1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between run-time libraries of sanitizers. 10 // 11 // It declares common functions and classes that are used in both runtimes. 12 // Implementation of some functions are provided in sanitizer_common, while 13 // others must be defined by run-time library itself. 14 //===----------------------------------------------------------------------===// 15 #ifndef SANITIZER_COMMON_H 16 #define SANITIZER_COMMON_H 17 18 #include "sanitizer_flags.h" 19 #include "sanitizer_interface_internal.h" 20 #include "sanitizer_internal_defs.h" 21 #include "sanitizer_libc.h" 22 #include "sanitizer_list.h" 23 #include "sanitizer_mutex.h" 24 25 #if defined(_MSC_VER) && !defined(__clang__) 26 extern "C" void _ReadWriteBarrier(); 27 #pragma intrinsic(_ReadWriteBarrier) 28 #endif 29 30 namespace __sanitizer { 31 32 struct AddressInfo; 33 struct BufferedStackTrace; 34 struct SignalContext; 35 struct StackTrace; 36 37 // Constants. 38 const uptr kWordSize = SANITIZER_WORDSIZE / 8; 39 const uptr kWordSizeInBits = 8 * kWordSize; 40 41 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE; 42 43 const uptr kMaxPathLength = 4096; 44 45 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb 46 47 static const uptr kErrorMessageBufferSize = 1 << 16; 48 49 // Denotes fake PC values that come from JIT/JAVA/etc. 50 // For such PC values __tsan_symbolize_external_ex() will be called. 51 const u64 kExternalPCBit = 1ULL << 60; 52 53 extern const char *SanitizerToolName; // Can be changed by the tool. 54 55 extern atomic_uint32_t current_verbosity; 56 inline void SetVerbosity(int verbosity) { 57 atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); 58 } 59 inline int Verbosity() { 60 return atomic_load(¤t_verbosity, memory_order_relaxed); 61 } 62 63 #if SANITIZER_ANDROID 64 inline uptr GetPageSize() { 65 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array. 66 return 4096; 67 } 68 inline uptr GetPageSizeCached() { 69 return 4096; 70 } 71 #else 72 uptr GetPageSize(); 73 extern uptr PageSizeCached; 74 inline uptr GetPageSizeCached() { 75 if (!PageSizeCached) 76 PageSizeCached = GetPageSize(); 77 return PageSizeCached; 78 } 79 #endif 80 uptr GetMmapGranularity(); 81 uptr GetMaxVirtualAddress(); 82 uptr GetMaxUserVirtualAddress(); 83 // Threads 84 tid_t GetTid(); 85 int TgKill(pid_t pid, tid_t tid, int sig); 86 uptr GetThreadSelf(); 87 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 88 uptr *stack_bottom); 89 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 90 uptr *tls_addr, uptr *tls_size); 91 92 // Memory management 93 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); 94 inline void *MmapOrDieQuietly(uptr size, const char *mem_type) { 95 return MmapOrDie(size, mem_type, /*raw_report*/ true); 96 } 97 void UnmapOrDie(void *addr, uptr size); 98 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that 99 // case returns nullptr. 100 void *MmapOrDieOnFatalError(uptr size, const char *mem_type); 101 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) 102 WARN_UNUSED_RESULT; 103 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, 104 const char *name = nullptr) WARN_UNUSED_RESULT; 105 void *MmapNoReserveOrDie(uptr size, const char *mem_type); 106 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); 107 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in 108 // that case returns nullptr. 109 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, 110 const char *name = nullptr); 111 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); 112 void *MmapNoAccess(uptr size); 113 // Map aligned chunk of address space; size and alignment are powers of two. 114 // Dies on all but out of memory errors, in the latter case returns nullptr. 115 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 116 const char *mem_type); 117 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an 118 // unaccessible memory. 119 bool MprotectNoAccess(uptr addr, uptr size); 120 bool MprotectReadOnly(uptr addr, uptr size); 121 122 void MprotectMallocZones(void *addr, int prot); 123 124 #if SANITIZER_LINUX 125 // Unmap memory. Currently only used on Linux. 126 void UnmapFromTo(uptr from, uptr to); 127 #endif 128 129 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will 130 // be aligned to the mmap granularity * 2^shadow_scale, or to 131 // 2^min_shadow_base_alignment if that is larger. The returned address will 132 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and 133 // shadow_size_bytes bytes on the right, which on linux is mapped no access. 134 // The high_mem_end may be updated if the original shadow size doesn't fit. 135 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, 136 uptr min_shadow_base_alignment, uptr &high_mem_end); 137 138 // Reserve memory range [beg, end]. If madvise_shadow is true then apply 139 // madvise (e.g. hugepages, core dumping) requested by options. 140 void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name, 141 bool madvise_shadow = true); 142 143 // Protect size bytes of memory starting at addr. Also try to protect 144 // several pages at the start of the address space as specified by 145 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start. 146 void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start, 147 uptr zero_base_max_shadow_start); 148 149 // Find an available address space. 150 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 151 uptr *largest_gap_found, uptr *max_occupied_addr); 152 153 // Used to check if we can map shadow memory to a fixed location. 154 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); 155 // Releases memory pages entirely within the [beg, end] address range. Noop if 156 // the provided range does not contain at least one entire page. 157 void ReleaseMemoryPagesToOS(uptr beg, uptr end); 158 void IncreaseTotalMmap(uptr size); 159 void DecreaseTotalMmap(uptr size); 160 uptr GetRSS(); 161 void SetShadowRegionHugePageMode(uptr addr, uptr length); 162 bool DontDumpShadowMemory(uptr addr, uptr length); 163 // Check if the built VMA size matches the runtime one. 164 void CheckVMASize(); 165 void RunMallocHooks(const void *ptr, uptr size); 166 void RunFreeHooks(const void *ptr); 167 168 class ReservedAddressRange { 169 public: 170 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0); 171 uptr InitAligned(uptr size, uptr align, const char *name = nullptr); 172 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr); 173 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); 174 void Unmap(uptr addr, uptr size); 175 void *base() const { return base_; } 176 uptr size() const { return size_; } 177 178 private: 179 void* base_; 180 uptr size_; 181 const char* name_; 182 uptr os_handle_; 183 }; 184 185 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file, 186 /*out*/uptr *stats, uptr stats_size); 187 188 // Parse the contents of /proc/self/smaps and generate a memory profile. 189 // |cb| is a tool-specific callback that fills the |stats| array containing 190 // |stats_size| elements. 191 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size); 192 193 // Simple low-level (mmap-based) allocator for internal use. Doesn't have 194 // constructor, so all instances of LowLevelAllocator should be 195 // linker initialized. 196 class LowLevelAllocator { 197 public: 198 // Requires an external lock. 199 void *Allocate(uptr size); 200 private: 201 char *allocated_end_; 202 char *allocated_current_; 203 }; 204 // Set the min alignment of LowLevelAllocator to at least alignment. 205 void SetLowLevelAllocateMinAlignment(uptr alignment); 206 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); 207 // Allows to register tool-specific callbacks for LowLevelAllocator. 208 // Passing NULL removes the callback. 209 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); 210 211 // IO 212 void CatastrophicErrorWrite(const char *buffer, uptr length); 213 void RawWrite(const char *buffer); 214 bool ColorizeReports(); 215 void RemoveANSIEscapeSequencesFromString(char *buffer); 216 void Printf(const char *format, ...); 217 void Report(const char *format, ...); 218 void SetPrintfAndReportCallback(void (*callback)(const char *)); 219 #define VReport(level, ...) \ 220 do { \ 221 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ 222 } while (0) 223 #define VPrintf(level, ...) \ 224 do { \ 225 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ 226 } while (0) 227 228 // Lock sanitizer error reporting and protects against nested errors. 229 class ScopedErrorReportLock { 230 public: 231 ScopedErrorReportLock(); 232 ~ScopedErrorReportLock(); 233 234 static void CheckLocked(); 235 }; 236 237 extern uptr stoptheworld_tracer_pid; 238 extern uptr stoptheworld_tracer_ppid; 239 240 bool IsAccessibleMemoryRange(uptr beg, uptr size); 241 242 // Error report formatting. 243 const char *StripPathPrefix(const char *filepath, 244 const char *strip_file_prefix); 245 // Strip the directories from the module name. 246 const char *StripModuleName(const char *module); 247 248 // OS 249 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); 250 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); 251 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); 252 const char *GetProcessName(); 253 void UpdateProcessName(); 254 void CacheBinaryName(); 255 void DisableCoreDumperIfNecessary(); 256 void DumpProcessMap(); 257 const char *GetEnv(const char *name); 258 bool SetEnv(const char *name, const char *value); 259 260 u32 GetUid(); 261 void ReExec(); 262 void CheckASLR(); 263 void CheckMPROTECT(); 264 char **GetArgv(); 265 char **GetEnviron(); 266 void PrintCmdline(); 267 bool StackSizeIsUnlimited(); 268 void SetStackSizeLimitInBytes(uptr limit); 269 bool AddressSpaceIsUnlimited(); 270 void SetAddressSpaceUnlimited(); 271 void AdjustStackSize(void *attr); 272 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args); 273 void SetSandboxingCallback(void (*f)()); 274 275 void InitializeCoverage(bool enabled, const char *coverage_dir); 276 277 void InitTlsSize(); 278 uptr GetTlsSize(); 279 280 // Other 281 void SleepForSeconds(int seconds); 282 void SleepForMillis(int millis); 283 u64 NanoTime(); 284 u64 MonotonicNanoTime(); 285 int Atexit(void (*function)(void)); 286 bool TemplateMatch(const char *templ, const char *str); 287 288 // Exit 289 void NORETURN Abort(); 290 void NORETURN Die(); 291 void NORETURN 292 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); 293 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, 294 const char *mmap_type, error_t err, 295 bool raw_report = false); 296 297 // Specific tools may override behavior of "Die" and "CheckFailed" functions 298 // to do tool-specific job. 299 typedef void (*DieCallbackType)(void); 300 301 // It's possible to add several callbacks that would be run when "Die" is 302 // called. The callbacks will be run in the opposite order. The tools are 303 // strongly recommended to setup all callbacks during initialization, when there 304 // is only a single thread. 305 bool AddDieCallback(DieCallbackType callback); 306 bool RemoveDieCallback(DieCallbackType callback); 307 308 void SetUserDieCallback(DieCallbackType callback); 309 310 typedef void (*CheckFailedCallbackType)(const char *, int, const char *, 311 u64, u64); 312 void SetCheckFailedCallback(CheckFailedCallbackType callback); 313 314 // Callback will be called if soft_rss_limit_mb is given and the limit is 315 // exceeded (exceeded==true) or if rss went down below the limit 316 // (exceeded==false). 317 // The callback should be registered once at the tool init time. 318 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded)); 319 320 // Functions related to signal handling. 321 typedef void (*SignalHandlerType)(int, void *, void *); 322 HandleSignalMode GetHandleSignalMode(int signum); 323 void InstallDeadlySignalHandlers(SignalHandlerType handler); 324 325 // Signal reporting. 326 // Each sanitizer uses slightly different implementation of stack unwinding. 327 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, 328 const void *callback_context, 329 BufferedStackTrace *stack); 330 // Print deadly signal report and die. 331 void HandleDeadlySignal(void *siginfo, void *context, u32 tid, 332 UnwindSignalStackCallbackType unwind, 333 const void *unwind_context); 334 335 // Part of HandleDeadlySignal, exposed for asan. 336 void StartReportDeadlySignal(); 337 // Part of HandleDeadlySignal, exposed for asan. 338 void ReportDeadlySignal(const SignalContext &sig, u32 tid, 339 UnwindSignalStackCallbackType unwind, 340 const void *unwind_context); 341 342 // Alternative signal stack (POSIX-only). 343 void SetAlternateSignalStack(); 344 void UnsetAlternateSignalStack(); 345 346 // We don't want a summary too long. 347 const int kMaxSummaryLength = 1024; 348 // Construct a one-line string: 349 // SUMMARY: SanitizerToolName: error_message 350 // and pass it to __sanitizer_report_error_summary. 351 // If alt_tool_name is provided, it's used in place of SanitizerToolName. 352 void ReportErrorSummary(const char *error_message, 353 const char *alt_tool_name = nullptr); 354 // Same as above, but construct error_message as: 355 // error_type file:line[:column][ function] 356 void ReportErrorSummary(const char *error_type, const AddressInfo &info, 357 const char *alt_tool_name = nullptr); 358 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. 359 void ReportErrorSummary(const char *error_type, const StackTrace *trace, 360 const char *alt_tool_name = nullptr); 361 362 void ReportMmapWriteExec(int prot); 363 364 // Math 365 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) 366 extern "C" { 367 unsigned char _BitScanForward(unsigned long *index, unsigned long mask); 368 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); 369 #if defined(_WIN64) 370 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); 371 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); 372 #endif 373 } 374 #endif 375 376 inline uptr MostSignificantSetBitIndex(uptr x) { 377 CHECK_NE(x, 0U); 378 unsigned long up; 379 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 380 # ifdef _WIN64 381 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); 382 # else 383 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); 384 # endif 385 #elif defined(_WIN64) 386 _BitScanReverse64(&up, x); 387 #else 388 _BitScanReverse(&up, x); 389 #endif 390 return up; 391 } 392 393 inline uptr LeastSignificantSetBitIndex(uptr x) { 394 CHECK_NE(x, 0U); 395 unsigned long up; 396 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 397 # ifdef _WIN64 398 up = __builtin_ctzll(x); 399 # else 400 up = __builtin_ctzl(x); 401 # endif 402 #elif defined(_WIN64) 403 _BitScanForward64(&up, x); 404 #else 405 _BitScanForward(&up, x); 406 #endif 407 return up; 408 } 409 410 inline bool IsPowerOfTwo(uptr x) { 411 return (x & (x - 1)) == 0; 412 } 413 414 inline uptr RoundUpToPowerOfTwo(uptr size) { 415 CHECK(size); 416 if (IsPowerOfTwo(size)) return size; 417 418 uptr up = MostSignificantSetBitIndex(size); 419 CHECK_LT(size, (1ULL << (up + 1))); 420 CHECK_GT(size, (1ULL << up)); 421 return 1ULL << (up + 1); 422 } 423 424 inline uptr RoundUpTo(uptr size, uptr boundary) { 425 RAW_CHECK(IsPowerOfTwo(boundary)); 426 return (size + boundary - 1) & ~(boundary - 1); 427 } 428 429 inline uptr RoundDownTo(uptr x, uptr boundary) { 430 return x & ~(boundary - 1); 431 } 432 433 inline bool IsAligned(uptr a, uptr alignment) { 434 return (a & (alignment - 1)) == 0; 435 } 436 437 inline uptr Log2(uptr x) { 438 CHECK(IsPowerOfTwo(x)); 439 return LeastSignificantSetBitIndex(x); 440 } 441 442 // Don't use std::min, std::max or std::swap, to minimize dependency 443 // on libstdc++. 444 template<class T> T Min(T a, T b) { return a < b ? a : b; } 445 template<class T> T Max(T a, T b) { return a > b ? a : b; } 446 template<class T> void Swap(T& a, T& b) { 447 T tmp = a; 448 a = b; 449 b = tmp; 450 } 451 452 // Char handling 453 inline bool IsSpace(int c) { 454 return (c == ' ') || (c == '\n') || (c == '\t') || 455 (c == '\f') || (c == '\r') || (c == '\v'); 456 } 457 inline bool IsDigit(int c) { 458 return (c >= '0') && (c <= '9'); 459 } 460 inline int ToLower(int c) { 461 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; 462 } 463 464 // A low-level vector based on mmap. May incur a significant memory overhead for 465 // small vectors. 466 // WARNING: The current implementation supports only POD types. 467 template<typename T> 468 class InternalMmapVectorNoCtor { 469 public: 470 using value_type = T; 471 void Initialize(uptr initial_capacity) { 472 capacity_bytes_ = 0; 473 size_ = 0; 474 data_ = 0; 475 reserve(initial_capacity); 476 } 477 void Destroy() { UnmapOrDie(data_, capacity_bytes_); } 478 T &operator[](uptr i) { 479 CHECK_LT(i, size_); 480 return data_[i]; 481 } 482 const T &operator[](uptr i) const { 483 CHECK_LT(i, size_); 484 return data_[i]; 485 } 486 void push_back(const T &element) { 487 CHECK_LE(size_, capacity()); 488 if (size_ == capacity()) { 489 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); 490 Realloc(new_capacity); 491 } 492 internal_memcpy(&data_[size_++], &element, sizeof(T)); 493 } 494 T &back() { 495 CHECK_GT(size_, 0); 496 return data_[size_ - 1]; 497 } 498 void pop_back() { 499 CHECK_GT(size_, 0); 500 size_--; 501 } 502 uptr size() const { 503 return size_; 504 } 505 const T *data() const { 506 return data_; 507 } 508 T *data() { 509 return data_; 510 } 511 uptr capacity() const { return capacity_bytes_ / sizeof(T); } 512 void reserve(uptr new_size) { 513 // Never downsize internal buffer. 514 if (new_size > capacity()) 515 Realloc(new_size); 516 } 517 void resize(uptr new_size) { 518 if (new_size > size_) { 519 reserve(new_size); 520 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); 521 } 522 size_ = new_size; 523 } 524 525 void clear() { size_ = 0; } 526 bool empty() const { return size() == 0; } 527 528 const T *begin() const { 529 return data(); 530 } 531 T *begin() { 532 return data(); 533 } 534 const T *end() const { 535 return data() + size(); 536 } 537 T *end() { 538 return data() + size(); 539 } 540 541 void swap(InternalMmapVectorNoCtor &other) { 542 Swap(data_, other.data_); 543 Swap(capacity_bytes_, other.capacity_bytes_); 544 Swap(size_, other.size_); 545 } 546 547 private: 548 void Realloc(uptr new_capacity) { 549 CHECK_GT(new_capacity, 0); 550 CHECK_LE(size_, new_capacity); 551 uptr new_capacity_bytes = 552 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached()); 553 T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector"); 554 internal_memcpy(new_data, data_, size_ * sizeof(T)); 555 UnmapOrDie(data_, capacity_bytes_); 556 data_ = new_data; 557 capacity_bytes_ = new_capacity_bytes; 558 } 559 560 T *data_; 561 uptr capacity_bytes_; 562 uptr size_; 563 }; 564 565 template <typename T> 566 bool operator==(const InternalMmapVectorNoCtor<T> &lhs, 567 const InternalMmapVectorNoCtor<T> &rhs) { 568 if (lhs.size() != rhs.size()) return false; 569 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0; 570 } 571 572 template <typename T> 573 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs, 574 const InternalMmapVectorNoCtor<T> &rhs) { 575 return !(lhs == rhs); 576 } 577 578 template<typename T> 579 class InternalMmapVector : public InternalMmapVectorNoCtor<T> { 580 public: 581 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); } 582 explicit InternalMmapVector(uptr cnt) { 583 InternalMmapVectorNoCtor<T>::Initialize(cnt); 584 this->resize(cnt); 585 } 586 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } 587 // Disallow copies and moves. 588 InternalMmapVector(const InternalMmapVector &) = delete; 589 InternalMmapVector &operator=(const InternalMmapVector &) = delete; 590 InternalMmapVector(InternalMmapVector &&) = delete; 591 InternalMmapVector &operator=(InternalMmapVector &&) = delete; 592 }; 593 594 class InternalScopedString : public InternalMmapVector<char> { 595 public: 596 explicit InternalScopedString(uptr max_length) 597 : InternalMmapVector<char>(max_length), length_(0) { 598 (*this)[0] = '\0'; 599 } 600 uptr length() { return length_; } 601 void clear() { 602 (*this)[0] = '\0'; 603 length_ = 0; 604 } 605 void append(const char *format, ...); 606 607 private: 608 uptr length_; 609 }; 610 611 template <class T> 612 struct CompareLess { 613 bool operator()(const T &a, const T &b) const { return a < b; } 614 }; 615 616 // HeapSort for arrays and InternalMmapVector. 617 template <class T, class Compare = CompareLess<T>> 618 void Sort(T *v, uptr size, Compare comp = {}) { 619 if (size < 2) 620 return; 621 // Stage 1: insert elements to the heap. 622 for (uptr i = 1; i < size; i++) { 623 uptr j, p; 624 for (j = i; j > 0; j = p) { 625 p = (j - 1) / 2; 626 if (comp(v[p], v[j])) 627 Swap(v[j], v[p]); 628 else 629 break; 630 } 631 } 632 // Stage 2: swap largest element with the last one, 633 // and sink the new top. 634 for (uptr i = size - 1; i > 0; i--) { 635 Swap(v[0], v[i]); 636 uptr j, max_ind; 637 for (j = 0; j < i; j = max_ind) { 638 uptr left = 2 * j + 1; 639 uptr right = 2 * j + 2; 640 max_ind = j; 641 if (left < i && comp(v[max_ind], v[left])) 642 max_ind = left; 643 if (right < i && comp(v[max_ind], v[right])) 644 max_ind = right; 645 if (max_ind != j) 646 Swap(v[j], v[max_ind]); 647 else 648 break; 649 } 650 } 651 } 652 653 // Works like std::lower_bound: finds the first element that is not less 654 // than the val. 655 template <class Container, 656 class Compare = CompareLess<typename Container::value_type>> 657 uptr InternalLowerBound(const Container &v, 658 const typename Container::value_type &val, 659 Compare comp = {}) { 660 uptr first = 0; 661 uptr last = v.size(); 662 while (last > first) { 663 uptr mid = (first + last) / 2; 664 if (comp(v[mid], val)) 665 first = mid + 1; 666 else 667 last = mid; 668 } 669 return first; 670 } 671 672 enum ModuleArch { 673 kModuleArchUnknown, 674 kModuleArchI386, 675 kModuleArchX86_64, 676 kModuleArchX86_64H, 677 kModuleArchARMV6, 678 kModuleArchARMV7, 679 kModuleArchARMV7S, 680 kModuleArchARMV7K, 681 kModuleArchARM64, 682 kModuleArchRISCV64 683 }; 684 685 // Sorts and removes duplicates from the container. 686 template <class Container, 687 class Compare = CompareLess<typename Container::value_type>> 688 void SortAndDedup(Container &v, Compare comp = {}) { 689 Sort(v.data(), v.size(), comp); 690 uptr size = v.size(); 691 if (size < 2) 692 return; 693 uptr last = 0; 694 for (uptr i = 1; i < size; ++i) { 695 if (comp(v[last], v[i])) { 696 ++last; 697 if (last != i) 698 v[last] = v[i]; 699 } else { 700 CHECK(!comp(v[i], v[last])); 701 } 702 } 703 v.resize(last + 1); 704 } 705 706 // Opens the file 'file_name" and reads up to 'max_len' bytes. 707 // The resulting buffer is mmaped and stored in '*buff'. 708 // Returns true if file was successfully opened and read. 709 bool ReadFileToVector(const char *file_name, 710 InternalMmapVectorNoCtor<char> *buff, 711 uptr max_len = 1 << 26, error_t *errno_p = nullptr); 712 713 // Opens the file 'file_name" and reads up to 'max_len' bytes. 714 // This function is less I/O efficient than ReadFileToVector as it may reread 715 // file multiple times to avoid mmap during read attempts. It's used to read 716 // procmap, so short reads with mmap in between can produce inconsistent result. 717 // The resulting buffer is mmaped and stored in '*buff'. 718 // The size of the mmaped region is stored in '*buff_size'. 719 // The total number of read bytes is stored in '*read_len'. 720 // Returns true if file was successfully opened and read. 721 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 722 uptr *read_len, uptr max_len = 1 << 26, 723 error_t *errno_p = nullptr); 724 725 // When adding a new architecture, don't forget to also update 726 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp. 727 inline const char *ModuleArchToString(ModuleArch arch) { 728 switch (arch) { 729 case kModuleArchUnknown: 730 return ""; 731 case kModuleArchI386: 732 return "i386"; 733 case kModuleArchX86_64: 734 return "x86_64"; 735 case kModuleArchX86_64H: 736 return "x86_64h"; 737 case kModuleArchARMV6: 738 return "armv6"; 739 case kModuleArchARMV7: 740 return "armv7"; 741 case kModuleArchARMV7S: 742 return "armv7s"; 743 case kModuleArchARMV7K: 744 return "armv7k"; 745 case kModuleArchARM64: 746 return "arm64"; 747 case kModuleArchRISCV64: 748 return "riscv64"; 749 } 750 CHECK(0 && "Invalid module arch"); 751 return ""; 752 } 753 754 const uptr kModuleUUIDSize = 16; 755 const uptr kMaxSegName = 16; 756 757 // Represents a binary loaded into virtual memory (e.g. this can be an 758 // executable or a shared object). 759 class LoadedModule { 760 public: 761 LoadedModule() 762 : full_name_(nullptr), 763 base_address_(0), 764 max_executable_address_(0), 765 arch_(kModuleArchUnknown), 766 instrumented_(false) { 767 internal_memset(uuid_, 0, kModuleUUIDSize); 768 ranges_.clear(); 769 } 770 void set(const char *module_name, uptr base_address); 771 void set(const char *module_name, uptr base_address, ModuleArch arch, 772 u8 uuid[kModuleUUIDSize], bool instrumented); 773 void clear(); 774 void addAddressRange(uptr beg, uptr end, bool executable, bool writable, 775 const char *name = nullptr); 776 bool containsAddress(uptr address) const; 777 778 const char *full_name() const { return full_name_; } 779 uptr base_address() const { return base_address_; } 780 uptr max_executable_address() const { return max_executable_address_; } 781 ModuleArch arch() const { return arch_; } 782 const u8 *uuid() const { return uuid_; } 783 bool instrumented() const { return instrumented_; } 784 785 struct AddressRange { 786 AddressRange *next; 787 uptr beg; 788 uptr end; 789 bool executable; 790 bool writable; 791 char name[kMaxSegName]; 792 793 AddressRange(uptr beg, uptr end, bool executable, bool writable, 794 const char *name) 795 : next(nullptr), 796 beg(beg), 797 end(end), 798 executable(executable), 799 writable(writable) { 800 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name)); 801 } 802 }; 803 804 const IntrusiveList<AddressRange> &ranges() const { return ranges_; } 805 806 private: 807 char *full_name_; // Owned. 808 uptr base_address_; 809 uptr max_executable_address_; 810 ModuleArch arch_; 811 u8 uuid_[kModuleUUIDSize]; 812 bool instrumented_; 813 IntrusiveList<AddressRange> ranges_; 814 }; 815 816 // List of LoadedModules. OS-dependent implementation is responsible for 817 // filling this information. 818 class ListOfModules { 819 public: 820 ListOfModules() : initialized(false) {} 821 ~ListOfModules() { clear(); } 822 void init(); 823 void fallbackInit(); // Uses fallback init if available, otherwise clears 824 const LoadedModule *begin() const { return modules_.begin(); } 825 LoadedModule *begin() { return modules_.begin(); } 826 const LoadedModule *end() const { return modules_.end(); } 827 LoadedModule *end() { return modules_.end(); } 828 uptr size() const { return modules_.size(); } 829 const LoadedModule &operator[](uptr i) const { 830 CHECK_LT(i, modules_.size()); 831 return modules_[i]; 832 } 833 834 private: 835 void clear() { 836 for (auto &module : modules_) module.clear(); 837 modules_.clear(); 838 } 839 void clearOrInit() { 840 initialized ? clear() : modules_.Initialize(kInitialCapacity); 841 initialized = true; 842 } 843 844 InternalMmapVectorNoCtor<LoadedModule> modules_; 845 // We rarely have more than 16K loaded modules. 846 static const uptr kInitialCapacity = 1 << 14; 847 bool initialized; 848 }; 849 850 // Callback type for iterating over a set of memory ranges. 851 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); 852 853 enum AndroidApiLevel { 854 ANDROID_NOT_ANDROID = 0, 855 ANDROID_KITKAT = 19, 856 ANDROID_LOLLIPOP_MR1 = 22, 857 ANDROID_POST_LOLLIPOP = 23 858 }; 859 860 void WriteToSyslog(const char *buffer); 861 862 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__) 863 #define SANITIZER_WIN_TRACE 1 864 #else 865 #define SANITIZER_WIN_TRACE 0 866 #endif 867 868 #if SANITIZER_MAC || SANITIZER_WIN_TRACE 869 void LogFullErrorReport(const char *buffer); 870 #else 871 inline void LogFullErrorReport(const char *buffer) {} 872 #endif 873 874 #if SANITIZER_LINUX || SANITIZER_MAC 875 void WriteOneLineToSyslog(const char *s); 876 void LogMessageOnPrintf(const char *str); 877 #else 878 inline void WriteOneLineToSyslog(const char *s) {} 879 inline void LogMessageOnPrintf(const char *str) {} 880 #endif 881 882 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE 883 // Initialize Android logging. Any writes before this are silently lost. 884 void AndroidLogInit(); 885 void SetAbortMessage(const char *); 886 #else 887 inline void AndroidLogInit() {} 888 // FIXME: MacOS implementation could use CRSetCrashLogMessage. 889 inline void SetAbortMessage(const char *) {} 890 #endif 891 892 #if SANITIZER_ANDROID 893 void SanitizerInitializeUnwinder(); 894 AndroidApiLevel AndroidGetApiLevel(); 895 #else 896 inline void AndroidLogWrite(const char *buffer_unused) {} 897 inline void SanitizerInitializeUnwinder() {} 898 inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } 899 #endif 900 901 inline uptr GetPthreadDestructorIterations() { 902 #if SANITIZER_ANDROID 903 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; 904 #elif SANITIZER_POSIX 905 return 4; 906 #else 907 // Unused on Windows. 908 return 0; 909 #endif 910 } 911 912 void *internal_start_thread(void *(*func)(void*), void *arg); 913 void internal_join_thread(void *th); 914 void MaybeStartBackgroudThread(); 915 916 // Make the compiler think that something is going on there. 917 // Use this inside a loop that looks like memset/memcpy/etc to prevent the 918 // compiler from recognising it and turning it into an actual call to 919 // memset/memcpy/etc. 920 static inline void SanitizerBreakOptimization(void *arg) { 921 #if defined(_MSC_VER) && !defined(__clang__) 922 _ReadWriteBarrier(); 923 #else 924 __asm__ __volatile__("" : : "r" (arg) : "memory"); 925 #endif 926 } 927 928 struct SignalContext { 929 void *siginfo; 930 void *context; 931 uptr addr; 932 uptr pc; 933 uptr sp; 934 uptr bp; 935 bool is_memory_access; 936 enum WriteFlag { UNKNOWN, READ, WRITE } write_flag; 937 938 // In some cases the kernel cannot provide the true faulting address; `addr` 939 // will be zero then. This field allows to distinguish between these cases 940 // and dereferences of null. 941 bool is_true_faulting_addr; 942 943 // VS2013 doesn't implement unrestricted unions, so we need a trivial default 944 // constructor 945 SignalContext() = default; 946 947 // Creates signal context in a platform-specific manner. 948 // SignalContext is going to keep pointers to siginfo and context without 949 // owning them. 950 SignalContext(void *siginfo, void *context) 951 : siginfo(siginfo), 952 context(context), 953 addr(GetAddress()), 954 is_memory_access(IsMemoryAccess()), 955 write_flag(GetWriteFlag()), 956 is_true_faulting_addr(IsTrueFaultingAddress()) { 957 InitPcSpBp(); 958 } 959 960 static void DumpAllRegisters(void *context); 961 962 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. 963 int GetType() const; 964 965 // String description of the signal. 966 const char *Describe() const; 967 968 // Returns true if signal is stack overflow. 969 bool IsStackOverflow() const; 970 971 private: 972 // Platform specific initialization. 973 void InitPcSpBp(); 974 uptr GetAddress() const; 975 WriteFlag GetWriteFlag() const; 976 bool IsMemoryAccess() const; 977 bool IsTrueFaultingAddress() const; 978 }; 979 980 void InitializePlatformEarly(); 981 void MaybeReexec(); 982 983 template <typename Fn> 984 class RunOnDestruction { 985 public: 986 explicit RunOnDestruction(Fn fn) : fn_(fn) {} 987 ~RunOnDestruction() { fn_(); } 988 989 private: 990 Fn fn_; 991 }; 992 993 // A simple scope guard. Usage: 994 // auto cleanup = at_scope_exit([]{ do_cleanup; }); 995 template <typename Fn> 996 RunOnDestruction<Fn> at_scope_exit(Fn fn) { 997 return RunOnDestruction<Fn>(fn); 998 } 999 1000 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine 1001 // if a process uses virtual memory over 4TB (as many sanitizers like 1002 // to do). This function will abort the process if running on a kernel 1003 // that looks vulnerable. 1004 #if SANITIZER_LINUX && SANITIZER_S390_64 1005 void AvoidCVE_2016_2143(); 1006 #else 1007 inline void AvoidCVE_2016_2143() {} 1008 #endif 1009 1010 struct StackDepotStats { 1011 uptr n_uniq_ids; 1012 uptr allocated; 1013 }; 1014 1015 // The default value for allocator_release_to_os_interval_ms common flag to 1016 // indicate that sanitizer allocator should not attempt to release memory to OS. 1017 const s32 kReleaseToOSIntervalNever = -1; 1018 1019 void CheckNoDeepBind(const char *filename, int flag); 1020 1021 // Returns the requested amount of random data (up to 256 bytes) that can then 1022 // be used to seed a PRNG. Defaults to blocking like the underlying syscall. 1023 bool GetRandom(void *buffer, uptr length, bool blocking = true); 1024 1025 // Returns the number of logical processors on the system. 1026 u32 GetNumberOfCPUs(); 1027 extern u32 NumberOfCPUsCached; 1028 inline u32 GetNumberOfCPUsCached() { 1029 if (!NumberOfCPUsCached) 1030 NumberOfCPUsCached = GetNumberOfCPUs(); 1031 return NumberOfCPUsCached; 1032 } 1033 1034 template <typename T> 1035 class ArrayRef { 1036 public: 1037 ArrayRef() {} 1038 ArrayRef(T *begin, T *end) : begin_(begin), end_(end) {} 1039 1040 T *begin() { return begin_; } 1041 T *end() { return end_; } 1042 1043 private: 1044 T *begin_ = nullptr; 1045 T *end_ = nullptr; 1046 }; 1047 1048 } // namespace __sanitizer 1049 1050 inline void *operator new(__sanitizer::operator_new_size_type size, 1051 __sanitizer::LowLevelAllocator &alloc) { // NOLINT 1052 return alloc.Allocate(size); 1053 } 1054 1055 #endif // SANITIZER_COMMON_H 1056