xref: /freebsd/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_common.h (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between run-time libraries of sanitizers.
10 //
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
17 
18 #include "sanitizer_flags.h"
19 #include "sanitizer_interface_internal.h"
20 #include "sanitizer_internal_defs.h"
21 #include "sanitizer_libc.h"
22 #include "sanitizer_list.h"
23 #include "sanitizer_mutex.h"
24 
25 #if defined(_MSC_VER) && !defined(__clang__)
26 extern "C" void _ReadWriteBarrier();
27 #pragma intrinsic(_ReadWriteBarrier)
28 #endif
29 
30 namespace __sanitizer {
31 
32 struct AddressInfo;
33 struct BufferedStackTrace;
34 struct SignalContext;
35 struct StackTrace;
36 
37 // Constants.
38 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
39 const uptr kWordSizeInBits = 8 * kWordSize;
40 
41 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
42 
43 const uptr kMaxPathLength = 4096;
44 
45 const uptr kMaxThreadStackSize = 1 << 30;  // 1Gb
46 
47 static const uptr kErrorMessageBufferSize = 1 << 16;
48 
49 // Denotes fake PC values that come from JIT/JAVA/etc.
50 // For such PC values __tsan_symbolize_external_ex() will be called.
51 const u64 kExternalPCBit = 1ULL << 60;
52 
53 extern const char *SanitizerToolName;  // Can be changed by the tool.
54 
55 extern atomic_uint32_t current_verbosity;
56 INLINE void SetVerbosity(int verbosity) {
57   atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
58 }
59 INLINE int Verbosity() {
60   return atomic_load(&current_verbosity, memory_order_relaxed);
61 }
62 
63 #if SANITIZER_ANDROID
64 INLINE uptr GetPageSize() {
65 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
66   return 4096;
67 }
68 INLINE uptr GetPageSizeCached() {
69   return 4096;
70 }
71 #else
72 uptr GetPageSize();
73 extern uptr PageSizeCached;
74 INLINE uptr GetPageSizeCached() {
75   if (!PageSizeCached)
76     PageSizeCached = GetPageSize();
77   return PageSizeCached;
78 }
79 #endif
80 uptr GetMmapGranularity();
81 uptr GetMaxVirtualAddress();
82 uptr GetMaxUserVirtualAddress();
83 // Threads
84 tid_t GetTid();
85 int TgKill(pid_t pid, tid_t tid, int sig);
86 uptr GetThreadSelf();
87 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
88                                 uptr *stack_bottom);
89 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
90                           uptr *tls_addr, uptr *tls_size);
91 
92 // Memory management
93 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
94 INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
95   return MmapOrDie(size, mem_type, /*raw_report*/ true);
96 }
97 void UnmapOrDie(void *addr, uptr size);
98 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
99 // case returns nullptr.
100 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
101 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
102      WARN_UNUSED_RESULT;
103 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
104                              const char *name = nullptr) WARN_UNUSED_RESULT;
105 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
106 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
107 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
108 // that case returns nullptr.
109 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
110                                  const char *name = nullptr);
111 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
112 void *MmapNoAccess(uptr size);
113 // Map aligned chunk of address space; size and alignment are powers of two.
114 // Dies on all but out of memory errors, in the latter case returns nullptr.
115 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
116                                    const char *mem_type);
117 // Disallow access to a memory range.  Use MmapFixedNoAccess to allocate an
118 // unaccessible memory.
119 bool MprotectNoAccess(uptr addr, uptr size);
120 bool MprotectReadOnly(uptr addr, uptr size);
121 
122 void MprotectMallocZones(void *addr, int prot);
123 
124 // Find an available address space.
125 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
126                               uptr *largest_gap_found, uptr *max_occupied_addr);
127 
128 // Used to check if we can map shadow memory to a fixed location.
129 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
130 // Releases memory pages entirely within the [beg, end] address range. Noop if
131 // the provided range does not contain at least one entire page.
132 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
133 void IncreaseTotalMmap(uptr size);
134 void DecreaseTotalMmap(uptr size);
135 uptr GetRSS();
136 void SetShadowRegionHugePageMode(uptr addr, uptr length);
137 bool DontDumpShadowMemory(uptr addr, uptr length);
138 // Check if the built VMA size matches the runtime one.
139 void CheckVMASize();
140 void RunMallocHooks(const void *ptr, uptr size);
141 void RunFreeHooks(const void *ptr);
142 
143 class ReservedAddressRange {
144  public:
145   uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
146   uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
147   uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
148   void Unmap(uptr addr, uptr size);
149   void *base() const { return base_; }
150   uptr size() const { return size_; }
151 
152  private:
153   void* base_;
154   uptr size_;
155   const char* name_;
156   uptr os_handle_;
157 };
158 
159 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
160                                /*out*/uptr *stats, uptr stats_size);
161 
162 // Parse the contents of /proc/self/smaps and generate a memory profile.
163 // |cb| is a tool-specific callback that fills the |stats| array containing
164 // |stats_size| elements.
165 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);
166 
167 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
168 // constructor, so all instances of LowLevelAllocator should be
169 // linker initialized.
170 class LowLevelAllocator {
171  public:
172   // Requires an external lock.
173   void *Allocate(uptr size);
174  private:
175   char *allocated_end_;
176   char *allocated_current_;
177 };
178 // Set the min alignment of LowLevelAllocator to at least alignment.
179 void SetLowLevelAllocateMinAlignment(uptr alignment);
180 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
181 // Allows to register tool-specific callbacks for LowLevelAllocator.
182 // Passing NULL removes the callback.
183 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
184 
185 // IO
186 void CatastrophicErrorWrite(const char *buffer, uptr length);
187 void RawWrite(const char *buffer);
188 bool ColorizeReports();
189 void RemoveANSIEscapeSequencesFromString(char *buffer);
190 void Printf(const char *format, ...);
191 void Report(const char *format, ...);
192 void SetPrintfAndReportCallback(void (*callback)(const char *));
193 #define VReport(level, ...)                                              \
194   do {                                                                   \
195     if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
196   } while (0)
197 #define VPrintf(level, ...)                                              \
198   do {                                                                   \
199     if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
200   } while (0)
201 
202 // Lock sanitizer error reporting and protects against nested errors.
203 class ScopedErrorReportLock {
204  public:
205   ScopedErrorReportLock();
206   ~ScopedErrorReportLock();
207 
208   static void CheckLocked();
209 };
210 
211 extern uptr stoptheworld_tracer_pid;
212 extern uptr stoptheworld_tracer_ppid;
213 
214 bool IsAccessibleMemoryRange(uptr beg, uptr size);
215 
216 // Error report formatting.
217 const char *StripPathPrefix(const char *filepath,
218                             const char *strip_file_prefix);
219 // Strip the directories from the module name.
220 const char *StripModuleName(const char *module);
221 
222 // OS
223 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
224 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
225 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
226 const char *GetProcessName();
227 void UpdateProcessName();
228 void CacheBinaryName();
229 void DisableCoreDumperIfNecessary();
230 void DumpProcessMap();
231 void PrintModuleMap();
232 const char *GetEnv(const char *name);
233 bool SetEnv(const char *name, const char *value);
234 
235 u32 GetUid();
236 void ReExec();
237 void CheckASLR();
238 void CheckMPROTECT();
239 char **GetArgv();
240 char **GetEnviron();
241 void PrintCmdline();
242 bool StackSizeIsUnlimited();
243 void SetStackSizeLimitInBytes(uptr limit);
244 bool AddressSpaceIsUnlimited();
245 void SetAddressSpaceUnlimited();
246 void AdjustStackSize(void *attr);
247 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
248 void SetSandboxingCallback(void (*f)());
249 
250 void InitializeCoverage(bool enabled, const char *coverage_dir);
251 
252 void InitTlsSize();
253 uptr GetTlsSize();
254 
255 // Other
256 void SleepForSeconds(int seconds);
257 void SleepForMillis(int millis);
258 u64 NanoTime();
259 u64 MonotonicNanoTime();
260 int Atexit(void (*function)(void));
261 bool TemplateMatch(const char *templ, const char *str);
262 
263 // Exit
264 void NORETURN Abort();
265 void NORETURN Die();
266 void NORETURN
267 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
268 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
269                                       const char *mmap_type, error_t err,
270                                       bool raw_report = false);
271 
272 // Specific tools may override behavior of "Die" and "CheckFailed" functions
273 // to do tool-specific job.
274 typedef void (*DieCallbackType)(void);
275 
276 // It's possible to add several callbacks that would be run when "Die" is
277 // called. The callbacks will be run in the opposite order. The tools are
278 // strongly recommended to setup all callbacks during initialization, when there
279 // is only a single thread.
280 bool AddDieCallback(DieCallbackType callback);
281 bool RemoveDieCallback(DieCallbackType callback);
282 
283 void SetUserDieCallback(DieCallbackType callback);
284 
285 typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
286                                        u64, u64);
287 void SetCheckFailedCallback(CheckFailedCallbackType callback);
288 
289 // Callback will be called if soft_rss_limit_mb is given and the limit is
290 // exceeded (exceeded==true) or if rss went down below the limit
291 // (exceeded==false).
292 // The callback should be registered once at the tool init time.
293 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
294 
295 // Functions related to signal handling.
296 typedef void (*SignalHandlerType)(int, void *, void *);
297 HandleSignalMode GetHandleSignalMode(int signum);
298 void InstallDeadlySignalHandlers(SignalHandlerType handler);
299 
300 // Signal reporting.
301 // Each sanitizer uses slightly different implementation of stack unwinding.
302 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
303                                               const void *callback_context,
304                                               BufferedStackTrace *stack);
305 // Print deadly signal report and die.
306 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
307                         UnwindSignalStackCallbackType unwind,
308                         const void *unwind_context);
309 
310 // Part of HandleDeadlySignal, exposed for asan.
311 void StartReportDeadlySignal();
312 // Part of HandleDeadlySignal, exposed for asan.
313 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
314                         UnwindSignalStackCallbackType unwind,
315                         const void *unwind_context);
316 
317 // Alternative signal stack (POSIX-only).
318 void SetAlternateSignalStack();
319 void UnsetAlternateSignalStack();
320 
321 // We don't want a summary too long.
322 const int kMaxSummaryLength = 1024;
323 // Construct a one-line string:
324 //   SUMMARY: SanitizerToolName: error_message
325 // and pass it to __sanitizer_report_error_summary.
326 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
327 void ReportErrorSummary(const char *error_message,
328                         const char *alt_tool_name = nullptr);
329 // Same as above, but construct error_message as:
330 //   error_type file:line[:column][ function]
331 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
332                         const char *alt_tool_name = nullptr);
333 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
334 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
335                         const char *alt_tool_name = nullptr);
336 
337 void ReportMmapWriteExec(int prot);
338 
339 // Math
340 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
341 extern "C" {
342 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
343 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
344 #if defined(_WIN64)
345 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
346 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
347 #endif
348 }
349 #endif
350 
351 INLINE uptr MostSignificantSetBitIndex(uptr x) {
352   CHECK_NE(x, 0U);
353   unsigned long up;
354 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
355 # ifdef _WIN64
356   up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
357 # else
358   up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
359 # endif
360 #elif defined(_WIN64)
361   _BitScanReverse64(&up, x);
362 #else
363   _BitScanReverse(&up, x);
364 #endif
365   return up;
366 }
367 
368 INLINE uptr LeastSignificantSetBitIndex(uptr x) {
369   CHECK_NE(x, 0U);
370   unsigned long up;
371 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
372 # ifdef _WIN64
373   up = __builtin_ctzll(x);
374 # else
375   up = __builtin_ctzl(x);
376 # endif
377 #elif defined(_WIN64)
378   _BitScanForward64(&up, x);
379 #else
380   _BitScanForward(&up, x);
381 #endif
382   return up;
383 }
384 
385 INLINE bool IsPowerOfTwo(uptr x) {
386   return (x & (x - 1)) == 0;
387 }
388 
389 INLINE uptr RoundUpToPowerOfTwo(uptr size) {
390   CHECK(size);
391   if (IsPowerOfTwo(size)) return size;
392 
393   uptr up = MostSignificantSetBitIndex(size);
394   CHECK_LT(size, (1ULL << (up + 1)));
395   CHECK_GT(size, (1ULL << up));
396   return 1ULL << (up + 1);
397 }
398 
399 INLINE uptr RoundUpTo(uptr size, uptr boundary) {
400   RAW_CHECK(IsPowerOfTwo(boundary));
401   return (size + boundary - 1) & ~(boundary - 1);
402 }
403 
404 INLINE uptr RoundDownTo(uptr x, uptr boundary) {
405   return x & ~(boundary - 1);
406 }
407 
408 INLINE bool IsAligned(uptr a, uptr alignment) {
409   return (a & (alignment - 1)) == 0;
410 }
411 
412 INLINE uptr Log2(uptr x) {
413   CHECK(IsPowerOfTwo(x));
414   return LeastSignificantSetBitIndex(x);
415 }
416 
417 // Don't use std::min, std::max or std::swap, to minimize dependency
418 // on libstdc++.
419 template<class T> T Min(T a, T b) { return a < b ? a : b; }
420 template<class T> T Max(T a, T b) { return a > b ? a : b; }
421 template<class T> void Swap(T& a, T& b) {
422   T tmp = a;
423   a = b;
424   b = tmp;
425 }
426 
427 // Char handling
428 INLINE bool IsSpace(int c) {
429   return (c == ' ') || (c == '\n') || (c == '\t') ||
430          (c == '\f') || (c == '\r') || (c == '\v');
431 }
432 INLINE bool IsDigit(int c) {
433   return (c >= '0') && (c <= '9');
434 }
435 INLINE int ToLower(int c) {
436   return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
437 }
438 
439 // A low-level vector based on mmap. May incur a significant memory overhead for
440 // small vectors.
441 // WARNING: The current implementation supports only POD types.
442 template<typename T>
443 class InternalMmapVectorNoCtor {
444  public:
445   void Initialize(uptr initial_capacity) {
446     capacity_bytes_ = 0;
447     size_ = 0;
448     data_ = 0;
449     reserve(initial_capacity);
450   }
451   void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
452   T &operator[](uptr i) {
453     CHECK_LT(i, size_);
454     return data_[i];
455   }
456   const T &operator[](uptr i) const {
457     CHECK_LT(i, size_);
458     return data_[i];
459   }
460   void push_back(const T &element) {
461     CHECK_LE(size_, capacity());
462     if (size_ == capacity()) {
463       uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
464       Realloc(new_capacity);
465     }
466     internal_memcpy(&data_[size_++], &element, sizeof(T));
467   }
468   T &back() {
469     CHECK_GT(size_, 0);
470     return data_[size_ - 1];
471   }
472   void pop_back() {
473     CHECK_GT(size_, 0);
474     size_--;
475   }
476   uptr size() const {
477     return size_;
478   }
479   const T *data() const {
480     return data_;
481   }
482   T *data() {
483     return data_;
484   }
485   uptr capacity() const { return capacity_bytes_ / sizeof(T); }
486   void reserve(uptr new_size) {
487     // Never downsize internal buffer.
488     if (new_size > capacity())
489       Realloc(new_size);
490   }
491   void resize(uptr new_size) {
492     if (new_size > size_) {
493       reserve(new_size);
494       internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
495     }
496     size_ = new_size;
497   }
498 
499   void clear() { size_ = 0; }
500   bool empty() const { return size() == 0; }
501 
502   const T *begin() const {
503     return data();
504   }
505   T *begin() {
506     return data();
507   }
508   const T *end() const {
509     return data() + size();
510   }
511   T *end() {
512     return data() + size();
513   }
514 
515   void swap(InternalMmapVectorNoCtor &other) {
516     Swap(data_, other.data_);
517     Swap(capacity_bytes_, other.capacity_bytes_);
518     Swap(size_, other.size_);
519   }
520 
521  private:
522   void Realloc(uptr new_capacity) {
523     CHECK_GT(new_capacity, 0);
524     CHECK_LE(size_, new_capacity);
525     uptr new_capacity_bytes =
526         RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
527     T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
528     internal_memcpy(new_data, data_, size_ * sizeof(T));
529     UnmapOrDie(data_, capacity_bytes_);
530     data_ = new_data;
531     capacity_bytes_ = new_capacity_bytes;
532   }
533 
534   T *data_;
535   uptr capacity_bytes_;
536   uptr size_;
537 };
538 
539 template <typename T>
540 bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
541                 const InternalMmapVectorNoCtor<T> &rhs) {
542   if (lhs.size() != rhs.size()) return false;
543   return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
544 }
545 
546 template <typename T>
547 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
548                 const InternalMmapVectorNoCtor<T> &rhs) {
549   return !(lhs == rhs);
550 }
551 
552 template<typename T>
553 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
554  public:
555   InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
556   explicit InternalMmapVector(uptr cnt) {
557     InternalMmapVectorNoCtor<T>::Initialize(cnt);
558     this->resize(cnt);
559   }
560   ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
561   // Disallow copies and moves.
562   InternalMmapVector(const InternalMmapVector &) = delete;
563   InternalMmapVector &operator=(const InternalMmapVector &) = delete;
564   InternalMmapVector(InternalMmapVector &&) = delete;
565   InternalMmapVector &operator=(InternalMmapVector &&) = delete;
566 };
567 
568 class InternalScopedString : public InternalMmapVector<char> {
569  public:
570   explicit InternalScopedString(uptr max_length)
571       : InternalMmapVector<char>(max_length), length_(0) {
572     (*this)[0] = '\0';
573   }
574   uptr length() { return length_; }
575   void clear() {
576     (*this)[0] = '\0';
577     length_ = 0;
578   }
579   void append(const char *format, ...);
580 
581  private:
582   uptr length_;
583 };
584 
585 template <class T>
586 struct CompareLess {
587   bool operator()(const T &a, const T &b) const { return a < b; }
588 };
589 
590 // HeapSort for arrays and InternalMmapVector.
591 template <class T, class Compare = CompareLess<T>>
592 void Sort(T *v, uptr size, Compare comp = {}) {
593   if (size < 2)
594     return;
595   // Stage 1: insert elements to the heap.
596   for (uptr i = 1; i < size; i++) {
597     uptr j, p;
598     for (j = i; j > 0; j = p) {
599       p = (j - 1) / 2;
600       if (comp(v[p], v[j]))
601         Swap(v[j], v[p]);
602       else
603         break;
604     }
605   }
606   // Stage 2: swap largest element with the last one,
607   // and sink the new top.
608   for (uptr i = size - 1; i > 0; i--) {
609     Swap(v[0], v[i]);
610     uptr j, max_ind;
611     for (j = 0; j < i; j = max_ind) {
612       uptr left = 2 * j + 1;
613       uptr right = 2 * j + 2;
614       max_ind = j;
615       if (left < i && comp(v[max_ind], v[left]))
616         max_ind = left;
617       if (right < i && comp(v[max_ind], v[right]))
618         max_ind = right;
619       if (max_ind != j)
620         Swap(v[j], v[max_ind]);
621       else
622         break;
623     }
624   }
625 }
626 
627 // Works like std::lower_bound: finds the first element that is not less
628 // than the val.
629 template <class Container, class Value, class Compare>
630 uptr InternalLowerBound(const Container &v, uptr first, uptr last,
631                         const Value &val, Compare comp) {
632   while (last > first) {
633     uptr mid = (first + last) / 2;
634     if (comp(v[mid], val))
635       first = mid + 1;
636     else
637       last = mid;
638   }
639   return first;
640 }
641 
642 enum ModuleArch {
643   kModuleArchUnknown,
644   kModuleArchI386,
645   kModuleArchX86_64,
646   kModuleArchX86_64H,
647   kModuleArchARMV6,
648   kModuleArchARMV7,
649   kModuleArchARMV7S,
650   kModuleArchARMV7K,
651   kModuleArchARM64
652 };
653 
654 // Opens the file 'file_name" and reads up to 'max_len' bytes.
655 // The resulting buffer is mmaped and stored in '*buff'.
656 // Returns true if file was successfully opened and read.
657 bool ReadFileToVector(const char *file_name,
658                       InternalMmapVectorNoCtor<char> *buff,
659                       uptr max_len = 1 << 26, error_t *errno_p = nullptr);
660 
661 // Opens the file 'file_name" and reads up to 'max_len' bytes.
662 // This function is less I/O efficient than ReadFileToVector as it may reread
663 // file multiple times to avoid mmap during read attempts. It's used to read
664 // procmap, so short reads with mmap in between can produce inconsistent result.
665 // The resulting buffer is mmaped and stored in '*buff'.
666 // The size of the mmaped region is stored in '*buff_size'.
667 // The total number of read bytes is stored in '*read_len'.
668 // Returns true if file was successfully opened and read.
669 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
670                       uptr *read_len, uptr max_len = 1 << 26,
671                       error_t *errno_p = nullptr);
672 
673 // When adding a new architecture, don't forget to also update
674 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
675 inline const char *ModuleArchToString(ModuleArch arch) {
676   switch (arch) {
677     case kModuleArchUnknown:
678       return "";
679     case kModuleArchI386:
680       return "i386";
681     case kModuleArchX86_64:
682       return "x86_64";
683     case kModuleArchX86_64H:
684       return "x86_64h";
685     case kModuleArchARMV6:
686       return "armv6";
687     case kModuleArchARMV7:
688       return "armv7";
689     case kModuleArchARMV7S:
690       return "armv7s";
691     case kModuleArchARMV7K:
692       return "armv7k";
693     case kModuleArchARM64:
694       return "arm64";
695   }
696   CHECK(0 && "Invalid module arch");
697   return "";
698 }
699 
700 const uptr kModuleUUIDSize = 16;
701 const uptr kMaxSegName = 16;
702 
703 // Represents a binary loaded into virtual memory (e.g. this can be an
704 // executable or a shared object).
705 class LoadedModule {
706  public:
707   LoadedModule()
708       : full_name_(nullptr),
709         base_address_(0),
710         max_executable_address_(0),
711         arch_(kModuleArchUnknown),
712         instrumented_(false) {
713     internal_memset(uuid_, 0, kModuleUUIDSize);
714     ranges_.clear();
715   }
716   void set(const char *module_name, uptr base_address);
717   void set(const char *module_name, uptr base_address, ModuleArch arch,
718            u8 uuid[kModuleUUIDSize], bool instrumented);
719   void clear();
720   void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
721                        const char *name = nullptr);
722   bool containsAddress(uptr address) const;
723 
724   const char *full_name() const { return full_name_; }
725   uptr base_address() const { return base_address_; }
726   uptr max_executable_address() const { return max_executable_address_; }
727   ModuleArch arch() const { return arch_; }
728   const u8 *uuid() const { return uuid_; }
729   bool instrumented() const { return instrumented_; }
730 
731   struct AddressRange {
732     AddressRange *next;
733     uptr beg;
734     uptr end;
735     bool executable;
736     bool writable;
737     char name[kMaxSegName];
738 
739     AddressRange(uptr beg, uptr end, bool executable, bool writable,
740                  const char *name)
741         : next(nullptr),
742           beg(beg),
743           end(end),
744           executable(executable),
745           writable(writable) {
746       internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
747     }
748   };
749 
750   const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
751 
752  private:
753   char *full_name_;  // Owned.
754   uptr base_address_;
755   uptr max_executable_address_;
756   ModuleArch arch_;
757   u8 uuid_[kModuleUUIDSize];
758   bool instrumented_;
759   IntrusiveList<AddressRange> ranges_;
760 };
761 
762 // List of LoadedModules. OS-dependent implementation is responsible for
763 // filling this information.
764 class ListOfModules {
765  public:
766   ListOfModules() : initialized(false) {}
767   ~ListOfModules() { clear(); }
768   void init();
769   void fallbackInit();  // Uses fallback init if available, otherwise clears
770   const LoadedModule *begin() const { return modules_.begin(); }
771   LoadedModule *begin() { return modules_.begin(); }
772   const LoadedModule *end() const { return modules_.end(); }
773   LoadedModule *end() { return modules_.end(); }
774   uptr size() const { return modules_.size(); }
775   const LoadedModule &operator[](uptr i) const {
776     CHECK_LT(i, modules_.size());
777     return modules_[i];
778   }
779 
780  private:
781   void clear() {
782     for (auto &module : modules_) module.clear();
783     modules_.clear();
784   }
785   void clearOrInit() {
786     initialized ? clear() : modules_.Initialize(kInitialCapacity);
787     initialized = true;
788   }
789 
790   InternalMmapVectorNoCtor<LoadedModule> modules_;
791   // We rarely have more than 16K loaded modules.
792   static const uptr kInitialCapacity = 1 << 14;
793   bool initialized;
794 };
795 
796 // Callback type for iterating over a set of memory ranges.
797 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
798 
799 enum AndroidApiLevel {
800   ANDROID_NOT_ANDROID = 0,
801   ANDROID_KITKAT = 19,
802   ANDROID_LOLLIPOP_MR1 = 22,
803   ANDROID_POST_LOLLIPOP = 23
804 };
805 
806 void WriteToSyslog(const char *buffer);
807 
808 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
809 #define SANITIZER_WIN_TRACE 1
810 #else
811 #define SANITIZER_WIN_TRACE 0
812 #endif
813 
814 #if SANITIZER_MAC || SANITIZER_WIN_TRACE
815 void LogFullErrorReport(const char *buffer);
816 #else
817 INLINE void LogFullErrorReport(const char *buffer) {}
818 #endif
819 
820 #if SANITIZER_LINUX || SANITIZER_MAC
821 void WriteOneLineToSyslog(const char *s);
822 void LogMessageOnPrintf(const char *str);
823 #else
824 INLINE void WriteOneLineToSyslog(const char *s) {}
825 INLINE void LogMessageOnPrintf(const char *str) {}
826 #endif
827 
828 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
829 // Initialize Android logging. Any writes before this are silently lost.
830 void AndroidLogInit();
831 void SetAbortMessage(const char *);
832 #else
833 INLINE void AndroidLogInit() {}
834 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
835 INLINE void SetAbortMessage(const char *) {}
836 #endif
837 
838 #if SANITIZER_ANDROID
839 void SanitizerInitializeUnwinder();
840 AndroidApiLevel AndroidGetApiLevel();
841 #else
842 INLINE void AndroidLogWrite(const char *buffer_unused) {}
843 INLINE void SanitizerInitializeUnwinder() {}
844 INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
845 #endif
846 
847 INLINE uptr GetPthreadDestructorIterations() {
848 #if SANITIZER_ANDROID
849   return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
850 #elif SANITIZER_POSIX
851   return 4;
852 #else
853 // Unused on Windows.
854   return 0;
855 #endif
856 }
857 
858 void *internal_start_thread(void(*func)(void*), void *arg);
859 void internal_join_thread(void *th);
860 void MaybeStartBackgroudThread();
861 
862 // Make the compiler think that something is going on there.
863 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
864 // compiler from recognising it and turning it into an actual call to
865 // memset/memcpy/etc.
866 static inline void SanitizerBreakOptimization(void *arg) {
867 #if defined(_MSC_VER) && !defined(__clang__)
868   _ReadWriteBarrier();
869 #else
870   __asm__ __volatile__("" : : "r" (arg) : "memory");
871 #endif
872 }
873 
874 struct SignalContext {
875   void *siginfo;
876   void *context;
877   uptr addr;
878   uptr pc;
879   uptr sp;
880   uptr bp;
881   bool is_memory_access;
882   enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;
883 
884   // In some cases the kernel cannot provide the true faulting address; `addr`
885   // will be zero then.  This field allows to distinguish between these cases
886   // and dereferences of null.
887   bool is_true_faulting_addr;
888 
889   // VS2013 doesn't implement unrestricted unions, so we need a trivial default
890   // constructor
891   SignalContext() = default;
892 
893   // Creates signal context in a platform-specific manner.
894   // SignalContext is going to keep pointers to siginfo and context without
895   // owning them.
896   SignalContext(void *siginfo, void *context)
897       : siginfo(siginfo),
898         context(context),
899         addr(GetAddress()),
900         is_memory_access(IsMemoryAccess()),
901         write_flag(GetWriteFlag()),
902         is_true_faulting_addr(IsTrueFaultingAddress()) {
903     InitPcSpBp();
904   }
905 
906   static void DumpAllRegisters(void *context);
907 
908   // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
909   int GetType() const;
910 
911   // String description of the signal.
912   const char *Describe() const;
913 
914   // Returns true if signal is stack overflow.
915   bool IsStackOverflow() const;
916 
917  private:
918   // Platform specific initialization.
919   void InitPcSpBp();
920   uptr GetAddress() const;
921   WriteFlag GetWriteFlag() const;
922   bool IsMemoryAccess() const;
923   bool IsTrueFaultingAddress() const;
924 };
925 
926 void InitializePlatformEarly();
927 void MaybeReexec();
928 
929 template <typename Fn>
930 class RunOnDestruction {
931  public:
932   explicit RunOnDestruction(Fn fn) : fn_(fn) {}
933   ~RunOnDestruction() { fn_(); }
934 
935  private:
936   Fn fn_;
937 };
938 
939 // A simple scope guard. Usage:
940 // auto cleanup = at_scope_exit([]{ do_cleanup; });
941 template <typename Fn>
942 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
943   return RunOnDestruction<Fn>(fn);
944 }
945 
946 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
947 // if a process uses virtual memory over 4TB (as many sanitizers like
948 // to do).  This function will abort the process if running on a kernel
949 // that looks vulnerable.
950 #if SANITIZER_LINUX && SANITIZER_S390_64
951 void AvoidCVE_2016_2143();
952 #else
953 INLINE void AvoidCVE_2016_2143() {}
954 #endif
955 
956 struct StackDepotStats {
957   uptr n_uniq_ids;
958   uptr allocated;
959 };
960 
961 // The default value for allocator_release_to_os_interval_ms common flag to
962 // indicate that sanitizer allocator should not attempt to release memory to OS.
963 const s32 kReleaseToOSIntervalNever = -1;
964 
965 void CheckNoDeepBind(const char *filename, int flag);
966 
967 // Returns the requested amount of random data (up to 256 bytes) that can then
968 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
969 bool GetRandom(void *buffer, uptr length, bool blocking = true);
970 
971 // Returns the number of logical processors on the system.
972 u32 GetNumberOfCPUs();
973 extern u32 NumberOfCPUsCached;
974 INLINE u32 GetNumberOfCPUsCached() {
975   if (!NumberOfCPUsCached)
976     NumberOfCPUsCached = GetNumberOfCPUs();
977   return NumberOfCPUsCached;
978 }
979 
980 }  // namespace __sanitizer
981 
982 inline void *operator new(__sanitizer::operator_new_size_type size,
983                           __sanitizer::LowLevelAllocator &alloc) {  // NOLINT
984   return alloc.Allocate(size);
985 }
986 
987 #endif  // SANITIZER_COMMON_H
988