xref: /freebsd/contrib/llvm-project/compiler-rt/lib/safestack/safestack.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===-- safestack.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the runtime support for the safe stack protection
10 // mechanism. The runtime manages allocation/deallocation of the unsafe stack
11 // for the main thread, as well as all pthreads that are created/destroyed
12 // during program execution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "safestack_platform.h"
17 #include "safestack_util.h"
18 
19 #include <errno.h>
20 #include <sys/resource.h>
21 
22 #include "interception/interception.h"
23 
24 using namespace safestack;
25 
26 // TODO: To make accessing the unsafe stack pointer faster, we plan to
27 // eventually store it directly in the thread control block data structure on
28 // platforms where this structure is pointed to by %fs or %gs. This is exactly
29 // the same mechanism as currently being used by the traditional stack
30 // protector pass to store the stack guard (see getStackCookieLocation()
31 // function above). Doing so requires changing the tcbhead_t struct in glibc
32 // on Linux and tcb struct in libc on FreeBSD.
33 //
34 // For now, store it in a thread-local variable.
35 extern "C" {
36 __attribute__((visibility(
37     "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
38 }
39 
40 namespace {
41 
42 // TODO: The runtime library does not currently protect the safe stack beyond
43 // relying on the system-enforced ASLR. The protection of the (safe) stack can
44 // be provided by three alternative features:
45 //
46 // 1) Protection via hardware segmentation on x86-32 and some x86-64
47 // architectures: the (safe) stack segment (implicitly accessed via the %ss
48 // segment register) can be separated from the data segment (implicitly
49 // accessed via the %ds segment register). Dereferencing a pointer to the safe
50 // segment would result in a segmentation fault.
51 //
52 // 2) Protection via software fault isolation: memory writes that are not meant
53 // to access the safe stack can be prevented from doing so through runtime
54 // instrumentation. One way to do it is to allocate the safe stack(s) in the
55 // upper half of the userspace and bitmask the corresponding upper bit of the
56 // memory addresses of memory writes that are not meant to access the safe
57 // stack.
58 //
59 // 3) Protection via information hiding on 64 bit architectures: the location
60 // of the safe stack(s) can be randomized through secure mechanisms, and the
61 // leakage of the stack pointer can be prevented. Currently, libc can leak the
62 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
63 // context switching related functions, etc.). These can be fixed in libc and
64 // in other low-level libraries, by either eliminating the escaping/dumping of
65 // the stack pointer (i.e., %rsp) when that's possible, or by using
66 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
67 // we control and protect better, as is already done for setjmp in glibc.)
68 // Furthermore, a static machine code level verifier can be ran after code
69 // generation to make sure that the stack pointer is never written to memory,
70 // or if it is, its written on the safe stack.
71 //
72 // Finally, while the Unsafe Stack pointer is currently stored in a thread
73 // local variable, with libc support it could be stored in the TCB (thread
74 // control block) as well, eliminating another level of indirection and making
75 // such accesses faster. Alternatively, dedicating a separate register for
76 // storing it would also be possible.
77 
78 /// Minimum stack alignment for the unsafe stack.
79 const unsigned kStackAlign = 16;
80 
81 /// Default size of the unsafe stack. This value is only used if the stack
82 /// size rlimit is set to infinity.
83 const unsigned kDefaultUnsafeStackSize = 0x2800000;
84 
85 // Per-thread unsafe stack information. It's not frequently accessed, so there
86 // it can be kept out of the tcb in normal thread-local variables.
87 __thread void *unsafe_stack_start = nullptr;
88 __thread size_t unsafe_stack_size = 0;
89 __thread size_t unsafe_stack_guard = 0;
90 
91 inline void *unsafe_stack_alloc(size_t size, size_t guard) {
92   SFS_CHECK(size + guard >= size);
93   void *addr = Mmap(nullptr, size + guard, PROT_READ | PROT_WRITE,
94                     MAP_PRIVATE | MAP_ANON, -1, 0);
95   SFS_CHECK(MAP_FAILED != addr);
96   Mprotect(addr, guard, PROT_NONE);
97   return (char *)addr + guard;
98 }
99 
100 inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
101   SFS_CHECK((char *)start + size >= (char *)start);
102   SFS_CHECK((char *)start + guard >= (char *)start);
103   void *stack_ptr = (char *)start + size;
104   SFS_CHECK((((size_t)stack_ptr) & (kStackAlign - 1)) == 0);
105 
106   __safestack_unsafe_stack_ptr = stack_ptr;
107   unsafe_stack_start = start;
108   unsafe_stack_size = size;
109   unsafe_stack_guard = guard;
110 }
111 
112 /// Thread data for the cleanup handler
113 pthread_key_t thread_cleanup_key;
114 
115 /// Safe stack per-thread information passed to the thread_start function
116 struct tinfo {
117   void *(*start_routine)(void *);
118   void *start_routine_arg;
119 
120   void *unsafe_stack_start;
121   size_t unsafe_stack_size;
122   size_t unsafe_stack_guard;
123 };
124 
125 /// Wrap the thread function in order to deallocate the unsafe stack when the
126 /// thread terminates by returning from its main function.
127 void *thread_start(void *arg) {
128   struct tinfo *tinfo = (struct tinfo *)arg;
129 
130   void *(*start_routine)(void *) = tinfo->start_routine;
131   void *start_routine_arg = tinfo->start_routine_arg;
132 
133   // Setup the unsafe stack; this will destroy tinfo content
134   unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
135                      tinfo->unsafe_stack_guard);
136 
137   // Make sure out thread-specific destructor will be called
138   pthread_setspecific(thread_cleanup_key, (void *)1);
139 
140   return start_routine(start_routine_arg);
141 }
142 
143 /// Linked list used to store exiting threads stack/thread information.
144 struct thread_stack_ll {
145   struct thread_stack_ll *next;
146   void *stack_base;
147   size_t size;
148   pid_t pid;
149   ThreadId tid;
150 };
151 
152 /// Linked list of unsafe stacks for threads that are exiting. We delay
153 /// unmapping them until the thread exits.
154 thread_stack_ll *thread_stacks = nullptr;
155 pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER;
156 
157 /// Thread-specific data destructor. We want to free the unsafe stack only after
158 /// this thread is terminated. libc can call functions in safestack-instrumented
159 /// code (like free) after thread-specific data destructors have run.
160 void thread_cleanup_handler(void *_iter) {
161   SFS_CHECK(unsafe_stack_start != nullptr);
162   pthread_setspecific(thread_cleanup_key, NULL);
163 
164   pthread_mutex_lock(&thread_stacks_mutex);
165   // Temporary list to hold the previous threads stacks so we don't hold the
166   // thread_stacks_mutex for long.
167   thread_stack_ll *temp_stacks = thread_stacks;
168   thread_stacks = nullptr;
169   pthread_mutex_unlock(&thread_stacks_mutex);
170 
171   pid_t pid = getpid();
172   ThreadId tid = GetTid();
173 
174   // Free stacks for dead threads
175   thread_stack_ll **stackp = &temp_stacks;
176   while (*stackp) {
177     thread_stack_ll *stack = *stackp;
178     if (stack->pid != pid ||
179         (-1 == TgKill(stack->pid, stack->tid, 0) && errno == ESRCH)) {
180       Munmap(stack->stack_base, stack->size);
181       *stackp = stack->next;
182       free(stack);
183     } else
184       stackp = &stack->next;
185   }
186 
187   thread_stack_ll *cur_stack =
188       (thread_stack_ll *)malloc(sizeof(thread_stack_ll));
189   cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard;
190   cur_stack->size = unsafe_stack_size + unsafe_stack_guard;
191   cur_stack->pid = pid;
192   cur_stack->tid = tid;
193 
194   pthread_mutex_lock(&thread_stacks_mutex);
195   // Merge thread_stacks with the current thread's stack and any remaining
196   // temp_stacks
197   *stackp = thread_stacks;
198   cur_stack->next = temp_stacks;
199   thread_stacks = cur_stack;
200   pthread_mutex_unlock(&thread_stacks_mutex);
201 
202   unsafe_stack_start = nullptr;
203 }
204 
205 void EnsureInterceptorsInitialized();
206 
207 /// Intercept thread creation operation to allocate and setup the unsafe stack
208 INTERCEPTOR(int, pthread_create, pthread_t *thread,
209             const pthread_attr_t *attr,
210             void *(*start_routine)(void*), void *arg) {
211   EnsureInterceptorsInitialized();
212   size_t size = 0;
213   size_t guard = 0;
214 
215   if (attr) {
216     pthread_attr_getstacksize(attr, &size);
217     pthread_attr_getguardsize(attr, &guard);
218   } else {
219     // get pthread default stack size
220     pthread_attr_t tmpattr;
221     pthread_attr_init(&tmpattr);
222     pthread_attr_getstacksize(&tmpattr, &size);
223     pthread_attr_getguardsize(&tmpattr, &guard);
224     pthread_attr_destroy(&tmpattr);
225   }
226 
227   SFS_CHECK(size);
228   size = RoundUpTo(size, kStackAlign);
229 
230   void *addr = unsafe_stack_alloc(size, guard);
231   // Put tinfo at the end of the buffer. guard may be not page aligned.
232   // If that is so then some bytes after addr can be mprotected.
233   struct tinfo *tinfo =
234       (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
235   tinfo->start_routine = start_routine;
236   tinfo->start_routine_arg = arg;
237   tinfo->unsafe_stack_start = addr;
238   tinfo->unsafe_stack_size = size;
239   tinfo->unsafe_stack_guard = guard;
240 
241   return REAL(pthread_create)(thread, attr, thread_start, tinfo);
242 }
243 
244 pthread_mutex_t interceptor_init_mutex = PTHREAD_MUTEX_INITIALIZER;
245 bool interceptors_inited = false;
246 
247 void EnsureInterceptorsInitialized() {
248   MutexLock lock(interceptor_init_mutex);
249   if (interceptors_inited)
250     return;
251 
252   // Initialize pthread interceptors for thread allocation
253   INTERCEPT_FUNCTION(pthread_create);
254 
255   interceptors_inited = true;
256 }
257 
258 }  // namespace
259 
260 extern "C" __attribute__((visibility("default")))
261 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
262 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
263 __attribute__((constructor(0)))
264 #endif
265 void __safestack_init() {
266   // Determine the stack size for the main thread.
267   size_t size = kDefaultUnsafeStackSize;
268   size_t guard = 4096;
269 
270   struct rlimit limit;
271   if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
272     size = limit.rlim_cur;
273 
274   // Allocate unsafe stack for main thread
275   void *addr = unsafe_stack_alloc(size, guard);
276   unsafe_stack_setup(addr, size, guard);
277 
278   // Setup the cleanup handler
279   pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
280 }
281 
282 #if SANITIZER_CAN_USE_PREINIT_ARRAY
283 // On ELF platforms, run safestack initialization before any other constructors.
284 // On other platforms we use the constructor attribute to arrange to run our
285 // initialization early.
286 extern "C" {
287 __attribute__((section(".preinit_array"),
288                used)) void (*__safestack_preinit)(void) = __safestack_init;
289 }
290 #endif
291 
292 extern "C"
293     __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() {
294   return unsafe_stack_start;
295 }
296 
297 extern "C"
298     __attribute__((visibility("default"))) void *__get_unsafe_stack_top() {
299   return (char*)unsafe_stack_start + unsafe_stack_size;
300 }
301 
302 extern "C"
303     __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
304   return unsafe_stack_start;
305 }
306 
307 extern "C"
308     __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
309   return __safestack_unsafe_stack_ptr;
310 }
311