xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_common.h (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between run-time libraries of sanitizers.
10 //
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
17 
18 #include "sanitizer_flags.h"
19 #include "sanitizer_interface_internal.h"
20 #include "sanitizer_internal_defs.h"
21 #include "sanitizer_libc.h"
22 #include "sanitizer_list.h"
23 #include "sanitizer_mutex.h"
24 
25 #if defined(_MSC_VER) && !defined(__clang__)
26 extern "C" void _ReadWriteBarrier();
27 #pragma intrinsic(_ReadWriteBarrier)
28 #endif
29 
30 namespace __sanitizer {
31 
32 struct AddressInfo;
33 struct BufferedStackTrace;
34 struct SignalContext;
35 struct StackTrace;
36 
37 // Constants.
38 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
39 const uptr kWordSizeInBits = 8 * kWordSize;
40 
41 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
42 
43 const uptr kMaxPathLength = 4096;
44 
45 const uptr kMaxThreadStackSize = 1 << 30;  // 1Gb
46 
47 static const uptr kErrorMessageBufferSize = 1 << 16;
48 
49 // Denotes fake PC values that come from JIT/JAVA/etc.
50 // For such PC values __tsan_symbolize_external_ex() will be called.
51 const u64 kExternalPCBit = 1ULL << 60;
52 
53 extern const char *SanitizerToolName;  // Can be changed by the tool.
54 
55 extern atomic_uint32_t current_verbosity;
56 INLINE void SetVerbosity(int verbosity) {
57   atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
58 }
59 INLINE int Verbosity() {
60   return atomic_load(&current_verbosity, memory_order_relaxed);
61 }
62 
63 #if SANITIZER_ANDROID
64 INLINE uptr GetPageSize() {
65 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
66   return 4096;
67 }
68 INLINE uptr GetPageSizeCached() {
69   return 4096;
70 }
71 #else
72 uptr GetPageSize();
73 extern uptr PageSizeCached;
74 INLINE uptr GetPageSizeCached() {
75   if (!PageSizeCached)
76     PageSizeCached = GetPageSize();
77   return PageSizeCached;
78 }
79 #endif
80 uptr GetMmapGranularity();
81 uptr GetMaxVirtualAddress();
82 uptr GetMaxUserVirtualAddress();
83 // Threads
84 tid_t GetTid();
85 int TgKill(pid_t pid, tid_t tid, int sig);
86 uptr GetThreadSelf();
87 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
88                                 uptr *stack_bottom);
89 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
90                           uptr *tls_addr, uptr *tls_size);
91 
92 // Memory management
93 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
94 INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
95   return MmapOrDie(size, mem_type, /*raw_report*/ true);
96 }
97 void UnmapOrDie(void *addr, uptr size);
98 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
99 // case returns nullptr.
100 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
101 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
102      WARN_UNUSED_RESULT;
103 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
104 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
105 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
106 // that case returns nullptr.
107 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
108                                  const char *name = nullptr);
109 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
110 void *MmapNoAccess(uptr size);
111 // Map aligned chunk of address space; size and alignment are powers of two.
112 // Dies on all but out of memory errors, in the latter case returns nullptr.
113 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
114                                    const char *mem_type);
115 // Disallow access to a memory range.  Use MmapFixedNoAccess to allocate an
116 // unaccessible memory.
117 bool MprotectNoAccess(uptr addr, uptr size);
118 bool MprotectReadOnly(uptr addr, uptr size);
119 
120 void MprotectMallocZones(void *addr, int prot);
121 
122 // Find an available address space.
123 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
124                               uptr *largest_gap_found, uptr *max_occupied_addr);
125 
126 // Used to check if we can map shadow memory to a fixed location.
127 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
128 // Releases memory pages entirely within the [beg, end] address range. Noop if
129 // the provided range does not contain at least one entire page.
130 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
131 void IncreaseTotalMmap(uptr size);
132 void DecreaseTotalMmap(uptr size);
133 uptr GetRSS();
134 bool NoHugePagesInRegion(uptr addr, uptr length);
135 bool DontDumpShadowMemory(uptr addr, uptr length);
136 // Check if the built VMA size matches the runtime one.
137 void CheckVMASize();
138 void RunMallocHooks(const void *ptr, uptr size);
139 void RunFreeHooks(const void *ptr);
140 
141 class ReservedAddressRange {
142  public:
143   uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
144   uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
145   uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
146   void Unmap(uptr addr, uptr size);
147   void *base() const { return base_; }
148   uptr size() const { return size_; }
149 
150  private:
151   void* base_;
152   uptr size_;
153   const char* name_;
154   uptr os_handle_;
155 };
156 
157 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
158                                /*out*/uptr *stats, uptr stats_size);
159 
160 // Parse the contents of /proc/self/smaps and generate a memory profile.
161 // |cb| is a tool-specific callback that fills the |stats| array containing
162 // |stats_size| elements.
163 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);
164 
165 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
166 // constructor, so all instances of LowLevelAllocator should be
167 // linker initialized.
168 class LowLevelAllocator {
169  public:
170   // Requires an external lock.
171   void *Allocate(uptr size);
172  private:
173   char *allocated_end_;
174   char *allocated_current_;
175 };
176 // Set the min alignment of LowLevelAllocator to at least alignment.
177 void SetLowLevelAllocateMinAlignment(uptr alignment);
178 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
179 // Allows to register tool-specific callbacks for LowLevelAllocator.
180 // Passing NULL removes the callback.
181 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
182 
183 // IO
184 void CatastrophicErrorWrite(const char *buffer, uptr length);
185 void RawWrite(const char *buffer);
186 bool ColorizeReports();
187 void RemoveANSIEscapeSequencesFromString(char *buffer);
188 void Printf(const char *format, ...);
189 void Report(const char *format, ...);
190 void SetPrintfAndReportCallback(void (*callback)(const char *));
191 #define VReport(level, ...)                                              \
192   do {                                                                   \
193     if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
194   } while (0)
195 #define VPrintf(level, ...)                                              \
196   do {                                                                   \
197     if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
198   } while (0)
199 
200 // Lock sanitizer error reporting and protects against nested errors.
201 class ScopedErrorReportLock {
202  public:
203   ScopedErrorReportLock();
204   ~ScopedErrorReportLock();
205 
206   static void CheckLocked();
207 };
208 
209 extern uptr stoptheworld_tracer_pid;
210 extern uptr stoptheworld_tracer_ppid;
211 
212 bool IsAccessibleMemoryRange(uptr beg, uptr size);
213 
214 // Error report formatting.
215 const char *StripPathPrefix(const char *filepath,
216                             const char *strip_file_prefix);
217 // Strip the directories from the module name.
218 const char *StripModuleName(const char *module);
219 
220 // OS
221 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
222 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
223 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
224 const char *GetProcessName();
225 void UpdateProcessName();
226 void CacheBinaryName();
227 void DisableCoreDumperIfNecessary();
228 void DumpProcessMap();
229 void PrintModuleMap();
230 const char *GetEnv(const char *name);
231 bool SetEnv(const char *name, const char *value);
232 
233 u32 GetUid();
234 void ReExec();
235 void CheckASLR();
236 void CheckMPROTECT();
237 char **GetArgv();
238 char **GetEnviron();
239 void PrintCmdline();
240 bool StackSizeIsUnlimited();
241 void SetStackSizeLimitInBytes(uptr limit);
242 bool AddressSpaceIsUnlimited();
243 void SetAddressSpaceUnlimited();
244 void AdjustStackSize(void *attr);
245 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
246 void SetSandboxingCallback(void (*f)());
247 
248 void InitializeCoverage(bool enabled, const char *coverage_dir);
249 
250 void InitTlsSize();
251 uptr GetTlsSize();
252 
253 // Other
254 void SleepForSeconds(int seconds);
255 void SleepForMillis(int millis);
256 u64 NanoTime();
257 u64 MonotonicNanoTime();
258 int Atexit(void (*function)(void));
259 bool TemplateMatch(const char *templ, const char *str);
260 
261 // Exit
262 void NORETURN Abort();
263 void NORETURN Die();
264 void NORETURN
265 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
266 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
267                                       const char *mmap_type, error_t err,
268                                       bool raw_report = false);
269 
270 // Specific tools may override behavior of "Die" and "CheckFailed" functions
271 // to do tool-specific job.
272 typedef void (*DieCallbackType)(void);
273 
274 // It's possible to add several callbacks that would be run when "Die" is
275 // called. The callbacks will be run in the opposite order. The tools are
276 // strongly recommended to setup all callbacks during initialization, when there
277 // is only a single thread.
278 bool AddDieCallback(DieCallbackType callback);
279 bool RemoveDieCallback(DieCallbackType callback);
280 
281 void SetUserDieCallback(DieCallbackType callback);
282 
283 typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
284                                        u64, u64);
285 void SetCheckFailedCallback(CheckFailedCallbackType callback);
286 
287 // Callback will be called if soft_rss_limit_mb is given and the limit is
288 // exceeded (exceeded==true) or if rss went down below the limit
289 // (exceeded==false).
290 // The callback should be registered once at the tool init time.
291 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
292 
293 // Functions related to signal handling.
294 typedef void (*SignalHandlerType)(int, void *, void *);
295 HandleSignalMode GetHandleSignalMode(int signum);
296 void InstallDeadlySignalHandlers(SignalHandlerType handler);
297 
298 // Signal reporting.
299 // Each sanitizer uses slightly different implementation of stack unwinding.
300 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
301                                               const void *callback_context,
302                                               BufferedStackTrace *stack);
303 // Print deadly signal report and die.
304 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
305                         UnwindSignalStackCallbackType unwind,
306                         const void *unwind_context);
307 
308 // Part of HandleDeadlySignal, exposed for asan.
309 void StartReportDeadlySignal();
310 // Part of HandleDeadlySignal, exposed for asan.
311 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
312                         UnwindSignalStackCallbackType unwind,
313                         const void *unwind_context);
314 
315 // Alternative signal stack (POSIX-only).
316 void SetAlternateSignalStack();
317 void UnsetAlternateSignalStack();
318 
319 // We don't want a summary too long.
320 const int kMaxSummaryLength = 1024;
321 // Construct a one-line string:
322 //   SUMMARY: SanitizerToolName: error_message
323 // and pass it to __sanitizer_report_error_summary.
324 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
325 void ReportErrorSummary(const char *error_message,
326                         const char *alt_tool_name = nullptr);
327 // Same as above, but construct error_message as:
328 //   error_type file:line[:column][ function]
329 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
330                         const char *alt_tool_name = nullptr);
331 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
332 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
333                         const char *alt_tool_name = nullptr);
334 
335 void ReportMmapWriteExec(int prot);
336 
337 // Math
338 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
339 extern "C" {
340 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);  // NOLINT
341 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);  // NOLINT
342 #if defined(_WIN64)
343 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);  // NOLINT
344 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);  // NOLINT
345 #endif
346 }
347 #endif
348 
349 INLINE uptr MostSignificantSetBitIndex(uptr x) {
350   CHECK_NE(x, 0U);
351   unsigned long up;  // NOLINT
352 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
353 # ifdef _WIN64
354   up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
355 # else
356   up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
357 # endif
358 #elif defined(_WIN64)
359   _BitScanReverse64(&up, x);
360 #else
361   _BitScanReverse(&up, x);
362 #endif
363   return up;
364 }
365 
366 INLINE uptr LeastSignificantSetBitIndex(uptr x) {
367   CHECK_NE(x, 0U);
368   unsigned long up;  // NOLINT
369 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
370 # ifdef _WIN64
371   up = __builtin_ctzll(x);
372 # else
373   up = __builtin_ctzl(x);
374 # endif
375 #elif defined(_WIN64)
376   _BitScanForward64(&up, x);
377 #else
378   _BitScanForward(&up, x);
379 #endif
380   return up;
381 }
382 
383 INLINE bool IsPowerOfTwo(uptr x) {
384   return (x & (x - 1)) == 0;
385 }
386 
387 INLINE uptr RoundUpToPowerOfTwo(uptr size) {
388   CHECK(size);
389   if (IsPowerOfTwo(size)) return size;
390 
391   uptr up = MostSignificantSetBitIndex(size);
392   CHECK_LT(size, (1ULL << (up + 1)));
393   CHECK_GT(size, (1ULL << up));
394   return 1ULL << (up + 1);
395 }
396 
397 INLINE uptr RoundUpTo(uptr size, uptr boundary) {
398   RAW_CHECK(IsPowerOfTwo(boundary));
399   return (size + boundary - 1) & ~(boundary - 1);
400 }
401 
402 INLINE uptr RoundDownTo(uptr x, uptr boundary) {
403   return x & ~(boundary - 1);
404 }
405 
406 INLINE bool IsAligned(uptr a, uptr alignment) {
407   return (a & (alignment - 1)) == 0;
408 }
409 
410 INLINE uptr Log2(uptr x) {
411   CHECK(IsPowerOfTwo(x));
412   return LeastSignificantSetBitIndex(x);
413 }
414 
415 // Don't use std::min, std::max or std::swap, to minimize dependency
416 // on libstdc++.
417 template<class T> T Min(T a, T b) { return a < b ? a : b; }
418 template<class T> T Max(T a, T b) { return a > b ? a : b; }
419 template<class T> void Swap(T& a, T& b) {
420   T tmp = a;
421   a = b;
422   b = tmp;
423 }
424 
425 // Char handling
426 INLINE bool IsSpace(int c) {
427   return (c == ' ') || (c == '\n') || (c == '\t') ||
428          (c == '\f') || (c == '\r') || (c == '\v');
429 }
430 INLINE bool IsDigit(int c) {
431   return (c >= '0') && (c <= '9');
432 }
433 INLINE int ToLower(int c) {
434   return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
435 }
436 
437 // A low-level vector based on mmap. May incur a significant memory overhead for
438 // small vectors.
439 // WARNING: The current implementation supports only POD types.
440 template<typename T>
441 class InternalMmapVectorNoCtor {
442  public:
443   void Initialize(uptr initial_capacity) {
444     capacity_bytes_ = 0;
445     size_ = 0;
446     data_ = 0;
447     reserve(initial_capacity);
448   }
449   void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
450   T &operator[](uptr i) {
451     CHECK_LT(i, size_);
452     return data_[i];
453   }
454   const T &operator[](uptr i) const {
455     CHECK_LT(i, size_);
456     return data_[i];
457   }
458   void push_back(const T &element) {
459     CHECK_LE(size_, capacity());
460     if (size_ == capacity()) {
461       uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
462       Realloc(new_capacity);
463     }
464     internal_memcpy(&data_[size_++], &element, sizeof(T));
465   }
466   T &back() {
467     CHECK_GT(size_, 0);
468     return data_[size_ - 1];
469   }
470   void pop_back() {
471     CHECK_GT(size_, 0);
472     size_--;
473   }
474   uptr size() const {
475     return size_;
476   }
477   const T *data() const {
478     return data_;
479   }
480   T *data() {
481     return data_;
482   }
483   uptr capacity() const { return capacity_bytes_ / sizeof(T); }
484   void reserve(uptr new_size) {
485     // Never downsize internal buffer.
486     if (new_size > capacity())
487       Realloc(new_size);
488   }
489   void resize(uptr new_size) {
490     if (new_size > size_) {
491       reserve(new_size);
492       internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
493     }
494     size_ = new_size;
495   }
496 
497   void clear() { size_ = 0; }
498   bool empty() const { return size() == 0; }
499 
500   const T *begin() const {
501     return data();
502   }
503   T *begin() {
504     return data();
505   }
506   const T *end() const {
507     return data() + size();
508   }
509   T *end() {
510     return data() + size();
511   }
512 
513   void swap(InternalMmapVectorNoCtor &other) {
514     Swap(data_, other.data_);
515     Swap(capacity_bytes_, other.capacity_bytes_);
516     Swap(size_, other.size_);
517   }
518 
519  private:
520   void Realloc(uptr new_capacity) {
521     CHECK_GT(new_capacity, 0);
522     CHECK_LE(size_, new_capacity);
523     uptr new_capacity_bytes =
524         RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
525     T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
526     internal_memcpy(new_data, data_, size_ * sizeof(T));
527     UnmapOrDie(data_, capacity_bytes_);
528     data_ = new_data;
529     capacity_bytes_ = new_capacity_bytes;
530   }
531 
532   T *data_;
533   uptr capacity_bytes_;
534   uptr size_;
535 };
536 
537 template <typename T>
538 bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
539                 const InternalMmapVectorNoCtor<T> &rhs) {
540   if (lhs.size() != rhs.size()) return false;
541   return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
542 }
543 
544 template <typename T>
545 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
546                 const InternalMmapVectorNoCtor<T> &rhs) {
547   return !(lhs == rhs);
548 }
549 
550 template<typename T>
551 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
552  public:
553   InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(1); }
554   explicit InternalMmapVector(uptr cnt) {
555     InternalMmapVectorNoCtor<T>::Initialize(cnt);
556     this->resize(cnt);
557   }
558   ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
559   // Disallow copies and moves.
560   InternalMmapVector(const InternalMmapVector &) = delete;
561   InternalMmapVector &operator=(const InternalMmapVector &) = delete;
562   InternalMmapVector(InternalMmapVector &&) = delete;
563   InternalMmapVector &operator=(InternalMmapVector &&) = delete;
564 };
565 
566 class InternalScopedString : public InternalMmapVector<char> {
567  public:
568   explicit InternalScopedString(uptr max_length)
569       : InternalMmapVector<char>(max_length), length_(0) {
570     (*this)[0] = '\0';
571   }
572   uptr length() { return length_; }
573   void clear() {
574     (*this)[0] = '\0';
575     length_ = 0;
576   }
577   void append(const char *format, ...);
578 
579  private:
580   uptr length_;
581 };
582 
583 template <class T>
584 struct CompareLess {
585   bool operator()(const T &a, const T &b) const { return a < b; }
586 };
587 
588 // HeapSort for arrays and InternalMmapVector.
589 template <class T, class Compare = CompareLess<T>>
590 void Sort(T *v, uptr size, Compare comp = {}) {
591   if (size < 2)
592     return;
593   // Stage 1: insert elements to the heap.
594   for (uptr i = 1; i < size; i++) {
595     uptr j, p;
596     for (j = i; j > 0; j = p) {
597       p = (j - 1) / 2;
598       if (comp(v[p], v[j]))
599         Swap(v[j], v[p]);
600       else
601         break;
602     }
603   }
604   // Stage 2: swap largest element with the last one,
605   // and sink the new top.
606   for (uptr i = size - 1; i > 0; i--) {
607     Swap(v[0], v[i]);
608     uptr j, max_ind;
609     for (j = 0; j < i; j = max_ind) {
610       uptr left = 2 * j + 1;
611       uptr right = 2 * j + 2;
612       max_ind = j;
613       if (left < i && comp(v[max_ind], v[left]))
614         max_ind = left;
615       if (right < i && comp(v[max_ind], v[right]))
616         max_ind = right;
617       if (max_ind != j)
618         Swap(v[j], v[max_ind]);
619       else
620         break;
621     }
622   }
623 }
624 
625 // Works like std::lower_bound: finds the first element that is not less
626 // than the val.
627 template <class Container, class Value, class Compare>
628 uptr InternalLowerBound(const Container &v, uptr first, uptr last,
629                         const Value &val, Compare comp) {
630   while (last > first) {
631     uptr mid = (first + last) / 2;
632     if (comp(v[mid], val))
633       first = mid + 1;
634     else
635       last = mid;
636   }
637   return first;
638 }
639 
640 enum ModuleArch {
641   kModuleArchUnknown,
642   kModuleArchI386,
643   kModuleArchX86_64,
644   kModuleArchX86_64H,
645   kModuleArchARMV6,
646   kModuleArchARMV7,
647   kModuleArchARMV7S,
648   kModuleArchARMV7K,
649   kModuleArchARM64
650 };
651 
652 // Opens the file 'file_name" and reads up to 'max_len' bytes.
653 // The resulting buffer is mmaped and stored in '*buff'.
654 // Returns true if file was successfully opened and read.
655 bool ReadFileToVector(const char *file_name,
656                       InternalMmapVectorNoCtor<char> *buff,
657                       uptr max_len = 1 << 26, error_t *errno_p = nullptr);
658 
659 // Opens the file 'file_name" and reads up to 'max_len' bytes.
660 // This function is less I/O efficient than ReadFileToVector as it may reread
661 // file multiple times to avoid mmap during read attempts. It's used to read
662 // procmap, so short reads with mmap in between can produce inconsistent result.
663 // The resulting buffer is mmaped and stored in '*buff'.
664 // The size of the mmaped region is stored in '*buff_size'.
665 // The total number of read bytes is stored in '*read_len'.
666 // Returns true if file was successfully opened and read.
667 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
668                       uptr *read_len, uptr max_len = 1 << 26,
669                       error_t *errno_p = nullptr);
670 
671 // When adding a new architecture, don't forget to also update
672 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cc.
673 inline const char *ModuleArchToString(ModuleArch arch) {
674   switch (arch) {
675     case kModuleArchUnknown:
676       return "";
677     case kModuleArchI386:
678       return "i386";
679     case kModuleArchX86_64:
680       return "x86_64";
681     case kModuleArchX86_64H:
682       return "x86_64h";
683     case kModuleArchARMV6:
684       return "armv6";
685     case kModuleArchARMV7:
686       return "armv7";
687     case kModuleArchARMV7S:
688       return "armv7s";
689     case kModuleArchARMV7K:
690       return "armv7k";
691     case kModuleArchARM64:
692       return "arm64";
693   }
694   CHECK(0 && "Invalid module arch");
695   return "";
696 }
697 
698 const uptr kModuleUUIDSize = 16;
699 const uptr kMaxSegName = 16;
700 
701 // Represents a binary loaded into virtual memory (e.g. this can be an
702 // executable or a shared object).
703 class LoadedModule {
704  public:
705   LoadedModule()
706       : full_name_(nullptr),
707         base_address_(0),
708         max_executable_address_(0),
709         arch_(kModuleArchUnknown),
710         instrumented_(false) {
711     internal_memset(uuid_, 0, kModuleUUIDSize);
712     ranges_.clear();
713   }
714   void set(const char *module_name, uptr base_address);
715   void set(const char *module_name, uptr base_address, ModuleArch arch,
716            u8 uuid[kModuleUUIDSize], bool instrumented);
717   void clear();
718   void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
719                        const char *name = nullptr);
720   bool containsAddress(uptr address) const;
721 
722   const char *full_name() const { return full_name_; }
723   uptr base_address() const { return base_address_; }
724   uptr max_executable_address() const { return max_executable_address_; }
725   ModuleArch arch() const { return arch_; }
726   const u8 *uuid() const { return uuid_; }
727   bool instrumented() const { return instrumented_; }
728 
729   struct AddressRange {
730     AddressRange *next;
731     uptr beg;
732     uptr end;
733     bool executable;
734     bool writable;
735     char name[kMaxSegName];
736 
737     AddressRange(uptr beg, uptr end, bool executable, bool writable,
738                  const char *name)
739         : next(nullptr),
740           beg(beg),
741           end(end),
742           executable(executable),
743           writable(writable) {
744       internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
745     }
746   };
747 
748   const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
749 
750  private:
751   char *full_name_;  // Owned.
752   uptr base_address_;
753   uptr max_executable_address_;
754   ModuleArch arch_;
755   u8 uuid_[kModuleUUIDSize];
756   bool instrumented_;
757   IntrusiveList<AddressRange> ranges_;
758 };
759 
760 // List of LoadedModules. OS-dependent implementation is responsible for
761 // filling this information.
762 class ListOfModules {
763  public:
764   ListOfModules() : initialized(false) {}
765   ~ListOfModules() { clear(); }
766   void init();
767   void fallbackInit();  // Uses fallback init if available, otherwise clears
768   const LoadedModule *begin() const { return modules_.begin(); }
769   LoadedModule *begin() { return modules_.begin(); }
770   const LoadedModule *end() const { return modules_.end(); }
771   LoadedModule *end() { return modules_.end(); }
772   uptr size() const { return modules_.size(); }
773   const LoadedModule &operator[](uptr i) const {
774     CHECK_LT(i, modules_.size());
775     return modules_[i];
776   }
777 
778  private:
779   void clear() {
780     for (auto &module : modules_) module.clear();
781     modules_.clear();
782   }
783   void clearOrInit() {
784     initialized ? clear() : modules_.Initialize(kInitialCapacity);
785     initialized = true;
786   }
787 
788   InternalMmapVectorNoCtor<LoadedModule> modules_;
789   // We rarely have more than 16K loaded modules.
790   static const uptr kInitialCapacity = 1 << 14;
791   bool initialized;
792 };
793 
794 // Callback type for iterating over a set of memory ranges.
795 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
796 
797 enum AndroidApiLevel {
798   ANDROID_NOT_ANDROID = 0,
799   ANDROID_KITKAT = 19,
800   ANDROID_LOLLIPOP_MR1 = 22,
801   ANDROID_POST_LOLLIPOP = 23
802 };
803 
804 void WriteToSyslog(const char *buffer);
805 
806 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
807 #define SANITIZER_WIN_TRACE 1
808 #else
809 #define SANITIZER_WIN_TRACE 0
810 #endif
811 
812 #if SANITIZER_MAC || SANITIZER_WIN_TRACE
813 void LogFullErrorReport(const char *buffer);
814 #else
815 INLINE void LogFullErrorReport(const char *buffer) {}
816 #endif
817 
818 #if SANITIZER_LINUX || SANITIZER_MAC
819 void WriteOneLineToSyslog(const char *s);
820 void LogMessageOnPrintf(const char *str);
821 #else
822 INLINE void WriteOneLineToSyslog(const char *s) {}
823 INLINE void LogMessageOnPrintf(const char *str) {}
824 #endif
825 
826 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
827 // Initialize Android logging. Any writes before this are silently lost.
828 void AndroidLogInit();
829 void SetAbortMessage(const char *);
830 #else
831 INLINE void AndroidLogInit() {}
832 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
833 INLINE void SetAbortMessage(const char *) {}
834 #endif
835 
836 #if SANITIZER_ANDROID
837 void SanitizerInitializeUnwinder();
838 AndroidApiLevel AndroidGetApiLevel();
839 #else
840 INLINE void AndroidLogWrite(const char *buffer_unused) {}
841 INLINE void SanitizerInitializeUnwinder() {}
842 INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
843 #endif
844 
845 INLINE uptr GetPthreadDestructorIterations() {
846 #if SANITIZER_ANDROID
847   return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
848 #elif SANITIZER_POSIX
849   return 4;
850 #else
851 // Unused on Windows.
852   return 0;
853 #endif
854 }
855 
856 void *internal_start_thread(void(*func)(void*), void *arg);
857 void internal_join_thread(void *th);
858 void MaybeStartBackgroudThread();
859 
860 // Make the compiler think that something is going on there.
861 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
862 // compiler from recognising it and turning it into an actual call to
863 // memset/memcpy/etc.
864 static inline void SanitizerBreakOptimization(void *arg) {
865 #if defined(_MSC_VER) && !defined(__clang__)
866   _ReadWriteBarrier();
867 #else
868   __asm__ __volatile__("" : : "r" (arg) : "memory");
869 #endif
870 }
871 
872 struct SignalContext {
873   void *siginfo;
874   void *context;
875   uptr addr;
876   uptr pc;
877   uptr sp;
878   uptr bp;
879   bool is_memory_access;
880   enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;
881 
882   // VS2013 doesn't implement unrestricted unions, so we need a trivial default
883   // constructor
884   SignalContext() = default;
885 
886   // Creates signal context in a platform-specific manner.
887   // SignalContext is going to keep pointers to siginfo and context without
888   // owning them.
889   SignalContext(void *siginfo, void *context)
890       : siginfo(siginfo),
891         context(context),
892         addr(GetAddress()),
893         is_memory_access(IsMemoryAccess()),
894         write_flag(GetWriteFlag()) {
895     InitPcSpBp();
896   }
897 
898   static void DumpAllRegisters(void *context);
899 
900   // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
901   int GetType() const;
902 
903   // String description of the signal.
904   const char *Describe() const;
905 
906   // Returns true if signal is stack overflow.
907   bool IsStackOverflow() const;
908 
909  private:
910   // Platform specific initialization.
911   void InitPcSpBp();
912   uptr GetAddress() const;
913   WriteFlag GetWriteFlag() const;
914   bool IsMemoryAccess() const;
915 };
916 
917 void InitializePlatformEarly();
918 void MaybeReexec();
919 
920 template <typename Fn>
921 class RunOnDestruction {
922  public:
923   explicit RunOnDestruction(Fn fn) : fn_(fn) {}
924   ~RunOnDestruction() { fn_(); }
925 
926  private:
927   Fn fn_;
928 };
929 
930 // A simple scope guard. Usage:
931 // auto cleanup = at_scope_exit([]{ do_cleanup; });
932 template <typename Fn>
933 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
934   return RunOnDestruction<Fn>(fn);
935 }
936 
937 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
938 // if a process uses virtual memory over 4TB (as many sanitizers like
939 // to do).  This function will abort the process if running on a kernel
940 // that looks vulnerable.
941 #if SANITIZER_LINUX && SANITIZER_S390_64
942 void AvoidCVE_2016_2143();
943 #else
944 INLINE void AvoidCVE_2016_2143() {}
945 #endif
946 
947 struct StackDepotStats {
948   uptr n_uniq_ids;
949   uptr allocated;
950 };
951 
952 // The default value for allocator_release_to_os_interval_ms common flag to
953 // indicate that sanitizer allocator should not attempt to release memory to OS.
954 const s32 kReleaseToOSIntervalNever = -1;
955 
956 void CheckNoDeepBind(const char *filename, int flag);
957 
958 // Returns the requested amount of random data (up to 256 bytes) that can then
959 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
960 bool GetRandom(void *buffer, uptr length, bool blocking = true);
961 
962 // Returns the number of logical processors on the system.
963 u32 GetNumberOfCPUs();
964 extern u32 NumberOfCPUsCached;
965 INLINE u32 GetNumberOfCPUsCached() {
966   if (!NumberOfCPUsCached)
967     NumberOfCPUsCached = GetNumberOfCPUs();
968   return NumberOfCPUsCached;
969 }
970 
971 }  // namespace __sanitizer
972 
973 inline void *operator new(__sanitizer::operator_new_size_type size,
974                           __sanitizer::LowLevelAllocator &alloc) {
975   return alloc.Allocate(size);
976 }
977 
978 #endif  // SANITIZER_COMMON_H
979