1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between run-time libraries of sanitizers. 10 // 11 // It declares common functions and classes that are used in both runtimes. 12 // Implementation of some functions are provided in sanitizer_common, while 13 // others must be defined by run-time library itself. 14 //===----------------------------------------------------------------------===// 15 #ifndef SANITIZER_COMMON_H 16 #define SANITIZER_COMMON_H 17 18 #include "sanitizer_flags.h" 19 #include "sanitizer_internal_defs.h" 20 #include "sanitizer_libc.h" 21 #include "sanitizer_list.h" 22 #include "sanitizer_mutex.h" 23 24 #if defined(_MSC_VER) && !defined(__clang__) 25 extern "C" void _ReadWriteBarrier(); 26 #pragma intrinsic(_ReadWriteBarrier) 27 #endif 28 29 namespace __sanitizer { 30 31 struct AddressInfo; 32 struct BufferedStackTrace; 33 struct SignalContext; 34 struct StackTrace; 35 struct SymbolizedStack; 36 37 // Constants. 38 const uptr kWordSize = SANITIZER_WORDSIZE / 8; 39 const uptr kWordSizeInBits = 8 * kWordSize; 40 41 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE; 42 43 const uptr kMaxPathLength = 4096; 44 45 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb 46 47 const uptr kErrorMessageBufferSize = 1 << 16; 48 49 // Denotes fake PC values that come from JIT/JAVA/etc. 50 // For such PC values __tsan_symbolize_external_ex() will be called. 51 const u64 kExternalPCBit = 1ULL << 60; 52 53 extern const char *SanitizerToolName; // Can be changed by the tool. 54 55 extern atomic_uint32_t current_verbosity; 56 inline void SetVerbosity(int verbosity) { 57 atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); 58 } 59 inline int Verbosity() { 60 return atomic_load(¤t_verbosity, memory_order_relaxed); 61 } 62 63 #if SANITIZER_ANDROID && !defined(__aarch64__) 64 // 32-bit Android only has 4k pages. 65 inline uptr GetPageSize() { return 4096; } 66 inline uptr GetPageSizeCached() { return 4096; } 67 #else 68 uptr GetPageSize(); 69 extern uptr PageSizeCached; 70 inline uptr GetPageSizeCached() { 71 if (!PageSizeCached) 72 PageSizeCached = GetPageSize(); 73 return PageSizeCached; 74 } 75 #endif 76 77 uptr GetMmapGranularity(); 78 uptr GetMaxVirtualAddress(); 79 uptr GetMaxUserVirtualAddress(); 80 // Threads 81 tid_t GetTid(); 82 int TgKill(pid_t pid, tid_t tid, int sig); 83 uptr GetThreadSelf(); 84 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 85 uptr *stack_bottom); 86 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 87 uptr *tls_addr, uptr *tls_size); 88 89 // Memory management 90 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); 91 92 inline void *MmapOrDieQuietly(uptr size, const char *mem_type) { 93 return MmapOrDie(size, mem_type, /*raw_report*/ true); 94 } 95 void UnmapOrDie(void *addr, uptr size, bool raw_report = false); 96 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that 97 // case returns nullptr. 98 void *MmapOrDieOnFatalError(uptr size, const char *mem_type); 99 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) 100 WARN_UNUSED_RESULT; 101 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, 102 const char *name = nullptr) WARN_UNUSED_RESULT; 103 void *MmapNoReserveOrDie(uptr size, const char *mem_type); 104 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); 105 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in 106 // that case returns nullptr. 107 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, 108 const char *name = nullptr); 109 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); 110 void *MmapNoAccess(uptr size); 111 // Map aligned chunk of address space; size and alignment are powers of two. 112 // Dies on all but out of memory errors, in the latter case returns nullptr. 113 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 114 const char *mem_type); 115 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an 116 // unaccessible memory. 117 bool MprotectNoAccess(uptr addr, uptr size); 118 bool MprotectReadOnly(uptr addr, uptr size); 119 bool MprotectReadWrite(uptr addr, uptr size); 120 121 void MprotectMallocZones(void *addr, int prot); 122 123 #if SANITIZER_WINDOWS 124 // Zero previously mmap'd memory. Currently used only on Windows. 125 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT; 126 #endif 127 128 #if SANITIZER_LINUX 129 // Unmap memory. Currently only used on Linux. 130 void UnmapFromTo(uptr from, uptr to); 131 #endif 132 133 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will 134 // be aligned to the mmap granularity * 2^shadow_scale, or to 135 // 2^min_shadow_base_alignment if that is larger. The returned address will 136 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and 137 // shadow_size_bytes bytes on the right, which on linux is mapped no access. 138 // The high_mem_end may be updated if the original shadow size doesn't fit. 139 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, 140 uptr min_shadow_base_alignment, uptr &high_mem_end, 141 uptr granularity); 142 143 // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size). 144 // Reserves 2*S bytes of address space to the right of the returned address and 145 // ring_buffer_size bytes to the left. The returned address is aligned to 2*S. 146 // Also creates num_aliases regions of accessible memory starting at offset S 147 // from the returned address. Each region has size alias_size and is backed by 148 // the same physical memory. 149 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, 150 uptr num_aliases, uptr ring_buffer_size); 151 152 // Reserve memory range [beg, end]. If madvise_shadow is true then apply 153 // madvise (e.g. hugepages, core dumping) requested by options. 154 void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name, 155 bool madvise_shadow = true); 156 157 // Protect size bytes of memory starting at addr. Also try to protect 158 // several pages at the start of the address space as specified by 159 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start. 160 void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start, 161 uptr zero_base_max_shadow_start); 162 163 // Find an available address space. 164 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 165 uptr *largest_gap_found, uptr *max_occupied_addr); 166 167 // Used to check if we can map shadow memory to a fixed location. 168 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); 169 // Releases memory pages entirely within the [beg, end] address range. Noop if 170 // the provided range does not contain at least one entire page. 171 void ReleaseMemoryPagesToOS(uptr beg, uptr end); 172 void IncreaseTotalMmap(uptr size); 173 void DecreaseTotalMmap(uptr size); 174 uptr GetRSS(); 175 void SetShadowRegionHugePageMode(uptr addr, uptr length); 176 bool DontDumpShadowMemory(uptr addr, uptr length); 177 // Check if the built VMA size matches the runtime one. 178 void CheckVMASize(); 179 void RunMallocHooks(void *ptr, uptr size); 180 int RunFreeHooks(void *ptr); 181 182 class ReservedAddressRange { 183 public: 184 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0); 185 uptr InitAligned(uptr size, uptr align, const char *name = nullptr); 186 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr); 187 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); 188 void Unmap(uptr addr, uptr size); 189 void *base() const { return base_; } 190 uptr size() const { return size_; } 191 192 private: 193 void* base_; 194 uptr size_; 195 const char* name_; 196 uptr os_handle_; 197 }; 198 199 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file, 200 /*out*/ uptr *stats); 201 202 // Parse the contents of /proc/self/smaps and generate a memory profile. 203 // |cb| is a tool-specific callback that fills the |stats| array. 204 void GetMemoryProfile(fill_profile_f cb, uptr *stats); 205 void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps, 206 uptr smaps_len); 207 208 // Simple low-level (mmap-based) allocator for internal use. Doesn't have 209 // constructor, so all instances of LowLevelAllocator should be 210 // linker initialized. 211 // 212 // NOTE: Users should instead use the singleton provided via 213 // `GetGlobalLowLevelAllocator()` rather than create a new one. This way, the 214 // number of mmap fragments can be reduced and use the same contiguous mmap 215 // provided by this singleton. 216 class LowLevelAllocator { 217 public: 218 // Requires an external lock. 219 void *Allocate(uptr size); 220 221 private: 222 char *allocated_end_; 223 char *allocated_current_; 224 }; 225 // Set the min alignment of LowLevelAllocator to at least alignment. 226 void SetLowLevelAllocateMinAlignment(uptr alignment); 227 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); 228 // Allows to register tool-specific callbacks for LowLevelAllocator. 229 // Passing NULL removes the callback. 230 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); 231 232 LowLevelAllocator &GetGlobalLowLevelAllocator(); 233 234 // IO 235 void CatastrophicErrorWrite(const char *buffer, uptr length); 236 void RawWrite(const char *buffer); 237 bool ColorizeReports(); 238 void RemoveANSIEscapeSequencesFromString(char *buffer); 239 void Printf(const char *format, ...) FORMAT(1, 2); 240 void Report(const char *format, ...) FORMAT(1, 2); 241 void SetPrintfAndReportCallback(void (*callback)(const char *)); 242 #define VReport(level, ...) \ 243 do { \ 244 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ 245 } while (0) 246 #define VPrintf(level, ...) \ 247 do { \ 248 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ 249 } while (0) 250 251 // Lock sanitizer error reporting and protects against nested errors. 252 class ScopedErrorReportLock { 253 public: 254 ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); } 255 ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); } 256 257 static void Lock() SANITIZER_ACQUIRE(mutex_); 258 static void Unlock() SANITIZER_RELEASE(mutex_); 259 static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_); 260 261 private: 262 static atomic_uintptr_t reporting_thread_; 263 static StaticSpinMutex mutex_; 264 }; 265 266 extern uptr stoptheworld_tracer_pid; 267 extern uptr stoptheworld_tracer_ppid; 268 269 bool IsAccessibleMemoryRange(uptr beg, uptr size); 270 271 // Error report formatting. 272 const char *StripPathPrefix(const char *filepath, 273 const char *strip_file_prefix); 274 // Strip the directories from the module name. 275 const char *StripModuleName(const char *module); 276 277 // OS 278 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); 279 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); 280 uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len); 281 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); 282 const char *GetProcessName(); 283 void UpdateProcessName(); 284 void CacheBinaryName(); 285 void DisableCoreDumperIfNecessary(); 286 void DumpProcessMap(); 287 const char *GetEnv(const char *name); 288 bool SetEnv(const char *name, const char *value); 289 290 u32 GetUid(); 291 void ReExec(); 292 void CheckASLR(); 293 void CheckMPROTECT(); 294 char **GetArgv(); 295 char **GetEnviron(); 296 void PrintCmdline(); 297 bool StackSizeIsUnlimited(); 298 void SetStackSizeLimitInBytes(uptr limit); 299 bool AddressSpaceIsUnlimited(); 300 void SetAddressSpaceUnlimited(); 301 void AdjustStackSize(void *attr); 302 void PlatformPrepareForSandboxing(void *args); 303 void SetSandboxingCallback(void (*f)()); 304 305 void InitializeCoverage(bool enabled, const char *coverage_dir); 306 307 void InitTlsSize(); 308 uptr GetTlsSize(); 309 310 // Other 311 void WaitForDebugger(unsigned seconds, const char *label); 312 void SleepForSeconds(unsigned seconds); 313 void SleepForMillis(unsigned millis); 314 u64 NanoTime(); 315 u64 MonotonicNanoTime(); 316 int Atexit(void (*function)(void)); 317 bool TemplateMatch(const char *templ, const char *str); 318 319 // Exit 320 void NORETURN Abort(); 321 void NORETURN Die(); 322 void NORETURN 323 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); 324 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, 325 const char *mmap_type, error_t err, 326 bool raw_report = false); 327 void NORETURN ReportMunmapFailureAndDie(void *ptr, uptr size, error_t err, 328 bool raw_report = false); 329 330 // Returns true if the platform-specific error reported is an OOM error. 331 bool ErrorIsOOM(error_t err); 332 333 // This reports an error in the form: 334 // 335 // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}` 336 // 337 // Downstream tools that read sanitizer output will know that errors starting 338 // in this format are specifically OOM errors. 339 #define ERROR_OOM(err_msg, ...) \ 340 Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__) 341 342 // Specific tools may override behavior of "Die" function to do tool-specific 343 // job. 344 typedef void (*DieCallbackType)(void); 345 346 // It's possible to add several callbacks that would be run when "Die" is 347 // called. The callbacks will be run in the opposite order. The tools are 348 // strongly recommended to setup all callbacks during initialization, when there 349 // is only a single thread. 350 bool AddDieCallback(DieCallbackType callback); 351 bool RemoveDieCallback(DieCallbackType callback); 352 353 void SetUserDieCallback(DieCallbackType callback); 354 355 void SetCheckUnwindCallback(void (*callback)()); 356 357 // Functions related to signal handling. 358 typedef void (*SignalHandlerType)(int, void *, void *); 359 HandleSignalMode GetHandleSignalMode(int signum); 360 void InstallDeadlySignalHandlers(SignalHandlerType handler); 361 362 // Signal reporting. 363 // Each sanitizer uses slightly different implementation of stack unwinding. 364 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, 365 const void *callback_context, 366 BufferedStackTrace *stack); 367 // Print deadly signal report and die. 368 void HandleDeadlySignal(void *siginfo, void *context, u32 tid, 369 UnwindSignalStackCallbackType unwind, 370 const void *unwind_context); 371 372 // Part of HandleDeadlySignal, exposed for asan. 373 void StartReportDeadlySignal(); 374 // Part of HandleDeadlySignal, exposed for asan. 375 void ReportDeadlySignal(const SignalContext &sig, u32 tid, 376 UnwindSignalStackCallbackType unwind, 377 const void *unwind_context); 378 379 // Alternative signal stack (POSIX-only). 380 void SetAlternateSignalStack(); 381 void UnsetAlternateSignalStack(); 382 383 // Construct a one-line string: 384 // SUMMARY: SanitizerToolName: error_message 385 // and pass it to __sanitizer_report_error_summary. 386 // If alt_tool_name is provided, it's used in place of SanitizerToolName. 387 void ReportErrorSummary(const char *error_message, 388 const char *alt_tool_name = nullptr); 389 // Same as above, but construct error_message as: 390 // error_type file:line[:column][ function] 391 void ReportErrorSummary(const char *error_type, const AddressInfo &info, 392 const char *alt_tool_name = nullptr); 393 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. 394 void ReportErrorSummary(const char *error_type, const StackTrace *trace, 395 const char *alt_tool_name = nullptr); 396 // Skips frames which we consider internal and not usefull to the users. 397 const SymbolizedStack *SkipInternalFrames(const SymbolizedStack *frames); 398 399 void ReportMmapWriteExec(int prot, int mflags); 400 401 // Math 402 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) 403 extern "C" { 404 unsigned char _BitScanForward(unsigned long *index, unsigned long mask); 405 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); 406 #if defined(_WIN64) 407 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); 408 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); 409 #endif 410 } 411 #endif 412 413 inline uptr MostSignificantSetBitIndex(uptr x) { 414 CHECK_NE(x, 0U); 415 unsigned long up; 416 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 417 # ifdef _WIN64 418 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); 419 # else 420 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); 421 # endif 422 #elif defined(_WIN64) 423 _BitScanReverse64(&up, x); 424 #else 425 _BitScanReverse(&up, x); 426 #endif 427 return up; 428 } 429 430 inline uptr LeastSignificantSetBitIndex(uptr x) { 431 CHECK_NE(x, 0U); 432 unsigned long up; 433 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 434 # ifdef _WIN64 435 up = __builtin_ctzll(x); 436 # else 437 up = __builtin_ctzl(x); 438 # endif 439 #elif defined(_WIN64) 440 _BitScanForward64(&up, x); 441 #else 442 _BitScanForward(&up, x); 443 #endif 444 return up; 445 } 446 447 inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } 448 449 inline uptr RoundUpToPowerOfTwo(uptr size) { 450 CHECK(size); 451 if (IsPowerOfTwo(size)) return size; 452 453 uptr up = MostSignificantSetBitIndex(size); 454 CHECK_LT(size, (1ULL << (up + 1))); 455 CHECK_GT(size, (1ULL << up)); 456 return 1ULL << (up + 1); 457 } 458 459 inline constexpr uptr RoundUpTo(uptr size, uptr boundary) { 460 RAW_CHECK(IsPowerOfTwo(boundary)); 461 return (size + boundary - 1) & ~(boundary - 1); 462 } 463 464 inline constexpr uptr RoundDownTo(uptr x, uptr boundary) { 465 return x & ~(boundary - 1); 466 } 467 468 inline constexpr bool IsAligned(uptr a, uptr alignment) { 469 return (a & (alignment - 1)) == 0; 470 } 471 472 inline uptr Log2(uptr x) { 473 CHECK(IsPowerOfTwo(x)); 474 return LeastSignificantSetBitIndex(x); 475 } 476 477 // Don't use std::min, std::max or std::swap, to minimize dependency 478 // on libstdc++. 479 template <class T> 480 constexpr T Min(T a, T b) { 481 return a < b ? a : b; 482 } 483 template <class T> 484 constexpr T Max(T a, T b) { 485 return a > b ? a : b; 486 } 487 template <class T> 488 constexpr T Abs(T a) { 489 return a < 0 ? -a : a; 490 } 491 template<class T> void Swap(T& a, T& b) { 492 T tmp = a; 493 a = b; 494 b = tmp; 495 } 496 497 // Char handling 498 inline bool IsSpace(int c) { 499 return (c == ' ') || (c == '\n') || (c == '\t') || 500 (c == '\f') || (c == '\r') || (c == '\v'); 501 } 502 inline bool IsDigit(int c) { 503 return (c >= '0') && (c <= '9'); 504 } 505 inline int ToLower(int c) { 506 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; 507 } 508 509 // A low-level vector based on mmap. May incur a significant memory overhead for 510 // small vectors. 511 // WARNING: The current implementation supports only POD types. 512 template <typename T, bool raw_report = false> 513 class InternalMmapVectorNoCtor { 514 public: 515 using value_type = T; 516 void Initialize(uptr initial_capacity) { 517 capacity_bytes_ = 0; 518 size_ = 0; 519 data_ = 0; 520 reserve(initial_capacity); 521 } 522 void Destroy() { UnmapOrDie(data_, capacity_bytes_, raw_report); } 523 T &operator[](uptr i) { 524 CHECK_LT(i, size_); 525 return data_[i]; 526 } 527 const T &operator[](uptr i) const { 528 CHECK_LT(i, size_); 529 return data_[i]; 530 } 531 void push_back(const T &element) { 532 if (UNLIKELY(size_ >= capacity())) { 533 CHECK_EQ(size_, capacity()); 534 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); 535 Realloc(new_capacity); 536 } 537 internal_memcpy(&data_[size_++], &element, sizeof(T)); 538 } 539 T &back() { 540 CHECK_GT(size_, 0); 541 return data_[size_ - 1]; 542 } 543 void pop_back() { 544 CHECK_GT(size_, 0); 545 size_--; 546 } 547 uptr size() const { 548 return size_; 549 } 550 const T *data() const { 551 return data_; 552 } 553 T *data() { 554 return data_; 555 } 556 uptr capacity() const { return capacity_bytes_ / sizeof(T); } 557 void reserve(uptr new_size) { 558 // Never downsize internal buffer. 559 if (new_size > capacity()) 560 Realloc(new_size); 561 } 562 void resize(uptr new_size) { 563 if (new_size > size_) { 564 reserve(new_size); 565 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); 566 } 567 size_ = new_size; 568 } 569 570 void clear() { size_ = 0; } 571 bool empty() const { return size() == 0; } 572 573 const T *begin() const { 574 return data(); 575 } 576 T *begin() { 577 return data(); 578 } 579 const T *end() const { 580 return data() + size(); 581 } 582 T *end() { 583 return data() + size(); 584 } 585 586 void swap(InternalMmapVectorNoCtor &other) { 587 Swap(data_, other.data_); 588 Swap(capacity_bytes_, other.capacity_bytes_); 589 Swap(size_, other.size_); 590 } 591 592 private: 593 NOINLINE void Realloc(uptr new_capacity) { 594 CHECK_GT(new_capacity, 0); 595 CHECK_LE(size_, new_capacity); 596 uptr new_capacity_bytes = 597 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached()); 598 T *new_data = 599 (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector", raw_report); 600 internal_memcpy(new_data, data_, size_ * sizeof(T)); 601 UnmapOrDie(data_, capacity_bytes_, raw_report); 602 data_ = new_data; 603 capacity_bytes_ = new_capacity_bytes; 604 } 605 606 T *data_; 607 uptr capacity_bytes_; 608 uptr size_; 609 }; 610 611 template <typename T> 612 bool operator==(const InternalMmapVectorNoCtor<T> &lhs, 613 const InternalMmapVectorNoCtor<T> &rhs) { 614 if (lhs.size() != rhs.size()) return false; 615 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0; 616 } 617 618 template <typename T> 619 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs, 620 const InternalMmapVectorNoCtor<T> &rhs) { 621 return !(lhs == rhs); 622 } 623 624 template<typename T> 625 class InternalMmapVector : public InternalMmapVectorNoCtor<T> { 626 public: 627 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); } 628 explicit InternalMmapVector(uptr cnt) { 629 InternalMmapVectorNoCtor<T>::Initialize(cnt); 630 this->resize(cnt); 631 } 632 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } 633 // Disallow copies and moves. 634 InternalMmapVector(const InternalMmapVector &) = delete; 635 InternalMmapVector &operator=(const InternalMmapVector &) = delete; 636 InternalMmapVector(InternalMmapVector &&) = delete; 637 InternalMmapVector &operator=(InternalMmapVector &&) = delete; 638 }; 639 640 class InternalScopedString { 641 public: 642 InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; } 643 644 uptr length() const { return buffer_.size() - 1; } 645 void clear() { 646 buffer_.resize(1); 647 buffer_[0] = '\0'; 648 } 649 void Append(const char *str); 650 void AppendF(const char *format, ...) FORMAT(2, 3); 651 const char *data() const { return buffer_.data(); } 652 char *data() { return buffer_.data(); } 653 654 private: 655 InternalMmapVector<char> buffer_; 656 }; 657 658 template <class T> 659 struct CompareLess { 660 bool operator()(const T &a, const T &b) const { return a < b; } 661 }; 662 663 // HeapSort for arrays and InternalMmapVector. 664 template <class T, class Compare = CompareLess<T>> 665 void Sort(T *v, uptr size, Compare comp = {}) { 666 if (size < 2) 667 return; 668 // Stage 1: insert elements to the heap. 669 for (uptr i = 1; i < size; i++) { 670 uptr j, p; 671 for (j = i; j > 0; j = p) { 672 p = (j - 1) / 2; 673 if (comp(v[p], v[j])) 674 Swap(v[j], v[p]); 675 else 676 break; 677 } 678 } 679 // Stage 2: swap largest element with the last one, 680 // and sink the new top. 681 for (uptr i = size - 1; i > 0; i--) { 682 Swap(v[0], v[i]); 683 uptr j, max_ind; 684 for (j = 0; j < i; j = max_ind) { 685 uptr left = 2 * j + 1; 686 uptr right = 2 * j + 2; 687 max_ind = j; 688 if (left < i && comp(v[max_ind], v[left])) 689 max_ind = left; 690 if (right < i && comp(v[max_ind], v[right])) 691 max_ind = right; 692 if (max_ind != j) 693 Swap(v[j], v[max_ind]); 694 else 695 break; 696 } 697 } 698 } 699 700 // Works like std::lower_bound: finds the first element that is not less 701 // than the val. 702 template <class Container, class T, 703 class Compare = CompareLess<typename Container::value_type>> 704 uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) { 705 uptr first = 0; 706 uptr last = v.size(); 707 while (last > first) { 708 uptr mid = (first + last) / 2; 709 if (comp(v[mid], val)) 710 first = mid + 1; 711 else 712 last = mid; 713 } 714 return first; 715 } 716 717 enum ModuleArch { 718 kModuleArchUnknown, 719 kModuleArchI386, 720 kModuleArchX86_64, 721 kModuleArchX86_64H, 722 kModuleArchARMV6, 723 kModuleArchARMV7, 724 kModuleArchARMV7S, 725 kModuleArchARMV7K, 726 kModuleArchARM64, 727 kModuleArchLoongArch64, 728 kModuleArchRISCV64, 729 kModuleArchHexagon 730 }; 731 732 // Sorts and removes duplicates from the container. 733 template <class Container, 734 class Compare = CompareLess<typename Container::value_type>> 735 void SortAndDedup(Container &v, Compare comp = {}) { 736 Sort(v.data(), v.size(), comp); 737 uptr size = v.size(); 738 if (size < 2) 739 return; 740 uptr last = 0; 741 for (uptr i = 1; i < size; ++i) { 742 if (comp(v[last], v[i])) { 743 ++last; 744 if (last != i) 745 v[last] = v[i]; 746 } else { 747 CHECK(!comp(v[i], v[last])); 748 } 749 } 750 v.resize(last + 1); 751 } 752 753 constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28); 754 755 // Opens the file 'file_name" and reads up to 'max_len' bytes. 756 // The resulting buffer is mmaped and stored in '*buff'. 757 // Returns true if file was successfully opened and read. 758 bool ReadFileToVector(const char *file_name, 759 InternalMmapVectorNoCtor<char> *buff, 760 uptr max_len = kDefaultFileMaxSize, 761 error_t *errno_p = nullptr); 762 763 // Opens the file 'file_name" and reads up to 'max_len' bytes. 764 // This function is less I/O efficient than ReadFileToVector as it may reread 765 // file multiple times to avoid mmap during read attempts. It's used to read 766 // procmap, so short reads with mmap in between can produce inconsistent result. 767 // The resulting buffer is mmaped and stored in '*buff'. 768 // The size of the mmaped region is stored in '*buff_size'. 769 // The total number of read bytes is stored in '*read_len'. 770 // Returns true if file was successfully opened and read. 771 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 772 uptr *read_len, uptr max_len = kDefaultFileMaxSize, 773 error_t *errno_p = nullptr); 774 775 int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len, 776 uptr *pc_offset); 777 778 // When adding a new architecture, don't forget to also update 779 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp. 780 inline const char *ModuleArchToString(ModuleArch arch) { 781 switch (arch) { 782 case kModuleArchUnknown: 783 return ""; 784 case kModuleArchI386: 785 return "i386"; 786 case kModuleArchX86_64: 787 return "x86_64"; 788 case kModuleArchX86_64H: 789 return "x86_64h"; 790 case kModuleArchARMV6: 791 return "armv6"; 792 case kModuleArchARMV7: 793 return "armv7"; 794 case kModuleArchARMV7S: 795 return "armv7s"; 796 case kModuleArchARMV7K: 797 return "armv7k"; 798 case kModuleArchARM64: 799 return "arm64"; 800 case kModuleArchLoongArch64: 801 return "loongarch64"; 802 case kModuleArchRISCV64: 803 return "riscv64"; 804 case kModuleArchHexagon: 805 return "hexagon"; 806 } 807 CHECK(0 && "Invalid module arch"); 808 return ""; 809 } 810 811 #if SANITIZER_APPLE 812 const uptr kModuleUUIDSize = 16; 813 #else 814 const uptr kModuleUUIDSize = 32; 815 #endif 816 const uptr kMaxSegName = 16; 817 818 // Represents a binary loaded into virtual memory (e.g. this can be an 819 // executable or a shared object). 820 class LoadedModule { 821 public: 822 LoadedModule() 823 : full_name_(nullptr), 824 base_address_(0), 825 max_address_(0), 826 arch_(kModuleArchUnknown), 827 uuid_size_(0), 828 instrumented_(false) { 829 internal_memset(uuid_, 0, kModuleUUIDSize); 830 ranges_.clear(); 831 } 832 void set(const char *module_name, uptr base_address); 833 void set(const char *module_name, uptr base_address, ModuleArch arch, 834 u8 uuid[kModuleUUIDSize], bool instrumented); 835 void setUuid(const char *uuid, uptr size); 836 void clear(); 837 void addAddressRange(uptr beg, uptr end, bool executable, bool writable, 838 const char *name = nullptr); 839 bool containsAddress(uptr address) const; 840 841 const char *full_name() const { return full_name_; } 842 uptr base_address() const { return base_address_; } 843 uptr max_address() const { return max_address_; } 844 ModuleArch arch() const { return arch_; } 845 const u8 *uuid() const { return uuid_; } 846 uptr uuid_size() const { return uuid_size_; } 847 bool instrumented() const { return instrumented_; } 848 849 struct AddressRange { 850 AddressRange *next; 851 uptr beg; 852 uptr end; 853 bool executable; 854 bool writable; 855 char name[kMaxSegName]; 856 857 AddressRange(uptr beg, uptr end, bool executable, bool writable, 858 const char *name) 859 : next(nullptr), 860 beg(beg), 861 end(end), 862 executable(executable), 863 writable(writable) { 864 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name)); 865 } 866 }; 867 868 const IntrusiveList<AddressRange> &ranges() const { return ranges_; } 869 870 private: 871 char *full_name_; // Owned. 872 uptr base_address_; 873 uptr max_address_; 874 ModuleArch arch_; 875 uptr uuid_size_; 876 u8 uuid_[kModuleUUIDSize]; 877 bool instrumented_; 878 IntrusiveList<AddressRange> ranges_; 879 }; 880 881 // List of LoadedModules. OS-dependent implementation is responsible for 882 // filling this information. 883 class ListOfModules { 884 public: 885 ListOfModules() : initialized(false) {} 886 ~ListOfModules() { clear(); } 887 void init(); 888 void fallbackInit(); // Uses fallback init if available, otherwise clears 889 const LoadedModule *begin() const { return modules_.begin(); } 890 LoadedModule *begin() { return modules_.begin(); } 891 const LoadedModule *end() const { return modules_.end(); } 892 LoadedModule *end() { return modules_.end(); } 893 uptr size() const { return modules_.size(); } 894 const LoadedModule &operator[](uptr i) const { 895 CHECK_LT(i, modules_.size()); 896 return modules_[i]; 897 } 898 899 private: 900 void clear() { 901 for (auto &module : modules_) module.clear(); 902 modules_.clear(); 903 } 904 void clearOrInit() { 905 initialized ? clear() : modules_.Initialize(kInitialCapacity); 906 initialized = true; 907 } 908 909 InternalMmapVectorNoCtor<LoadedModule> modules_; 910 // We rarely have more than 16K loaded modules. 911 static const uptr kInitialCapacity = 1 << 14; 912 bool initialized; 913 }; 914 915 // Callback type for iterating over a set of memory ranges. 916 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); 917 918 enum AndroidApiLevel { 919 ANDROID_NOT_ANDROID = 0, 920 ANDROID_KITKAT = 19, 921 ANDROID_LOLLIPOP_MR1 = 22, 922 ANDROID_POST_LOLLIPOP = 23 923 }; 924 925 void WriteToSyslog(const char *buffer); 926 927 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__) 928 #define SANITIZER_WIN_TRACE 1 929 #else 930 #define SANITIZER_WIN_TRACE 0 931 #endif 932 933 #if SANITIZER_APPLE || SANITIZER_WIN_TRACE 934 void LogFullErrorReport(const char *buffer); 935 #else 936 inline void LogFullErrorReport(const char *buffer) {} 937 #endif 938 939 #if SANITIZER_LINUX || SANITIZER_APPLE 940 void WriteOneLineToSyslog(const char *s); 941 void LogMessageOnPrintf(const char *str); 942 #else 943 inline void WriteOneLineToSyslog(const char *s) {} 944 inline void LogMessageOnPrintf(const char *str) {} 945 #endif 946 947 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE 948 // Initialize Android logging. Any writes before this are silently lost. 949 void AndroidLogInit(); 950 void SetAbortMessage(const char *); 951 #else 952 inline void AndroidLogInit() {} 953 // FIXME: MacOS implementation could use CRSetCrashLogMessage. 954 inline void SetAbortMessage(const char *) {} 955 #endif 956 957 #if SANITIZER_ANDROID 958 void SanitizerInitializeUnwinder(); 959 AndroidApiLevel AndroidGetApiLevel(); 960 #else 961 inline void AndroidLogWrite(const char *buffer_unused) {} 962 inline void SanitizerInitializeUnwinder() {} 963 inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } 964 #endif 965 966 inline uptr GetPthreadDestructorIterations() { 967 #if SANITIZER_ANDROID 968 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; 969 #elif SANITIZER_POSIX 970 return 4; 971 #else 972 // Unused on Windows. 973 return 0; 974 #endif 975 } 976 977 void *internal_start_thread(void *(*func)(void*), void *arg); 978 void internal_join_thread(void *th); 979 void MaybeStartBackgroudThread(); 980 981 // Make the compiler think that something is going on there. 982 // Use this inside a loop that looks like memset/memcpy/etc to prevent the 983 // compiler from recognising it and turning it into an actual call to 984 // memset/memcpy/etc. 985 static inline void SanitizerBreakOptimization(void *arg) { 986 #if defined(_MSC_VER) && !defined(__clang__) 987 _ReadWriteBarrier(); 988 #else 989 __asm__ __volatile__("" : : "r" (arg) : "memory"); 990 #endif 991 } 992 993 struct SignalContext { 994 void *siginfo; 995 void *context; 996 uptr addr; 997 uptr pc; 998 uptr sp; 999 uptr bp; 1000 bool is_memory_access; 1001 enum WriteFlag { Unknown, Read, Write } write_flag; 1002 1003 // In some cases the kernel cannot provide the true faulting address; `addr` 1004 // will be zero then. This field allows to distinguish between these cases 1005 // and dereferences of null. 1006 bool is_true_faulting_addr; 1007 1008 // VS2013 doesn't implement unrestricted unions, so we need a trivial default 1009 // constructor 1010 SignalContext() = default; 1011 1012 // Creates signal context in a platform-specific manner. 1013 // SignalContext is going to keep pointers to siginfo and context without 1014 // owning them. 1015 SignalContext(void *siginfo, void *context) 1016 : siginfo(siginfo), 1017 context(context), 1018 addr(GetAddress()), 1019 is_memory_access(IsMemoryAccess()), 1020 write_flag(GetWriteFlag()), 1021 is_true_faulting_addr(IsTrueFaultingAddress()) { 1022 InitPcSpBp(); 1023 } 1024 1025 static void DumpAllRegisters(void *context); 1026 1027 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. 1028 int GetType() const; 1029 1030 // String description of the signal. 1031 const char *Describe() const; 1032 1033 // Returns true if signal is stack overflow. 1034 bool IsStackOverflow() const; 1035 1036 private: 1037 // Platform specific initialization. 1038 void InitPcSpBp(); 1039 uptr GetAddress() const; 1040 WriteFlag GetWriteFlag() const; 1041 bool IsMemoryAccess() const; 1042 bool IsTrueFaultingAddress() const; 1043 }; 1044 1045 void InitializePlatformEarly(); 1046 1047 template <typename Fn> 1048 class RunOnDestruction { 1049 public: 1050 explicit RunOnDestruction(Fn fn) : fn_(fn) {} 1051 ~RunOnDestruction() { fn_(); } 1052 1053 private: 1054 Fn fn_; 1055 }; 1056 1057 // A simple scope guard. Usage: 1058 // auto cleanup = at_scope_exit([]{ do_cleanup; }); 1059 template <typename Fn> 1060 RunOnDestruction<Fn> at_scope_exit(Fn fn) { 1061 return RunOnDestruction<Fn>(fn); 1062 } 1063 1064 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine 1065 // if a process uses virtual memory over 4TB (as many sanitizers like 1066 // to do). This function will abort the process if running on a kernel 1067 // that looks vulnerable. 1068 #if SANITIZER_LINUX && SANITIZER_S390_64 1069 void AvoidCVE_2016_2143(); 1070 #else 1071 inline void AvoidCVE_2016_2143() {} 1072 #endif 1073 1074 struct StackDepotStats { 1075 uptr n_uniq_ids; 1076 uptr allocated; 1077 }; 1078 1079 // The default value for allocator_release_to_os_interval_ms common flag to 1080 // indicate that sanitizer allocator should not attempt to release memory to OS. 1081 const s32 kReleaseToOSIntervalNever = -1; 1082 1083 void CheckNoDeepBind(const char *filename, int flag); 1084 1085 // Returns the requested amount of random data (up to 256 bytes) that can then 1086 // be used to seed a PRNG. Defaults to blocking like the underlying syscall. 1087 bool GetRandom(void *buffer, uptr length, bool blocking = true); 1088 1089 // Returns the number of logical processors on the system. 1090 u32 GetNumberOfCPUs(); 1091 extern u32 NumberOfCPUsCached; 1092 inline u32 GetNumberOfCPUsCached() { 1093 if (!NumberOfCPUsCached) 1094 NumberOfCPUsCached = GetNumberOfCPUs(); 1095 return NumberOfCPUsCached; 1096 } 1097 1098 } // namespace __sanitizer 1099 1100 inline void *operator new(__sanitizer::usize size, 1101 __sanitizer::LowLevelAllocator &alloc) { 1102 return alloc.Allocate(size); 1103 } 1104 1105 #endif // SANITIZER_COMMON_H 1106