xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_coverage_fuchsia.cpp (revision b9128a37faafede823eb456aa65a11ac69997284)
1 //===-- sanitizer_coverage_fuchsia.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Sanitizer Coverage Controller for Trace PC Guard, Fuchsia-specific version.
10 //
11 // This Fuchsia-specific implementation uses the same basic scheme and the
12 // same simple '.sancov' file format as the generic implementation.  The
13 // difference is that we just produce a single blob of output for the whole
14 // program, not a separate one per DSO.  We do not sort the PC table and do
15 // not prune the zeros, so the resulting file is always as large as it
16 // would be to report 100% coverage.  Implicit tracing information about
17 // the address ranges of DSOs allows offline tools to split the one big
18 // blob into separate files that the 'sancov' tool can understand.
19 //
20 // Unlike the traditional implementation that uses an atexit hook to write
21 // out data files at the end, the results on Fuchsia do not go into a file
22 // per se.  The 'coverage_dir' option is ignored.  Instead, they are stored
23 // directly into a shared memory object (a Zircon VMO).  At exit, that VMO
24 // is handed over to a system service that's responsible for getting the
25 // data out to somewhere that it can be fed into the sancov tool (where and
26 // how is not our problem).
27 
28 #include "sanitizer_platform.h"
29 #if SANITIZER_FUCHSIA
30 #include <zircon/process.h>
31 #include <zircon/sanitizer.h>
32 #include <zircon/syscalls.h>
33 
34 #include "sanitizer_atomic.h"
35 #include "sanitizer_common.h"
36 #include "sanitizer_interface_internal.h"
37 #include "sanitizer_internal_defs.h"
38 #  include "sanitizer_symbolizer_markup_constants.h"
39 
40 using namespace __sanitizer;
41 
42 namespace __sancov {
43 namespace {
44 
45 // TODO(mcgrathr): Move the constant into a header shared with other impls.
46 constexpr u64 Magic64 = 0xC0BFFFFFFFFFFF64ULL;
47 static_assert(SANITIZER_WORDSIZE == 64, "Fuchsia is always LP64");
48 
49 constexpr const char kSancovSinkName[] = "sancov";
50 
51 // Collects trace-pc guard coverage.
52 // This class relies on zero-initialization.
53 class TracePcGuardController final {
54  public:
55   constexpr TracePcGuardController() {}
56 
57   // For each PC location being tracked, there is a u32 reserved in global
58   // data called the "guard".  At startup, we assign each guard slot a
59   // unique index into the big results array.  Later during runtime, the
60   // first call to TracePcGuard (below) will store the corresponding PC at
61   // that index in the array.  (Each later call with the same guard slot is
62   // presumed to be from the same PC.)  Then it clears the guard slot back
63   // to zero, which tells the compiler not to bother calling in again.  At
64   // the end of the run, we have a big array where each element is either
65   // zero or is a tracked PC location that was hit in the trace.
66 
67   // This is called from global constructors.  Each translation unit has a
68   // contiguous array of guard slots, and a constructor that calls here
69   // with the bounds of its array.  Those constructors are allowed to call
70   // here more than once for the same array.  Usually all of these
71   // constructors run in the initial thread, but it's possible that a
72   // dlopen call on a secondary thread will run constructors that get here.
73   void InitTracePcGuard(u32 *start, u32 *end) {
74     if (end > start && *start == 0 && common_flags()->coverage) {
75       // Complete the setup before filling in any guards with indices.
76       // This avoids the possibility of code called from Setup reentering
77       // TracePcGuard.
78       u32 idx = Setup(end - start);
79       for (u32 *p = start; p < end; ++p) {
80         *p = idx++;
81       }
82     }
83   }
84 
85   void TracePcGuard(u32 *guard, uptr pc) {
86     atomic_uint32_t *guard_ptr = reinterpret_cast<atomic_uint32_t *>(guard);
87     u32 idx = atomic_exchange(guard_ptr, 0, memory_order_relaxed);
88     if (idx > 0)
89       array_[idx] = pc;
90   }
91 
92   void Dump() {
93     Lock locked(&setup_lock_);
94     if (array_) {
95       CHECK_NE(vmo_, ZX_HANDLE_INVALID);
96 
97       // Publish the VMO to the system, where it can be collected and
98       // analyzed after this process exits.  This always consumes the VMO
99       // handle.  Any failure is just logged and not indicated to us.
100       __sanitizer_publish_data(kSancovSinkName, vmo_);
101       vmo_ = ZX_HANDLE_INVALID;
102 
103       // This will route to __sanitizer_log_write, which will ensure that
104       // information about shared libraries is written out.  This message
105       // uses the `dumpfile` symbolizer markup element to highlight the
106       // dump.  See the explanation for this in:
107       // https://fuchsia.googlesource.com/zircon/+/master/docs/symbolizer_markup.md
108       Printf("SanitizerCoverage: " FORMAT_DUMPFILE " with up to %u PCs\n",
109              kSancovSinkName, vmo_name_, next_index_ - 1);
110     }
111   }
112 
113  private:
114   // We map in the largest possible view into the VMO: one word
115   // for every possible 32-bit index value.  This avoids the need
116   // to change the mapping when increasing the size of the VMO.
117   // We can always spare the 32G of address space.
118   static constexpr size_t MappingSize = sizeof(uptr) << 32;
119 
120   Mutex setup_lock_;
121   uptr *array_ = nullptr;
122   u32 next_index_ = 0;
123   zx_handle_t vmo_ = {};
124   char vmo_name_[ZX_MAX_NAME_LEN] = {};
125 
126   size_t DataSize() const { return next_index_ * sizeof(uintptr_t); }
127 
128   u32 Setup(u32 num_guards) {
129     Lock locked(&setup_lock_);
130     DCHECK(common_flags()->coverage);
131 
132     if (next_index_ == 0) {
133       CHECK_EQ(vmo_, ZX_HANDLE_INVALID);
134       CHECK_EQ(array_, nullptr);
135 
136       // The first sample goes at [1] to reserve [0] for the magic number.
137       next_index_ = 1 + num_guards;
138 
139       zx_status_t status = _zx_vmo_create(DataSize(), ZX_VMO_RESIZABLE, &vmo_);
140       CHECK_EQ(status, ZX_OK);
141 
142       // Give the VMO a name including our process KOID so it's easy to spot.
143       internal_snprintf(vmo_name_, sizeof(vmo_name_), "%s.%zu", kSancovSinkName,
144                         internal_getpid());
145       _zx_object_set_property(vmo_, ZX_PROP_NAME, vmo_name_,
146                               internal_strlen(vmo_name_));
147       uint64_t size = DataSize();
148       status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size,
149                                        sizeof(size));
150       CHECK_EQ(status, ZX_OK);
151 
152       // Map the largest possible view we might need into the VMO.  Later
153       // we might need to increase the VMO's size before we can use larger
154       // indices, but we'll never move the mapping address so we don't have
155       // any multi-thread synchronization issues with that.
156       uintptr_t mapping;
157       status =
158           _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
159                        0, vmo_, 0, MappingSize, &mapping);
160       CHECK_EQ(status, ZX_OK);
161 
162       // Hereafter other threads are free to start storing into
163       // elements [1, next_index_) of the big array.
164       array_ = reinterpret_cast<uptr *>(mapping);
165 
166       // Store the magic number.
167       // Hereafter, the VMO serves as the contents of the '.sancov' file.
168       array_[0] = Magic64;
169 
170       return 1;
171     } else {
172       // The VMO is already mapped in, but it's not big enough to use the
173       // new indices.  So increase the size to cover the new maximum index.
174 
175       CHECK_NE(vmo_, ZX_HANDLE_INVALID);
176       CHECK_NE(array_, nullptr);
177 
178       uint32_t first_index = next_index_;
179       next_index_ += num_guards;
180 
181       zx_status_t status = _zx_vmo_set_size(vmo_, DataSize());
182       CHECK_EQ(status, ZX_OK);
183       uint64_t size = DataSize();
184       status = _zx_object_set_property(vmo_, ZX_PROP_VMO_CONTENT_SIZE, &size,
185                                        sizeof(size));
186       CHECK_EQ(status, ZX_OK);
187 
188       return first_index;
189     }
190   }
191 };
192 
193 static TracePcGuardController pc_guard_controller;
194 
195 }  // namespace
196 }  // namespace __sancov
197 
198 namespace __sanitizer {
199 void InitializeCoverage(bool enabled, const char *dir) {
200   CHECK_EQ(enabled, common_flags()->coverage);
201   CHECK_EQ(dir, common_flags()->coverage_dir);
202 
203   static bool coverage_enabled = false;
204   if (!coverage_enabled) {
205     coverage_enabled = enabled;
206     Atexit(__sanitizer_cov_dump);
207     AddDieCallback(__sanitizer_cov_dump);
208   }
209 }
210 }  // namespace __sanitizer
211 
212 extern "C" {
213 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_coverage(const uptr *pcs,
214                                                              uptr len) {
215   UNIMPLEMENTED();
216 }
217 
218 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard, u32 *guard) {
219   if (!*guard)
220     return;
221   __sancov::pc_guard_controller.TracePcGuard(guard, GET_CALLER_PC() - 1);
222 }
223 
224 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_guard_init,
225                              u32 *start, u32 *end) {
226   if (start == end || *start)
227     return;
228   __sancov::pc_guard_controller.InitTracePcGuard(start, end);
229 }
230 
231 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_dump_trace_pc_guard_coverage() {
232   __sancov::pc_guard_controller.Dump();
233 }
234 SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() {
235   __sanitizer_dump_trace_pc_guard_coverage();
236 }
237 // Default empty implementations (weak). Users should redefine them.
238 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp, void) {}
239 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp1, void) {}
240 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp2, void) {}
241 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp4, void) {}
242 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_cmp8, void) {}
243 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp1, void) {}
244 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp2, void) {}
245 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp4, void) {}
246 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_const_cmp8, void) {}
247 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_switch, void) {}
248 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div4, void) {}
249 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_div8, void) {}
250 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_gep, void) {}
251 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_cov_trace_pc_indir, void) {}
252 }  // extern "C"
253 
254 #endif  // !SANITIZER_FUCHSIA
255