1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is shared between run-time libraries of sanitizers. 10 // 11 // It declares common functions and classes that are used in both runtimes. 12 // Implementation of some functions are provided in sanitizer_common, while 13 // others must be defined by run-time library itself. 14 //===----------------------------------------------------------------------===// 15 #ifndef SANITIZER_COMMON_H 16 #define SANITIZER_COMMON_H 17 18 #include "sanitizer_flags.h" 19 #include "sanitizer_internal_defs.h" 20 #include "sanitizer_libc.h" 21 #include "sanitizer_list.h" 22 #include "sanitizer_mutex.h" 23 24 #if defined(_MSC_VER) && !defined(__clang__) 25 extern "C" void _ReadWriteBarrier(); 26 #pragma intrinsic(_ReadWriteBarrier) 27 #endif 28 29 namespace __sanitizer { 30 31 struct AddressInfo; 32 struct BufferedStackTrace; 33 struct SignalContext; 34 struct StackTrace; 35 36 // Constants. 37 const uptr kWordSize = SANITIZER_WORDSIZE / 8; 38 const uptr kWordSizeInBits = 8 * kWordSize; 39 40 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE; 41 42 const uptr kMaxPathLength = 4096; 43 44 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb 45 46 const uptr kErrorMessageBufferSize = 1 << 16; 47 48 // Denotes fake PC values that come from JIT/JAVA/etc. 49 // For such PC values __tsan_symbolize_external_ex() will be called. 50 const u64 kExternalPCBit = 1ULL << 60; 51 52 extern const char *SanitizerToolName; // Can be changed by the tool. 53 54 extern atomic_uint32_t current_verbosity; 55 inline void SetVerbosity(int verbosity) { 56 atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); 57 } 58 inline int Verbosity() { 59 return atomic_load(¤t_verbosity, memory_order_relaxed); 60 } 61 62 #if SANITIZER_ANDROID 63 inline uptr GetPageSize() { 64 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array. 65 return 4096; 66 } 67 inline uptr GetPageSizeCached() { 68 return 4096; 69 } 70 #else 71 uptr GetPageSize(); 72 extern uptr PageSizeCached; 73 inline uptr GetPageSizeCached() { 74 if (!PageSizeCached) 75 PageSizeCached = GetPageSize(); 76 return PageSizeCached; 77 } 78 #endif 79 uptr GetMmapGranularity(); 80 uptr GetMaxVirtualAddress(); 81 uptr GetMaxUserVirtualAddress(); 82 // Threads 83 tid_t GetTid(); 84 int TgKill(pid_t pid, tid_t tid, int sig); 85 uptr GetThreadSelf(); 86 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, 87 uptr *stack_bottom); 88 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, 89 uptr *tls_addr, uptr *tls_size); 90 91 // Memory management 92 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); 93 inline void *MmapOrDieQuietly(uptr size, const char *mem_type) { 94 return MmapOrDie(size, mem_type, /*raw_report*/ true); 95 } 96 void UnmapOrDie(void *addr, uptr size); 97 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that 98 // case returns nullptr. 99 void *MmapOrDieOnFatalError(uptr size, const char *mem_type); 100 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr) 101 WARN_UNUSED_RESULT; 102 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, 103 const char *name = nullptr) WARN_UNUSED_RESULT; 104 void *MmapNoReserveOrDie(uptr size, const char *mem_type); 105 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); 106 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in 107 // that case returns nullptr. 108 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, 109 const char *name = nullptr); 110 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); 111 void *MmapNoAccess(uptr size); 112 // Map aligned chunk of address space; size and alignment are powers of two. 113 // Dies on all but out of memory errors, in the latter case returns nullptr. 114 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, 115 const char *mem_type); 116 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an 117 // unaccessible memory. 118 bool MprotectNoAccess(uptr addr, uptr size); 119 bool MprotectReadOnly(uptr addr, uptr size); 120 bool MprotectReadWrite(uptr addr, uptr size); 121 122 void MprotectMallocZones(void *addr, int prot); 123 124 #if SANITIZER_WINDOWS 125 // Zero previously mmap'd memory. Currently used only on Windows. 126 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT; 127 #endif 128 129 #if SANITIZER_LINUX 130 // Unmap memory. Currently only used on Linux. 131 void UnmapFromTo(uptr from, uptr to); 132 #endif 133 134 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will 135 // be aligned to the mmap granularity * 2^shadow_scale, or to 136 // 2^min_shadow_base_alignment if that is larger. The returned address will 137 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and 138 // shadow_size_bytes bytes on the right, which on linux is mapped no access. 139 // The high_mem_end may be updated if the original shadow size doesn't fit. 140 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, 141 uptr min_shadow_base_alignment, uptr &high_mem_end); 142 143 // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size). 144 // Reserves 2*S bytes of address space to the right of the returned address and 145 // ring_buffer_size bytes to the left. The returned address is aligned to 2*S. 146 // Also creates num_aliases regions of accessible memory starting at offset S 147 // from the returned address. Each region has size alias_size and is backed by 148 // the same physical memory. 149 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, 150 uptr num_aliases, uptr ring_buffer_size); 151 152 // Reserve memory range [beg, end]. If madvise_shadow is true then apply 153 // madvise (e.g. hugepages, core dumping) requested by options. 154 void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name, 155 bool madvise_shadow = true); 156 157 // Protect size bytes of memory starting at addr. Also try to protect 158 // several pages at the start of the address space as specified by 159 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start. 160 void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start, 161 uptr zero_base_max_shadow_start); 162 163 // Find an available address space. 164 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, 165 uptr *largest_gap_found, uptr *max_occupied_addr); 166 167 // Used to check if we can map shadow memory to a fixed location. 168 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); 169 // Releases memory pages entirely within the [beg, end] address range. Noop if 170 // the provided range does not contain at least one entire page. 171 void ReleaseMemoryPagesToOS(uptr beg, uptr end); 172 void IncreaseTotalMmap(uptr size); 173 void DecreaseTotalMmap(uptr size); 174 uptr GetRSS(); 175 void SetShadowRegionHugePageMode(uptr addr, uptr length); 176 bool DontDumpShadowMemory(uptr addr, uptr length); 177 // Check if the built VMA size matches the runtime one. 178 void CheckVMASize(); 179 void RunMallocHooks(void *ptr, uptr size); 180 void RunFreeHooks(void *ptr); 181 182 class ReservedAddressRange { 183 public: 184 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0); 185 uptr InitAligned(uptr size, uptr align, const char *name = nullptr); 186 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr); 187 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr); 188 void Unmap(uptr addr, uptr size); 189 void *base() const { return base_; } 190 uptr size() const { return size_; } 191 192 private: 193 void* base_; 194 uptr size_; 195 const char* name_; 196 uptr os_handle_; 197 }; 198 199 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file, 200 /*out*/ uptr *stats); 201 202 // Parse the contents of /proc/self/smaps and generate a memory profile. 203 // |cb| is a tool-specific callback that fills the |stats| array. 204 void GetMemoryProfile(fill_profile_f cb, uptr *stats); 205 void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps, 206 uptr smaps_len); 207 208 // Simple low-level (mmap-based) allocator for internal use. Doesn't have 209 // constructor, so all instances of LowLevelAllocator should be 210 // linker initialized. 211 class LowLevelAllocator { 212 public: 213 // Requires an external lock. 214 void *Allocate(uptr size); 215 216 private: 217 char *allocated_end_; 218 char *allocated_current_; 219 }; 220 // Set the min alignment of LowLevelAllocator to at least alignment. 221 void SetLowLevelAllocateMinAlignment(uptr alignment); 222 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); 223 // Allows to register tool-specific callbacks for LowLevelAllocator. 224 // Passing NULL removes the callback. 225 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); 226 227 // IO 228 void CatastrophicErrorWrite(const char *buffer, uptr length); 229 void RawWrite(const char *buffer); 230 bool ColorizeReports(); 231 void RemoveANSIEscapeSequencesFromString(char *buffer); 232 void Printf(const char *format, ...) FORMAT(1, 2); 233 void Report(const char *format, ...) FORMAT(1, 2); 234 void SetPrintfAndReportCallback(void (*callback)(const char *)); 235 #define VReport(level, ...) \ 236 do { \ 237 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ 238 } while (0) 239 #define VPrintf(level, ...) \ 240 do { \ 241 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ 242 } while (0) 243 244 // Lock sanitizer error reporting and protects against nested errors. 245 class ScopedErrorReportLock { 246 public: 247 ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); } 248 ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); } 249 250 static void Lock() SANITIZER_ACQUIRE(mutex_); 251 static void Unlock() SANITIZER_RELEASE(mutex_); 252 static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_); 253 254 private: 255 static atomic_uintptr_t reporting_thread_; 256 static StaticSpinMutex mutex_; 257 }; 258 259 extern uptr stoptheworld_tracer_pid; 260 extern uptr stoptheworld_tracer_ppid; 261 262 bool IsAccessibleMemoryRange(uptr beg, uptr size); 263 264 // Error report formatting. 265 const char *StripPathPrefix(const char *filepath, 266 const char *strip_file_prefix); 267 // Strip the directories from the module name. 268 const char *StripModuleName(const char *module); 269 270 // OS 271 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); 272 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); 273 uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len); 274 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); 275 const char *GetProcessName(); 276 void UpdateProcessName(); 277 void CacheBinaryName(); 278 void DisableCoreDumperIfNecessary(); 279 void DumpProcessMap(); 280 const char *GetEnv(const char *name); 281 bool SetEnv(const char *name, const char *value); 282 283 u32 GetUid(); 284 void ReExec(); 285 void CheckASLR(); 286 void CheckMPROTECT(); 287 char **GetArgv(); 288 char **GetEnviron(); 289 void PrintCmdline(); 290 bool StackSizeIsUnlimited(); 291 void SetStackSizeLimitInBytes(uptr limit); 292 bool AddressSpaceIsUnlimited(); 293 void SetAddressSpaceUnlimited(); 294 void AdjustStackSize(void *attr); 295 void PlatformPrepareForSandboxing(void *args); 296 void SetSandboxingCallback(void (*f)()); 297 298 void InitializeCoverage(bool enabled, const char *coverage_dir); 299 300 void InitTlsSize(); 301 uptr GetTlsSize(); 302 303 // Other 304 void WaitForDebugger(unsigned seconds, const char *label); 305 void SleepForSeconds(unsigned seconds); 306 void SleepForMillis(unsigned millis); 307 u64 NanoTime(); 308 u64 MonotonicNanoTime(); 309 int Atexit(void (*function)(void)); 310 bool TemplateMatch(const char *templ, const char *str); 311 312 // Exit 313 void NORETURN Abort(); 314 void NORETURN Die(); 315 void NORETURN 316 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); 317 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, 318 const char *mmap_type, error_t err, 319 bool raw_report = false); 320 void NORETURN ReportMunmapFailureAndDie(void *ptr, uptr size, error_t err, 321 bool raw_report = false); 322 323 // Returns true if the platform-specific error reported is an OOM error. 324 bool ErrorIsOOM(error_t err); 325 326 // This reports an error in the form: 327 // 328 // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}` 329 // 330 // Downstream tools that read sanitizer output will know that errors starting 331 // in this format are specifically OOM errors. 332 #define ERROR_OOM(err_msg, ...) \ 333 Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__) 334 335 // Specific tools may override behavior of "Die" function to do tool-specific 336 // job. 337 typedef void (*DieCallbackType)(void); 338 339 // It's possible to add several callbacks that would be run when "Die" is 340 // called. The callbacks will be run in the opposite order. The tools are 341 // strongly recommended to setup all callbacks during initialization, when there 342 // is only a single thread. 343 bool AddDieCallback(DieCallbackType callback); 344 bool RemoveDieCallback(DieCallbackType callback); 345 346 void SetUserDieCallback(DieCallbackType callback); 347 348 void SetCheckUnwindCallback(void (*callback)()); 349 350 // Functions related to signal handling. 351 typedef void (*SignalHandlerType)(int, void *, void *); 352 HandleSignalMode GetHandleSignalMode(int signum); 353 void InstallDeadlySignalHandlers(SignalHandlerType handler); 354 355 // Signal reporting. 356 // Each sanitizer uses slightly different implementation of stack unwinding. 357 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig, 358 const void *callback_context, 359 BufferedStackTrace *stack); 360 // Print deadly signal report and die. 361 void HandleDeadlySignal(void *siginfo, void *context, u32 tid, 362 UnwindSignalStackCallbackType unwind, 363 const void *unwind_context); 364 365 // Part of HandleDeadlySignal, exposed for asan. 366 void StartReportDeadlySignal(); 367 // Part of HandleDeadlySignal, exposed for asan. 368 void ReportDeadlySignal(const SignalContext &sig, u32 tid, 369 UnwindSignalStackCallbackType unwind, 370 const void *unwind_context); 371 372 // Alternative signal stack (POSIX-only). 373 void SetAlternateSignalStack(); 374 void UnsetAlternateSignalStack(); 375 376 // Construct a one-line string: 377 // SUMMARY: SanitizerToolName: error_message 378 // and pass it to __sanitizer_report_error_summary. 379 // If alt_tool_name is provided, it's used in place of SanitizerToolName. 380 void ReportErrorSummary(const char *error_message, 381 const char *alt_tool_name = nullptr); 382 // Same as above, but construct error_message as: 383 // error_type file:line[:column][ function] 384 void ReportErrorSummary(const char *error_type, const AddressInfo &info, 385 const char *alt_tool_name = nullptr); 386 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. 387 void ReportErrorSummary(const char *error_type, const StackTrace *trace, 388 const char *alt_tool_name = nullptr); 389 390 void ReportMmapWriteExec(int prot, int mflags); 391 392 // Math 393 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) 394 extern "C" { 395 unsigned char _BitScanForward(unsigned long *index, unsigned long mask); 396 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); 397 #if defined(_WIN64) 398 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); 399 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); 400 #endif 401 } 402 #endif 403 404 inline uptr MostSignificantSetBitIndex(uptr x) { 405 CHECK_NE(x, 0U); 406 unsigned long up; 407 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 408 # ifdef _WIN64 409 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); 410 # else 411 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); 412 # endif 413 #elif defined(_WIN64) 414 _BitScanReverse64(&up, x); 415 #else 416 _BitScanReverse(&up, x); 417 #endif 418 return up; 419 } 420 421 inline uptr LeastSignificantSetBitIndex(uptr x) { 422 CHECK_NE(x, 0U); 423 unsigned long up; 424 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) 425 # ifdef _WIN64 426 up = __builtin_ctzll(x); 427 # else 428 up = __builtin_ctzl(x); 429 # endif 430 #elif defined(_WIN64) 431 _BitScanForward64(&up, x); 432 #else 433 _BitScanForward(&up, x); 434 #endif 435 return up; 436 } 437 438 inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; } 439 440 inline uptr RoundUpToPowerOfTwo(uptr size) { 441 CHECK(size); 442 if (IsPowerOfTwo(size)) return size; 443 444 uptr up = MostSignificantSetBitIndex(size); 445 CHECK_LT(size, (1ULL << (up + 1))); 446 CHECK_GT(size, (1ULL << up)); 447 return 1ULL << (up + 1); 448 } 449 450 inline constexpr uptr RoundUpTo(uptr size, uptr boundary) { 451 RAW_CHECK(IsPowerOfTwo(boundary)); 452 return (size + boundary - 1) & ~(boundary - 1); 453 } 454 455 inline constexpr uptr RoundDownTo(uptr x, uptr boundary) { 456 return x & ~(boundary - 1); 457 } 458 459 inline constexpr bool IsAligned(uptr a, uptr alignment) { 460 return (a & (alignment - 1)) == 0; 461 } 462 463 inline uptr Log2(uptr x) { 464 CHECK(IsPowerOfTwo(x)); 465 return LeastSignificantSetBitIndex(x); 466 } 467 468 // Don't use std::min, std::max or std::swap, to minimize dependency 469 // on libstdc++. 470 template <class T> 471 constexpr T Min(T a, T b) { 472 return a < b ? a : b; 473 } 474 template <class T> 475 constexpr T Max(T a, T b) { 476 return a > b ? a : b; 477 } 478 template <class T> 479 constexpr T Abs(T a) { 480 return a < 0 ? -a : a; 481 } 482 template<class T> void Swap(T& a, T& b) { 483 T tmp = a; 484 a = b; 485 b = tmp; 486 } 487 488 // Char handling 489 inline bool IsSpace(int c) { 490 return (c == ' ') || (c == '\n') || (c == '\t') || 491 (c == '\f') || (c == '\r') || (c == '\v'); 492 } 493 inline bool IsDigit(int c) { 494 return (c >= '0') && (c <= '9'); 495 } 496 inline int ToLower(int c) { 497 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; 498 } 499 500 // A low-level vector based on mmap. May incur a significant memory overhead for 501 // small vectors. 502 // WARNING: The current implementation supports only POD types. 503 template<typename T> 504 class InternalMmapVectorNoCtor { 505 public: 506 using value_type = T; 507 void Initialize(uptr initial_capacity) { 508 capacity_bytes_ = 0; 509 size_ = 0; 510 data_ = 0; 511 reserve(initial_capacity); 512 } 513 void Destroy() { UnmapOrDie(data_, capacity_bytes_); } 514 T &operator[](uptr i) { 515 CHECK_LT(i, size_); 516 return data_[i]; 517 } 518 const T &operator[](uptr i) const { 519 CHECK_LT(i, size_); 520 return data_[i]; 521 } 522 void push_back(const T &element) { 523 if (UNLIKELY(size_ >= capacity())) { 524 CHECK_EQ(size_, capacity()); 525 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); 526 Realloc(new_capacity); 527 } 528 internal_memcpy(&data_[size_++], &element, sizeof(T)); 529 } 530 T &back() { 531 CHECK_GT(size_, 0); 532 return data_[size_ - 1]; 533 } 534 void pop_back() { 535 CHECK_GT(size_, 0); 536 size_--; 537 } 538 uptr size() const { 539 return size_; 540 } 541 const T *data() const { 542 return data_; 543 } 544 T *data() { 545 return data_; 546 } 547 uptr capacity() const { return capacity_bytes_ / sizeof(T); } 548 void reserve(uptr new_size) { 549 // Never downsize internal buffer. 550 if (new_size > capacity()) 551 Realloc(new_size); 552 } 553 void resize(uptr new_size) { 554 if (new_size > size_) { 555 reserve(new_size); 556 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_)); 557 } 558 size_ = new_size; 559 } 560 561 void clear() { size_ = 0; } 562 bool empty() const { return size() == 0; } 563 564 const T *begin() const { 565 return data(); 566 } 567 T *begin() { 568 return data(); 569 } 570 const T *end() const { 571 return data() + size(); 572 } 573 T *end() { 574 return data() + size(); 575 } 576 577 void swap(InternalMmapVectorNoCtor &other) { 578 Swap(data_, other.data_); 579 Swap(capacity_bytes_, other.capacity_bytes_); 580 Swap(size_, other.size_); 581 } 582 583 private: 584 NOINLINE void Realloc(uptr new_capacity) { 585 CHECK_GT(new_capacity, 0); 586 CHECK_LE(size_, new_capacity); 587 uptr new_capacity_bytes = 588 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached()); 589 T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector"); 590 internal_memcpy(new_data, data_, size_ * sizeof(T)); 591 UnmapOrDie(data_, capacity_bytes_); 592 data_ = new_data; 593 capacity_bytes_ = new_capacity_bytes; 594 } 595 596 T *data_; 597 uptr capacity_bytes_; 598 uptr size_; 599 }; 600 601 template <typename T> 602 bool operator==(const InternalMmapVectorNoCtor<T> &lhs, 603 const InternalMmapVectorNoCtor<T> &rhs) { 604 if (lhs.size() != rhs.size()) return false; 605 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0; 606 } 607 608 template <typename T> 609 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs, 610 const InternalMmapVectorNoCtor<T> &rhs) { 611 return !(lhs == rhs); 612 } 613 614 template<typename T> 615 class InternalMmapVector : public InternalMmapVectorNoCtor<T> { 616 public: 617 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); } 618 explicit InternalMmapVector(uptr cnt) { 619 InternalMmapVectorNoCtor<T>::Initialize(cnt); 620 this->resize(cnt); 621 } 622 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } 623 // Disallow copies and moves. 624 InternalMmapVector(const InternalMmapVector &) = delete; 625 InternalMmapVector &operator=(const InternalMmapVector &) = delete; 626 InternalMmapVector(InternalMmapVector &&) = delete; 627 InternalMmapVector &operator=(InternalMmapVector &&) = delete; 628 }; 629 630 class InternalScopedString { 631 public: 632 InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; } 633 634 uptr length() const { return buffer_.size() - 1; } 635 void clear() { 636 buffer_.resize(1); 637 buffer_[0] = '\0'; 638 } 639 void append(const char *format, ...) FORMAT(2, 3); 640 const char *data() const { return buffer_.data(); } 641 char *data() { return buffer_.data(); } 642 643 private: 644 InternalMmapVector<char> buffer_; 645 }; 646 647 template <class T> 648 struct CompareLess { 649 bool operator()(const T &a, const T &b) const { return a < b; } 650 }; 651 652 // HeapSort for arrays and InternalMmapVector. 653 template <class T, class Compare = CompareLess<T>> 654 void Sort(T *v, uptr size, Compare comp = {}) { 655 if (size < 2) 656 return; 657 // Stage 1: insert elements to the heap. 658 for (uptr i = 1; i < size; i++) { 659 uptr j, p; 660 for (j = i; j > 0; j = p) { 661 p = (j - 1) / 2; 662 if (comp(v[p], v[j])) 663 Swap(v[j], v[p]); 664 else 665 break; 666 } 667 } 668 // Stage 2: swap largest element with the last one, 669 // and sink the new top. 670 for (uptr i = size - 1; i > 0; i--) { 671 Swap(v[0], v[i]); 672 uptr j, max_ind; 673 for (j = 0; j < i; j = max_ind) { 674 uptr left = 2 * j + 1; 675 uptr right = 2 * j + 2; 676 max_ind = j; 677 if (left < i && comp(v[max_ind], v[left])) 678 max_ind = left; 679 if (right < i && comp(v[max_ind], v[right])) 680 max_ind = right; 681 if (max_ind != j) 682 Swap(v[j], v[max_ind]); 683 else 684 break; 685 } 686 } 687 } 688 689 // Works like std::lower_bound: finds the first element that is not less 690 // than the val. 691 template <class Container, class T, 692 class Compare = CompareLess<typename Container::value_type>> 693 uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) { 694 uptr first = 0; 695 uptr last = v.size(); 696 while (last > first) { 697 uptr mid = (first + last) / 2; 698 if (comp(v[mid], val)) 699 first = mid + 1; 700 else 701 last = mid; 702 } 703 return first; 704 } 705 706 enum ModuleArch { 707 kModuleArchUnknown, 708 kModuleArchI386, 709 kModuleArchX86_64, 710 kModuleArchX86_64H, 711 kModuleArchARMV6, 712 kModuleArchARMV7, 713 kModuleArchARMV7S, 714 kModuleArchARMV7K, 715 kModuleArchARM64, 716 kModuleArchLoongArch64, 717 kModuleArchRISCV64, 718 kModuleArchHexagon 719 }; 720 721 // Sorts and removes duplicates from the container. 722 template <class Container, 723 class Compare = CompareLess<typename Container::value_type>> 724 void SortAndDedup(Container &v, Compare comp = {}) { 725 Sort(v.data(), v.size(), comp); 726 uptr size = v.size(); 727 if (size < 2) 728 return; 729 uptr last = 0; 730 for (uptr i = 1; i < size; ++i) { 731 if (comp(v[last], v[i])) { 732 ++last; 733 if (last != i) 734 v[last] = v[i]; 735 } else { 736 CHECK(!comp(v[i], v[last])); 737 } 738 } 739 v.resize(last + 1); 740 } 741 742 constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28); 743 744 // Opens the file 'file_name" and reads up to 'max_len' bytes. 745 // The resulting buffer is mmaped and stored in '*buff'. 746 // Returns true if file was successfully opened and read. 747 bool ReadFileToVector(const char *file_name, 748 InternalMmapVectorNoCtor<char> *buff, 749 uptr max_len = kDefaultFileMaxSize, 750 error_t *errno_p = nullptr); 751 752 // Opens the file 'file_name" and reads up to 'max_len' bytes. 753 // This function is less I/O efficient than ReadFileToVector as it may reread 754 // file multiple times to avoid mmap during read attempts. It's used to read 755 // procmap, so short reads with mmap in between can produce inconsistent result. 756 // The resulting buffer is mmaped and stored in '*buff'. 757 // The size of the mmaped region is stored in '*buff_size'. 758 // The total number of read bytes is stored in '*read_len'. 759 // Returns true if file was successfully opened and read. 760 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, 761 uptr *read_len, uptr max_len = kDefaultFileMaxSize, 762 error_t *errno_p = nullptr); 763 764 int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len, 765 uptr *pc_offset); 766 767 // When adding a new architecture, don't forget to also update 768 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp. 769 inline const char *ModuleArchToString(ModuleArch arch) { 770 switch (arch) { 771 case kModuleArchUnknown: 772 return ""; 773 case kModuleArchI386: 774 return "i386"; 775 case kModuleArchX86_64: 776 return "x86_64"; 777 case kModuleArchX86_64H: 778 return "x86_64h"; 779 case kModuleArchARMV6: 780 return "armv6"; 781 case kModuleArchARMV7: 782 return "armv7"; 783 case kModuleArchARMV7S: 784 return "armv7s"; 785 case kModuleArchARMV7K: 786 return "armv7k"; 787 case kModuleArchARM64: 788 return "arm64"; 789 case kModuleArchLoongArch64: 790 return "loongarch64"; 791 case kModuleArchRISCV64: 792 return "riscv64"; 793 case kModuleArchHexagon: 794 return "hexagon"; 795 } 796 CHECK(0 && "Invalid module arch"); 797 return ""; 798 } 799 800 #if SANITIZER_APPLE 801 const uptr kModuleUUIDSize = 16; 802 #else 803 const uptr kModuleUUIDSize = 32; 804 #endif 805 const uptr kMaxSegName = 16; 806 807 // Represents a binary loaded into virtual memory (e.g. this can be an 808 // executable or a shared object). 809 class LoadedModule { 810 public: 811 LoadedModule() 812 : full_name_(nullptr), 813 base_address_(0), 814 max_address_(0), 815 arch_(kModuleArchUnknown), 816 uuid_size_(0), 817 instrumented_(false) { 818 internal_memset(uuid_, 0, kModuleUUIDSize); 819 ranges_.clear(); 820 } 821 void set(const char *module_name, uptr base_address); 822 void set(const char *module_name, uptr base_address, ModuleArch arch, 823 u8 uuid[kModuleUUIDSize], bool instrumented); 824 void setUuid(const char *uuid, uptr size); 825 void clear(); 826 void addAddressRange(uptr beg, uptr end, bool executable, bool writable, 827 const char *name = nullptr); 828 bool containsAddress(uptr address) const; 829 830 const char *full_name() const { return full_name_; } 831 uptr base_address() const { return base_address_; } 832 uptr max_address() const { return max_address_; } 833 ModuleArch arch() const { return arch_; } 834 const u8 *uuid() const { return uuid_; } 835 uptr uuid_size() const { return uuid_size_; } 836 bool instrumented() const { return instrumented_; } 837 838 struct AddressRange { 839 AddressRange *next; 840 uptr beg; 841 uptr end; 842 bool executable; 843 bool writable; 844 char name[kMaxSegName]; 845 846 AddressRange(uptr beg, uptr end, bool executable, bool writable, 847 const char *name) 848 : next(nullptr), 849 beg(beg), 850 end(end), 851 executable(executable), 852 writable(writable) { 853 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name)); 854 } 855 }; 856 857 const IntrusiveList<AddressRange> &ranges() const { return ranges_; } 858 859 private: 860 char *full_name_; // Owned. 861 uptr base_address_; 862 uptr max_address_; 863 ModuleArch arch_; 864 uptr uuid_size_; 865 u8 uuid_[kModuleUUIDSize]; 866 bool instrumented_; 867 IntrusiveList<AddressRange> ranges_; 868 }; 869 870 // List of LoadedModules. OS-dependent implementation is responsible for 871 // filling this information. 872 class ListOfModules { 873 public: 874 ListOfModules() : initialized(false) {} 875 ~ListOfModules() { clear(); } 876 void init(); 877 void fallbackInit(); // Uses fallback init if available, otherwise clears 878 const LoadedModule *begin() const { return modules_.begin(); } 879 LoadedModule *begin() { return modules_.begin(); } 880 const LoadedModule *end() const { return modules_.end(); } 881 LoadedModule *end() { return modules_.end(); } 882 uptr size() const { return modules_.size(); } 883 const LoadedModule &operator[](uptr i) const { 884 CHECK_LT(i, modules_.size()); 885 return modules_[i]; 886 } 887 888 private: 889 void clear() { 890 for (auto &module : modules_) module.clear(); 891 modules_.clear(); 892 } 893 void clearOrInit() { 894 initialized ? clear() : modules_.Initialize(kInitialCapacity); 895 initialized = true; 896 } 897 898 InternalMmapVectorNoCtor<LoadedModule> modules_; 899 // We rarely have more than 16K loaded modules. 900 static const uptr kInitialCapacity = 1 << 14; 901 bool initialized; 902 }; 903 904 // Callback type for iterating over a set of memory ranges. 905 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); 906 907 enum AndroidApiLevel { 908 ANDROID_NOT_ANDROID = 0, 909 ANDROID_KITKAT = 19, 910 ANDROID_LOLLIPOP_MR1 = 22, 911 ANDROID_POST_LOLLIPOP = 23 912 }; 913 914 void WriteToSyslog(const char *buffer); 915 916 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__) 917 #define SANITIZER_WIN_TRACE 1 918 #else 919 #define SANITIZER_WIN_TRACE 0 920 #endif 921 922 #if SANITIZER_APPLE || SANITIZER_WIN_TRACE 923 void LogFullErrorReport(const char *buffer); 924 #else 925 inline void LogFullErrorReport(const char *buffer) {} 926 #endif 927 928 #if SANITIZER_LINUX || SANITIZER_APPLE 929 void WriteOneLineToSyslog(const char *s); 930 void LogMessageOnPrintf(const char *str); 931 #else 932 inline void WriteOneLineToSyslog(const char *s) {} 933 inline void LogMessageOnPrintf(const char *str) {} 934 #endif 935 936 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE 937 // Initialize Android logging. Any writes before this are silently lost. 938 void AndroidLogInit(); 939 void SetAbortMessage(const char *); 940 #else 941 inline void AndroidLogInit() {} 942 // FIXME: MacOS implementation could use CRSetCrashLogMessage. 943 inline void SetAbortMessage(const char *) {} 944 #endif 945 946 #if SANITIZER_ANDROID 947 void SanitizerInitializeUnwinder(); 948 AndroidApiLevel AndroidGetApiLevel(); 949 #else 950 inline void AndroidLogWrite(const char *buffer_unused) {} 951 inline void SanitizerInitializeUnwinder() {} 952 inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } 953 #endif 954 955 inline uptr GetPthreadDestructorIterations() { 956 #if SANITIZER_ANDROID 957 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; 958 #elif SANITIZER_POSIX 959 return 4; 960 #else 961 // Unused on Windows. 962 return 0; 963 #endif 964 } 965 966 void *internal_start_thread(void *(*func)(void*), void *arg); 967 void internal_join_thread(void *th); 968 void MaybeStartBackgroudThread(); 969 970 // Make the compiler think that something is going on there. 971 // Use this inside a loop that looks like memset/memcpy/etc to prevent the 972 // compiler from recognising it and turning it into an actual call to 973 // memset/memcpy/etc. 974 static inline void SanitizerBreakOptimization(void *arg) { 975 #if defined(_MSC_VER) && !defined(__clang__) 976 _ReadWriteBarrier(); 977 #else 978 __asm__ __volatile__("" : : "r" (arg) : "memory"); 979 #endif 980 } 981 982 struct SignalContext { 983 void *siginfo; 984 void *context; 985 uptr addr; 986 uptr pc; 987 uptr sp; 988 uptr bp; 989 bool is_memory_access; 990 enum WriteFlag { Unknown, Read, Write } write_flag; 991 992 // In some cases the kernel cannot provide the true faulting address; `addr` 993 // will be zero then. This field allows to distinguish between these cases 994 // and dereferences of null. 995 bool is_true_faulting_addr; 996 997 // VS2013 doesn't implement unrestricted unions, so we need a trivial default 998 // constructor 999 SignalContext() = default; 1000 1001 // Creates signal context in a platform-specific manner. 1002 // SignalContext is going to keep pointers to siginfo and context without 1003 // owning them. 1004 SignalContext(void *siginfo, void *context) 1005 : siginfo(siginfo), 1006 context(context), 1007 addr(GetAddress()), 1008 is_memory_access(IsMemoryAccess()), 1009 write_flag(GetWriteFlag()), 1010 is_true_faulting_addr(IsTrueFaultingAddress()) { 1011 InitPcSpBp(); 1012 } 1013 1014 static void DumpAllRegisters(void *context); 1015 1016 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION. 1017 int GetType() const; 1018 1019 // String description of the signal. 1020 const char *Describe() const; 1021 1022 // Returns true if signal is stack overflow. 1023 bool IsStackOverflow() const; 1024 1025 private: 1026 // Platform specific initialization. 1027 void InitPcSpBp(); 1028 uptr GetAddress() const; 1029 WriteFlag GetWriteFlag() const; 1030 bool IsMemoryAccess() const; 1031 bool IsTrueFaultingAddress() const; 1032 }; 1033 1034 void InitializePlatformEarly(); 1035 1036 template <typename Fn> 1037 class RunOnDestruction { 1038 public: 1039 explicit RunOnDestruction(Fn fn) : fn_(fn) {} 1040 ~RunOnDestruction() { fn_(); } 1041 1042 private: 1043 Fn fn_; 1044 }; 1045 1046 // A simple scope guard. Usage: 1047 // auto cleanup = at_scope_exit([]{ do_cleanup; }); 1048 template <typename Fn> 1049 RunOnDestruction<Fn> at_scope_exit(Fn fn) { 1050 return RunOnDestruction<Fn>(fn); 1051 } 1052 1053 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine 1054 // if a process uses virtual memory over 4TB (as many sanitizers like 1055 // to do). This function will abort the process if running on a kernel 1056 // that looks vulnerable. 1057 #if SANITIZER_LINUX && SANITIZER_S390_64 1058 void AvoidCVE_2016_2143(); 1059 #else 1060 inline void AvoidCVE_2016_2143() {} 1061 #endif 1062 1063 struct StackDepotStats { 1064 uptr n_uniq_ids; 1065 uptr allocated; 1066 }; 1067 1068 // The default value for allocator_release_to_os_interval_ms common flag to 1069 // indicate that sanitizer allocator should not attempt to release memory to OS. 1070 const s32 kReleaseToOSIntervalNever = -1; 1071 1072 void CheckNoDeepBind(const char *filename, int flag); 1073 1074 // Returns the requested amount of random data (up to 256 bytes) that can then 1075 // be used to seed a PRNG. Defaults to blocking like the underlying syscall. 1076 bool GetRandom(void *buffer, uptr length, bool blocking = true); 1077 1078 // Returns the number of logical processors on the system. 1079 u32 GetNumberOfCPUs(); 1080 extern u32 NumberOfCPUsCached; 1081 inline u32 GetNumberOfCPUsCached() { 1082 if (!NumberOfCPUsCached) 1083 NumberOfCPUsCached = GetNumberOfCPUs(); 1084 return NumberOfCPUsCached; 1085 } 1086 1087 } // namespace __sanitizer 1088 1089 inline void *operator new(__sanitizer::operator_new_size_type size, 1090 __sanitizer::LowLevelAllocator &alloc) { 1091 return alloc.Allocate(size); 1092 } 1093 1094 #endif // SANITIZER_COMMON_H 1095