226 } 2227 2228 # if SANITIZER_LINUX 2229 UNUSED 2230 static void DumpSingleReg(ucontext_t *ctx, int RegNum) { 2231 const char *RegName = RegNumToRegName(RegNum); 2232 # if defined(__x86_64__) 2233 Printf("%s%s = 0x%016llx ", internal_strlen(RegName) == 2 ? " " : "", 2234 RegName, ctx->uc_mcontext.gregs[RegNum]); 2235 # elif defined(__i386__) 2236 Printf("%s = 0x%08x ", RegName, ctx->uc_mcontext.gregs[RegNum]); 2237 # else 2238 (void)RegName; 2239 # endif 2240 } 2241 # endif 2242 2243 void SignalContext::DumpAllRegisters(void *context) { 2244 ucontext_t *ucontext = (ucontext_t *)context; 2245 # if SANITIZER_LINUX 2246 # if defined(__x86_64__) 2247 Report("Register values:\n"); 2248 DumpSingleReg(ucontext, REG_RAX); 2249 DumpSingleReg(ucontext, REG_RBX); 2250 DumpSingleReg(ucontext, REG_RCX); 2251 DumpSingleReg(ucontext, REG_RDX); 2252 Printf("\n"); 2253 DumpSingleReg(ucontext, REG_RDI); 2254 DumpSingleReg(ucontext, REG_RSI); 2255 DumpSingleReg(ucontext, REG_RBP); 2256 DumpSingleReg(ucontext, REG_RSP); 2257 Printf("\n"); 2258 DumpSingleReg(ucontext, REG_R8); 2259 DumpSingleReg(ucontext, REG_R9); 2260 DumpSingleReg(ucontext, REG_R10); 2261 DumpSingleReg(ucontext, REG_R11); 2262 Printf("\n"); 2263 DumpSingleReg(ucontext, REG_R12); 2264 DumpSingleReg(ucontext, REG_R13); 2265 DumpSingleReg(ucontext, REG_R14); 2266 DumpSingleReg(ucontext, REG_R15); 2267 Printf("\n"); 2268 # elif defined(__i386__) 2269 // Duplication of this report print is caused by partial support 2270 // of register values dumping. In case of unsupported yet architecture let's 2271 // avoid printing 'Register values:' without actual values in the following 2272 // output. 2273 Report("Register values:\n"); 2274 DumpSingleReg(ucontext, REG_EAX); 2275 DumpSingleReg(ucontext, REG_EBX); 2276 DumpSingleReg(ucontext, REG_ECX); 2277 DumpSingleReg(ucontext, REG_EDX); 2278 Printf("\n"); 2279 DumpSingleReg(ucontext, REG_EDI); 2280 DumpSingleReg(ucontext, REG_ESI); 2281 DumpSingleReg(ucontext, REG_EBP); 2282 DumpSingleReg(ucontext, REG_ESP); 2283 Printf("\n"); 2284 # else 2285 (void)ucontext; 2286 # endif 2287 # elif SANITIZER_FREEBSD 2288 # if defined(__x86_64__) 2289 Report("Register values:\n"); 2290 Printf("rax = 0x%016lx ", ucontext->uc_mcontext.mc_rax); 2291 Printf("rbx = 0x%016lx ", ucontext->uc_mcontext.mc_rbx); 2292 Printf("rcx = 0x%016lx ", ucontext->uc_mcontext.mc_rcx); 2293 Printf("rdx = 0x%016lx ", ucontext->uc_mcontext.mc_rdx); 2294 Printf("\n"); 2295 Printf("rdi = 0x%016lx ", ucontext->uc_mcontext.mc_rdi); 2296 Printf("rsi = 0x%016lx ", ucontext->uc_mcontext.mc_rsi); 2297 Printf("rbp = 0x%016lx ", ucontext->uc_mcontext.mc_rbp); 2298 Printf("rsp = 0x%016lx ", ucontext->uc_mcontext.mc_rsp); 2299 Printf("\n"); 2300 Printf(" r8 = 0x%016lx ", ucontext->uc_mcontext.mc_r8); 2301 Printf(" r9 = 0x%016lx ", ucontext->uc_mcontext.mc_r9); 2302 Printf("r10 = 0x%016lx ", ucontext->uc_mcontext.mc_r10); 2303 Printf("r11 = 0x%016lx ", ucontext->uc_mcontext.mc_r11); 2304 Printf("\n"); 2305 Printf("r12 = 0x%016lx ", ucontext->uc_mcontext.mc_r12); 2306 Printf("r13 = 0x%016lx ", ucontext->uc_mcontext.mc_r13); 2307 Printf("r14 = 0x%016lx ", ucontext->uc_mcontext.mc_r14); 2308 Printf("r15 = 0x%016lx ", ucontext->uc_mcontext.mc_r15); 2309 Printf("\n"); 2310 # elif defined(__i386__) 2311 Report("Register values:\n"); 2312 Printf("eax = 0x%08x ", ucontext->uc_mcontext.mc_eax); 2313 Printf("ebx = 0x%08x ", ucontext->uc_mcontext.mc_ebx); 2314 Printf("ecx = 0x%08x ", ucontext->uc_mcontext.mc_ecx); 2315 Printf("edx = 0x%08x ", ucontext->uc_mcontext.mc_edx); 2316 Printf("\n"); 2317 Printf("edi = 0x%08x ", ucontext->uc_mcontext.mc_edi); 2318 Printf("esi = 0x%08x ", ucontext->uc_mcontext.mc_esi); 2319 Printf("ebp = 0x%08x ", ucontext->uc_mcontext.mc_ebp); 2320 Printf("esp = 0x%08x ", ucontext->uc_mcontext.mc_esp); 2321 Printf("\n"); 2322 # else 2323 (void)ucontext; 2324 # endif 2325 # endif 2326 // FIXME: Implement this for other OSes and architectures. 2327 } 2328 2329 static void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp) { 2330 # if SANITIZER_NETBSD 2331 // This covers all NetBSD architectures 2332 ucontext_t *ucontext = (ucontext_t *)context; 2333 *pc = _UC_MACHINE_PC(ucontext); 2334 *bp = _UC_MACHINE_FP(ucontext); 2335 *sp = _UC_MACHINE_SP(ucontext); 2336 # elif defined(__arm__) 2337 ucontext_t *ucontext = (ucontext_t *)context; 2338 *pc = ucontext->uc_mcontext.arm_pc; 2339 *bp = ucontext->uc_mcontext.arm_fp; 2340 *sp = ucontext->uc_mcontext.arm_sp; 2341 # elif defined(__aarch64__) 2342 # if SANITIZER_FREEBSD 2343 ucontext_t *ucontext = (ucontext_t *)context; 2344 *pc = ucontext->uc_mcontext.mc_gpregs.gp_elr; 2345 *bp = ucontext->uc_mcontext.mc_gpregs.gp_x[29]; 2346 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp; 2347 # else 2348 ucontext_t *ucontext = (ucontext_t *)context; 2349 *pc = ucontext->uc_mcontext.pc; 2350 *bp = ucontext->uc_mcontext.regs[29]; 2351 *sp = ucontext->uc_mcontext.sp; 2352 # endif 2353 # elif defined(__hppa__) 2354 ucontext_t *ucontext = (ucontext_t *)context; 2355 *pc = ucontext->uc_mcontext.sc_iaoq[0]; 2356 /* GCC uses %r3 whenever a frame pointer is needed. */ 2357 *bp = ucontext->uc_mcontext.sc_gr[3]; 2358 *sp = ucontext->uc_mcontext.sc_gr[30]; 2359 # elif defined(__x86_64__) 2360 # if SANITIZER_FREEBSD 2361 ucontext_t *ucontext = (ucontext_t *)context; 2362 *pc = ucontext->uc_mcontext.mc_rip; 2363 *bp = ucontext->uc_mcontext.mc_rbp; 2364 *sp = ucontext->uc_mcontext.mc_rsp; 2365 # else 2366 ucontext_t *ucontext = (ucontext_t *)context; 2367 *pc = ucontext->uc_mcontext.gregs[REG_RIP]; 2368 *bp = ucontext->uc_mcontext.gregs[REG_RBP]; 2369 *sp = ucontext->uc_mcontext.gregs[REG_RSP]; 2370 # endif 2371 # elif defined(__i386__) 2372 # if SANITIZER_FREEBSD 2373 ucontext_t *ucontext = (ucontext_t *)context; 2374 *pc = ucontext->uc_mcontext.mc_eip; 2375 *bp = ucontext->uc_mcontext.mc_ebp; 2376 *sp = ucontext->uc_mcontext.mc_esp; 2377 # else 2378 ucontext_t *ucontext = (ucontext_t *)context; 2379 # if SANITIZER_SOLARIS 2380 /* Use the numeric values: the symbolic ones are undefined by llvm 2381 include/llvm/Support/Solaris.h. */ 2382 # ifndef REG_EIP 2383 # define REG_EIP 14 // REG_PC 2384 # endif 2385 # ifndef REG_EBP 2386 # define REG_EBP 6 // REG_FP 2387 # endif 2388 # ifndef REG_UESP 2389 # define REG_UESP 17 // REG_SP 2390 # endif 2391 # endif 2392 *pc = ucontext->uc_mcontext.gregs[REG_EIP]; 2393 *bp = ucontext->uc_mcontext.gregs[REG_EBP]; 2394 *sp = ucontext->uc_mcontext.gregs[REG_UESP]; 2395 # endif 2396 # elif defined(__powerpc__) || defined(__powerpc64__) 2397 # if SANITIZER_FREEBSD 2398 ucontext_t *ucontext = (ucontext_t *)context; 2399 *pc = ucontext->uc_mcontext.mc_srr0; 2400 *sp = ucontext->uc_mcontext.mc_frame[1]; 2401 *bp = ucontext->uc_mcontext.mc_frame[31]; 2402 # else 2403 ucontext_t *ucontext = (ucontext_t *)context; 2404 *pc = ucontext->uc_mcontext.regs->nip; 2405 *sp = ucontext->uc_mcontext.regs->gpr[PT_R1]; 2406 // The powerpc{,64}-linux ABIs do not specify r31 as the frame 2407 // pointer, but GCC always uses r31 when we need a frame pointer. 2408 *bp = ucontext->uc_mcontext.regs->gpr[PT_R31]; 2409 # endif 2410 # elif defined(__sparc__) 2411 # if defined(__arch64__) || defined(__sparcv9) 2412 # define STACK_BIAS 2047 2413 # else 2414 # define STACK_BIAS 0 2415 # endif 2416 # if SANITIZER_SOLARIS 2417 ucontext_t *ucontext = (ucontext_t *)context; 2418 *pc = ucontext->uc_mcontext.gregs[REG_PC]; 2419 *sp = ucontext->uc_mcontext.gregs[REG_O6] + STACK_BIAS; 2420 # else 2421 // Historical BSDism here. 2422 struct sigcontext *scontext = (struct sigcontext *)context; 2423 # if defined(__arch64__) 2424 *pc = scontext->sigc_regs.tpc; 2425 *sp = scontext->sigc_regs.u_regs[14] + STACK_BIAS; 2426 # else 2427 *pc = scontext->si_regs.pc; 2428 *sp = scontext->si_regs.u_regs[14]; 2429 # endif 2430 # endif 2431 *bp = (uptr)((uhwptr *)*sp)[14] + STACK_BIAS; 2432 # elif defined(__mips__) 2433 ucontext_t *ucontext = (ucontext_t *)context; 2434 *pc = ucontext->uc_mcontext.pc; 2435 *bp = ucontext->uc_mcontext.gregs[30]; 2436 *sp = ucontext->uc_mcontext.gregs[29]; 2437 # elif defined(__s390__) 2438 ucontext_t *ucontext = (ucontext_t *)context; 2439 # if defined(__s390x__) 2440 *pc = ucontext->uc_mcontext.psw.addr; 2441 # else 2442 *pc = ucontext->uc_mcontext.psw.addr & 0x7fffffff; 2443 # endif 2444 *bp = ucontext->uc_mcontext.gregs[11]; 2445 *sp = ucontext->uc_mcontext.gregs[15]; 2446 # elif defined(__riscv) 2447 ucontext_t *ucontext = (ucontext_t *)context; 2448 # if SANITIZER_FREEBSD 2449 *pc = ucontext->uc_mcontext.mc_gpregs.gp_sepc; 2450 *bp = ucontext->uc_mcontext.mc_gpregs.gp_s[0]; 2451 *sp = ucontext->uc_mcontext.mc_gpregs.gp_sp; 2452 # else 2453 *pc = ucontext->uc_mcontext.__gregs[REG_PC]; 2454 *bp = ucontext->uc_mcontext.__gregs[REG_S0]; 2455 *sp = ucontext->uc_mcontext.__gregs[REG_SP]; 2456 # endif 2457 # elif defined(__hexagon__) 2458 ucontext_t *ucontext = (ucontext_t *)context; 2459 *pc = ucontext->uc_mcontext.pc; 2460 *bp = ucontext->uc_mcontext.r30; 2461 *sp = ucontext->uc_mcontext.r29; 2462 # elif defined(__loongarch__) 2463 ucontext_t *ucontext = (ucontext_t *)context; 2464 *pc = ucontext->uc_mcontext.__pc; 2465 *bp = ucontext->uc_mcontext.__gregs[22]; 2466 *sp = ucontext->uc_mcontext.__gregs[3]; 2467 # else 2468 # error "Unsupported arch" 2469 # endif 2470 } 2471 2472 void SignalContext::InitPcSpBp() { GetPcSpBp(context, &pc, &sp, &bp); } 2473 2474 void InitializePlatformEarly() { 2475 // Do nothing. 2476 } 2477 2478 void CheckASLR() { 2479 # if SANITIZER_NETBSD 2480 int mib[3]; 2481 int paxflags; 2482 uptr len = sizeof(paxflags); 2483 2484 mib[0] = CTL_PROC; 2485 mib[1] = internal_getpid(); 2486 mib[2] = PROC_PID_PAXFLAGS; 2487 2488 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) { 2489 Printf("sysctl failed\n"); 2490 Die(); 2491 } 2492 2493 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_ASLR)) { 2494 Printf( 2495 "This sanitizer is not compatible with enabled ASLR.\n" 2496 "To disable ASLR, please run \"paxctl +a %s\" and try again.\n", 2497 GetArgv()[0]); 2498 Die(); 2499 } 2500 # elif SANITIZER_FREEBSD 2501 int aslr_status; 2502 int r = internal_procctl(P_PID, 0, PROC_ASLR_STATUS, &aslr_status); 2503 if (UNLIKELY(r == -1)) { 2504 // We're making things less 'dramatic' here since 2505 // the cmd is not necessarily guaranteed to be here 2506 // just yet regarding FreeBSD release 2507 return; 2508 } 2509 if ((aslr_status & PROC_ASLR_ACTIVE) != 0) { 2510 VReport(1, 2511 "This sanitizer is not compatible with enabled ASLR " 2512 "and binaries compiled with PIE\n" 2513 "ASLR will be disabled and the program re-executed.\n"); 2514 int aslr_ctl = PROC_ASLR_FORCE_DISABLE; 2515 CHECK_NE(internal_procctl(P_PID, 0, PROC_ASLR_CTL, &aslr_ctl), -1); 2516 ReExec(); 2517 } 2518 # elif SANITIZER_PPC64V2 2519 // Disable ASLR for Linux PPC64LE. 2520 int old_personality = personality(0xffffffff); 2521 if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) { 2522 VReport(1, 2523 "WARNING: Program is being run with address space layout " 2524 "randomization (ASLR) enabled which prevents the thread and " 2525 "memory sanitizers from working on powerpc64le.\n" 2526 "ASLR will be disabled and the program re-executed.\n"); 2527 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1); 2528 ReExec(); 2529 } 2530 # else 2531 // Do nothing 2532 # endif 2533 } 2534 2535 void CheckMPROTECT() { 2536 # if SANITIZER_NETBSD 2537 int mib[3]; 2538 int paxflags; 2539 uptr len = sizeof(paxflags); 2540 2541 mib[0] = CTL_PROC; 2542 mib[1] = internal_getpid(); 2543 mib[2] = PROC_PID_PAXFLAGS; 2544 2545 if (UNLIKELY(internal_sysctl(mib, 3, &paxflags, &len, NULL, 0) == -1)) { 2546 Printf("sysctl failed\n"); 2547 Die(); 2548 } 2549 2550 if (UNLIKELY(paxflags & CTL_PROC_PAXFLAGS_MPROTECT)) { 2551 Printf("This sanitizer is not compatible with enabled MPROTECT\n"); 2552 Die(); 2553 } 2554 # else 2555 // Do nothing 2556 # endif 2557 } 2558 2559 void CheckNoDeepBind(const char *filename, int flag) { 2560 # ifdef RTLD_DEEPBIND 2561 if (flag & RTLD_DEEPBIND) { 2562 Report( 2563 "You are trying to dlopen a %s shared library with RTLD_DEEPBIND flag" 2564 " which is incompatible with sanitizer runtime " 2565 "(see https://github.com/google/sanitizers/issues/611 for details" 2566 "). If you want to run %s library under sanitizers please remove " 2567 "RTLD_DEEPBIND from dlopen flags.\n", 2568 filename, filename); 2569 Die(); 2570 } 2571 # endif 2572 } 2573 2574 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 2575 uptr *largest_gap_found, 2576 uptr *max_occupied_addr) { 2577 UNREACHABLE("FindAvailableMemoryRange is not available"); 2578 return 0; 2579 } 2580 2581 bool GetRandom(void *buffer, uptr length, bool blocking) { 2582 if (!buffer || !length || length > 256) 2583 return false; 2584 # if SANITIZER_USE_GETENTROPY 2585 uptr rnd = getentropy(buffer, length); 2586 int rverrno = 0; 2587 if (internal_iserror(rnd, &rverrno) && rverrno == EFAULT) 2588 return false; 2589 else if (rnd == 0) 2590 return true; 2591 # endif // SANITIZER_USE_GETENTROPY 2592 2593 # if SANITIZER_USE_GETRANDOM 2594 static atomic_uint8_t skip_getrandom_syscall; 2595 if (!atomic_load_relaxed(&skip_getrandom_syscall)) { 2596 // Up to 256 bytes, getrandom will not be interrupted. 2597 uptr res = internal_syscall(SYSCALL(getrandom), buffer, length, 2598 blocking ? 0 : GRND_NONBLOCK); 2599 int rverrno = 0; 2600 if (internal_iserror(res, &rverrno) && rverrno == ENOSYS) 2601 atomic_store_relaxed(&skip_getrandom_syscall, 1); 2602 else if (res == length) 2603 return true; 2604 } 2605 # endif // SANITIZER_USE_GETRANDOM 2606 // Up to 256 bytes, a read off /dev/urandom will not be interrupted. 2607 // blocking is moot here, O_NONBLOCK has no effect when opening /dev/urandom. 2608 uptr fd = internal_open("/dev/urandom", O_RDONLY); 2609 if (internal_iserror(fd)) 2610 return false; 2611 uptr res = internal_read(fd, buffer, length); 2612 if (internal_iserror(res)) 2613 return false; 2614 internal_close(fd); 2615 return true; 2616 } 2617 2618 } // namespace __sanitizer 2619 2620 #endif 2621