xref: /freebsd/contrib/llvm-project/compiler-rt/lib/safestack/safestack.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- safestack.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the runtime support for the safe stack protection
10 // mechanism. The runtime manages allocation/deallocation of the unsafe stack
11 // for the main thread, as well as all pthreads that are created/destroyed
12 // during program execution.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #define SANITIZER_COMMON_NO_REDEFINE_BUILTINS
17 
18 #include "safestack_platform.h"
19 #include "safestack_util.h"
20 #include "sanitizer_common/sanitizer_internal_defs.h"
21 
22 #include <errno.h>
23 #include <string.h>
24 #include <sys/resource.h>
25 
26 #include "interception/interception.h"
27 
28 // interception.h drags in sanitizer_redefine_builtins.h, which in turn
29 // creates references to __sanitizer_internal_memcpy etc.  The interceptors
30 // aren't needed here, so just forward to libc.
31 extern "C" {
32 SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memcpy(void *dest,
33                                                                 const void *src,
34                                                                 size_t n) {
35   return memcpy(dest, src, n);
36 }
37 
38 SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memmove(
39     void *dest, const void *src, size_t n) {
40   return memmove(dest, src, n);
41 }
42 
43 SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memset(void *s, int c,
44                                                                 size_t n) {
45   return memset(s, c, n);
46 }
47 }  // extern "C"
48 
49 using namespace safestack;
50 
51 // TODO: To make accessing the unsafe stack pointer faster, we plan to
52 // eventually store it directly in the thread control block data structure on
53 // platforms where this structure is pointed to by %fs or %gs. This is exactly
54 // the same mechanism as currently being used by the traditional stack
55 // protector pass to store the stack guard (see getStackCookieLocation()
56 // function above). Doing so requires changing the tcbhead_t struct in glibc
57 // on Linux and tcb struct in libc on FreeBSD.
58 //
59 // For now, store it in a thread-local variable.
60 extern "C" {
61 __attribute__((visibility(
62     "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
63 }
64 
65 namespace {
66 
67 // TODO: The runtime library does not currently protect the safe stack beyond
68 // relying on the system-enforced ASLR. The protection of the (safe) stack can
69 // be provided by three alternative features:
70 //
71 // 1) Protection via hardware segmentation on x86-32 and some x86-64
72 // architectures: the (safe) stack segment (implicitly accessed via the %ss
73 // segment register) can be separated from the data segment (implicitly
74 // accessed via the %ds segment register). Dereferencing a pointer to the safe
75 // segment would result in a segmentation fault.
76 //
77 // 2) Protection via software fault isolation: memory writes that are not meant
78 // to access the safe stack can be prevented from doing so through runtime
79 // instrumentation. One way to do it is to allocate the safe stack(s) in the
80 // upper half of the userspace and bitmask the corresponding upper bit of the
81 // memory addresses of memory writes that are not meant to access the safe
82 // stack.
83 //
84 // 3) Protection via information hiding on 64 bit architectures: the location
85 // of the safe stack(s) can be randomized through secure mechanisms, and the
86 // leakage of the stack pointer can be prevented. Currently, libc can leak the
87 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level
88 // context switching related functions, etc.). These can be fixed in libc and
89 // in other low-level libraries, by either eliminating the escaping/dumping of
90 // the stack pointer (i.e., %rsp) when that's possible, or by using
91 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
92 // we control and protect better, as is already done for setjmp in glibc.)
93 // Furthermore, a static machine code level verifier can be ran after code
94 // generation to make sure that the stack pointer is never written to memory,
95 // or if it is, its written on the safe stack.
96 //
97 // Finally, while the Unsafe Stack pointer is currently stored in a thread
98 // local variable, with libc support it could be stored in the TCB (thread
99 // control block) as well, eliminating another level of indirection and making
100 // such accesses faster. Alternatively, dedicating a separate register for
101 // storing it would also be possible.
102 
103 /// Minimum stack alignment for the unsafe stack.
104 const unsigned kStackAlign = 16;
105 
106 /// Default size of the unsafe stack. This value is only used if the stack
107 /// size rlimit is set to infinity.
108 const unsigned kDefaultUnsafeStackSize = 0x2800000;
109 
110 // Per-thread unsafe stack information. It's not frequently accessed, so there
111 // it can be kept out of the tcb in normal thread-local variables.
112 __thread void *unsafe_stack_start = nullptr;
113 __thread size_t unsafe_stack_size = 0;
114 __thread size_t unsafe_stack_guard = 0;
115 
116 inline void *unsafe_stack_alloc(size_t size, size_t guard) {
117   SFS_CHECK(size + guard >= size);
118   void *addr = Mmap(nullptr, size + guard, PROT_READ | PROT_WRITE,
119                     MAP_PRIVATE | MAP_ANON, -1, 0);
120   SFS_CHECK(MAP_FAILED != addr);
121   Mprotect(addr, guard, PROT_NONE);
122   return (char *)addr + guard;
123 }
124 
125 inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
126   SFS_CHECK((char *)start + size >= (char *)start);
127   SFS_CHECK((char *)start + guard >= (char *)start);
128   void *stack_ptr = (char *)start + size;
129   SFS_CHECK((((size_t)stack_ptr) & (kStackAlign - 1)) == 0);
130 
131   __safestack_unsafe_stack_ptr = stack_ptr;
132   unsafe_stack_start = start;
133   unsafe_stack_size = size;
134   unsafe_stack_guard = guard;
135 }
136 
137 /// Thread data for the cleanup handler
138 pthread_key_t thread_cleanup_key;
139 
140 /// Safe stack per-thread information passed to the thread_start function
141 struct tinfo {
142   void *(*start_routine)(void *);
143   void *start_routine_arg;
144 
145   void *unsafe_stack_start;
146   size_t unsafe_stack_size;
147   size_t unsafe_stack_guard;
148 };
149 
150 /// Wrap the thread function in order to deallocate the unsafe stack when the
151 /// thread terminates by returning from its main function.
152 void *thread_start(void *arg) {
153   struct tinfo *tinfo = (struct tinfo *)arg;
154 
155   void *(*start_routine)(void *) = tinfo->start_routine;
156   void *start_routine_arg = tinfo->start_routine_arg;
157 
158   // Setup the unsafe stack; this will destroy tinfo content
159   unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
160                      tinfo->unsafe_stack_guard);
161 
162   // Make sure out thread-specific destructor will be called
163   pthread_setspecific(thread_cleanup_key, (void *)1);
164 
165   return start_routine(start_routine_arg);
166 }
167 
168 /// Linked list used to store exiting threads stack/thread information.
169 struct thread_stack_ll {
170   struct thread_stack_ll *next;
171   void *stack_base;
172   size_t size;
173   pid_t pid;
174   ThreadId tid;
175 };
176 
177 /// Linked list of unsafe stacks for threads that are exiting. We delay
178 /// unmapping them until the thread exits.
179 thread_stack_ll *thread_stacks = nullptr;
180 pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER;
181 
182 /// Thread-specific data destructor. We want to free the unsafe stack only after
183 /// this thread is terminated. libc can call functions in safestack-instrumented
184 /// code (like free) after thread-specific data destructors have run.
185 void thread_cleanup_handler(void *_iter) {
186   SFS_CHECK(unsafe_stack_start != nullptr);
187   pthread_setspecific(thread_cleanup_key, NULL);
188 
189   pthread_mutex_lock(&thread_stacks_mutex);
190   // Temporary list to hold the previous threads stacks so we don't hold the
191   // thread_stacks_mutex for long.
192   thread_stack_ll *temp_stacks = thread_stacks;
193   thread_stacks = nullptr;
194   pthread_mutex_unlock(&thread_stacks_mutex);
195 
196   pid_t pid = getpid();
197   ThreadId tid = GetTid();
198 
199   // Free stacks for dead threads
200   thread_stack_ll **stackp = &temp_stacks;
201   while (*stackp) {
202     thread_stack_ll *stack = *stackp;
203     if (stack->pid != pid ||
204         (-1 == TgKill(stack->pid, stack->tid, 0) && errno == ESRCH)) {
205       Munmap(stack->stack_base, stack->size);
206       *stackp = stack->next;
207       free(stack);
208     } else
209       stackp = &stack->next;
210   }
211 
212   thread_stack_ll *cur_stack =
213       (thread_stack_ll *)malloc(sizeof(thread_stack_ll));
214   cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard;
215   cur_stack->size = unsafe_stack_size + unsafe_stack_guard;
216   cur_stack->pid = pid;
217   cur_stack->tid = tid;
218 
219   pthread_mutex_lock(&thread_stacks_mutex);
220   // Merge thread_stacks with the current thread's stack and any remaining
221   // temp_stacks
222   *stackp = thread_stacks;
223   cur_stack->next = temp_stacks;
224   thread_stacks = cur_stack;
225   pthread_mutex_unlock(&thread_stacks_mutex);
226 
227   unsafe_stack_start = nullptr;
228 }
229 
230 void EnsureInterceptorsInitialized();
231 
232 /// Intercept thread creation operation to allocate and setup the unsafe stack
233 INTERCEPTOR(int, pthread_create, pthread_t *thread,
234             const pthread_attr_t *attr,
235             void *(*start_routine)(void*), void *arg) {
236   EnsureInterceptorsInitialized();
237   size_t size = 0;
238   size_t guard = 0;
239 
240   if (attr) {
241     pthread_attr_getstacksize(attr, &size);
242     pthread_attr_getguardsize(attr, &guard);
243   } else {
244     // get pthread default stack size
245     pthread_attr_t tmpattr;
246     pthread_attr_init(&tmpattr);
247     pthread_attr_getstacksize(&tmpattr, &size);
248     pthread_attr_getguardsize(&tmpattr, &guard);
249     pthread_attr_destroy(&tmpattr);
250   }
251 
252 #if SANITIZER_SOLARIS
253   // Solaris pthread_attr_init initializes stacksize to 0 (the default), so
254   // hardcode the actual values as documented in pthread_create(3C).
255   if (size == 0)
256 #  if defined(_LP64)
257     size = 2 * 1024 * 1024;
258 #  else
259     size = 1024 * 1024;
260 #  endif
261 #endif
262 
263   SFS_CHECK(size);
264   size = RoundUpTo(size, kStackAlign);
265 
266   void *addr = unsafe_stack_alloc(size, guard);
267   // Put tinfo at the end of the buffer. guard may be not page aligned.
268   // If that is so then some bytes after addr can be mprotected.
269   struct tinfo *tinfo =
270       (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
271   tinfo->start_routine = start_routine;
272   tinfo->start_routine_arg = arg;
273   tinfo->unsafe_stack_start = addr;
274   tinfo->unsafe_stack_size = size;
275   tinfo->unsafe_stack_guard = guard;
276 
277   return REAL(pthread_create)(thread, attr, thread_start, tinfo);
278 }
279 
280 pthread_mutex_t interceptor_init_mutex = PTHREAD_MUTEX_INITIALIZER;
281 bool interceptors_inited = false;
282 
283 void EnsureInterceptorsInitialized() {
284   MutexLock lock(interceptor_init_mutex);
285   if (interceptors_inited)
286     return;
287 
288   // Initialize pthread interceptors for thread allocation
289   INTERCEPT_FUNCTION(pthread_create);
290 
291   interceptors_inited = true;
292 }
293 
294 }  // namespace
295 
296 extern "C" __attribute__((visibility("default")))
297 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
298 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
299 __attribute__((constructor(0)))
300 #endif
301 void __safestack_init() {
302   // Determine the stack size for the main thread.
303   size_t size = kDefaultUnsafeStackSize;
304   size_t guard = 4096;
305 
306   struct rlimit limit;
307   if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
308     size = limit.rlim_cur;
309 
310   // Allocate unsafe stack for main thread
311   void *addr = unsafe_stack_alloc(size, guard);
312   unsafe_stack_setup(addr, size, guard);
313 
314   // Setup the cleanup handler
315   pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
316 }
317 
318 #if SANITIZER_CAN_USE_PREINIT_ARRAY
319 // On ELF platforms, run safestack initialization before any other constructors.
320 // On other platforms we use the constructor attribute to arrange to run our
321 // initialization early.
322 extern "C" {
323 __attribute__((section(".preinit_array"),
324                used)) void (*__safestack_preinit)(void) = __safestack_init;
325 }
326 #endif
327 
328 extern "C"
329     __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() {
330   return unsafe_stack_start;
331 }
332 
333 extern "C"
334     __attribute__((visibility("default"))) void *__get_unsafe_stack_top() {
335   return (char*)unsafe_stack_start + unsafe_stack_size;
336 }
337 
338 extern "C"
339     __attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
340   return unsafe_stack_start;
341 }
342 
343 extern "C"
344     __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
345   return __safestack_unsafe_stack_ptr;
346 }
347