1 //===-- safestack.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the runtime support for the safe stack protection 10 // mechanism. The runtime manages allocation/deallocation of the unsafe stack 11 // for the main thread, as well as all pthreads that are created/destroyed 12 // during program execution. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define SANITIZER_COMMON_NO_REDEFINE_BUILTINS 17 18 #include "safestack_platform.h" 19 #include "safestack_util.h" 20 #include "sanitizer_common/sanitizer_internal_defs.h" 21 22 #include <errno.h> 23 #include <string.h> 24 #include <sys/resource.h> 25 26 #include "interception/interception.h" 27 28 // interception.h drags in sanitizer_redefine_builtins.h, which in turn 29 // creates references to __sanitizer_internal_memcpy etc. The interceptors 30 // aren't needed here, so just forward to libc. 31 extern "C" { 32 SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memcpy(void *dest, 33 const void *src, 34 size_t n) { 35 return memcpy(dest, src, n); 36 } 37 38 SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memmove( 39 void *dest, const void *src, size_t n) { 40 return memmove(dest, src, n); 41 } 42 43 SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memset(void *s, int c, 44 size_t n) { 45 return memset(s, c, n); 46 } 47 } // extern "C" 48 49 using namespace safestack; 50 51 // TODO: To make accessing the unsafe stack pointer faster, we plan to 52 // eventually store it directly in the thread control block data structure on 53 // platforms where this structure is pointed to by %fs or %gs. This is exactly 54 // the same mechanism as currently being used by the traditional stack 55 // protector pass to store the stack guard (see getStackCookieLocation() 56 // function above). Doing so requires changing the tcbhead_t struct in glibc 57 // on Linux and tcb struct in libc on FreeBSD. 58 // 59 // For now, store it in a thread-local variable. 60 extern "C" { 61 __attribute__((visibility( 62 "default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr; 63 } 64 65 namespace { 66 67 // TODO: The runtime library does not currently protect the safe stack beyond 68 // relying on the system-enforced ASLR. The protection of the (safe) stack can 69 // be provided by three alternative features: 70 // 71 // 1) Protection via hardware segmentation on x86-32 and some x86-64 72 // architectures: the (safe) stack segment (implicitly accessed via the %ss 73 // segment register) can be separated from the data segment (implicitly 74 // accessed via the %ds segment register). Dereferencing a pointer to the safe 75 // segment would result in a segmentation fault. 76 // 77 // 2) Protection via software fault isolation: memory writes that are not meant 78 // to access the safe stack can be prevented from doing so through runtime 79 // instrumentation. One way to do it is to allocate the safe stack(s) in the 80 // upper half of the userspace and bitmask the corresponding upper bit of the 81 // memory addresses of memory writes that are not meant to access the safe 82 // stack. 83 // 84 // 3) Protection via information hiding on 64 bit architectures: the location 85 // of the safe stack(s) can be randomized through secure mechanisms, and the 86 // leakage of the stack pointer can be prevented. Currently, libc can leak the 87 // stack pointer in several ways (e.g. in longjmp, signal handling, user-level 88 // context switching related functions, etc.). These can be fixed in libc and 89 // in other low-level libraries, by either eliminating the escaping/dumping of 90 // the stack pointer (i.e., %rsp) when that's possible, or by using 91 // encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret 92 // we control and protect better, as is already done for setjmp in glibc.) 93 // Furthermore, a static machine code level verifier can be ran after code 94 // generation to make sure that the stack pointer is never written to memory, 95 // or if it is, its written on the safe stack. 96 // 97 // Finally, while the Unsafe Stack pointer is currently stored in a thread 98 // local variable, with libc support it could be stored in the TCB (thread 99 // control block) as well, eliminating another level of indirection and making 100 // such accesses faster. Alternatively, dedicating a separate register for 101 // storing it would also be possible. 102 103 /// Minimum stack alignment for the unsafe stack. 104 const unsigned kStackAlign = 16; 105 106 /// Default size of the unsafe stack. This value is only used if the stack 107 /// size rlimit is set to infinity. 108 const unsigned kDefaultUnsafeStackSize = 0x2800000; 109 110 // Per-thread unsafe stack information. It's not frequently accessed, so there 111 // it can be kept out of the tcb in normal thread-local variables. 112 __thread void *unsafe_stack_start = nullptr; 113 __thread size_t unsafe_stack_size = 0; 114 __thread size_t unsafe_stack_guard = 0; 115 116 inline void *unsafe_stack_alloc(size_t size, size_t guard) { 117 SFS_CHECK(size + guard >= size); 118 void *addr = Mmap(nullptr, size + guard, PROT_READ | PROT_WRITE, 119 MAP_PRIVATE | MAP_ANON, -1, 0); 120 SFS_CHECK(MAP_FAILED != addr); 121 Mprotect(addr, guard, PROT_NONE); 122 return (char *)addr + guard; 123 } 124 125 inline void unsafe_stack_setup(void *start, size_t size, size_t guard) { 126 SFS_CHECK((char *)start + size >= (char *)start); 127 SFS_CHECK((char *)start + guard >= (char *)start); 128 void *stack_ptr = (char *)start + size; 129 SFS_CHECK((((size_t)stack_ptr) & (kStackAlign - 1)) == 0); 130 131 __safestack_unsafe_stack_ptr = stack_ptr; 132 unsafe_stack_start = start; 133 unsafe_stack_size = size; 134 unsafe_stack_guard = guard; 135 } 136 137 /// Thread data for the cleanup handler 138 pthread_key_t thread_cleanup_key; 139 140 /// Safe stack per-thread information passed to the thread_start function 141 struct tinfo { 142 void *(*start_routine)(void *); 143 void *start_routine_arg; 144 145 void *unsafe_stack_start; 146 size_t unsafe_stack_size; 147 size_t unsafe_stack_guard; 148 }; 149 150 /// Wrap the thread function in order to deallocate the unsafe stack when the 151 /// thread terminates by returning from its main function. 152 void *thread_start(void *arg) { 153 struct tinfo *tinfo = (struct tinfo *)arg; 154 155 void *(*start_routine)(void *) = tinfo->start_routine; 156 void *start_routine_arg = tinfo->start_routine_arg; 157 158 // Setup the unsafe stack; this will destroy tinfo content 159 unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size, 160 tinfo->unsafe_stack_guard); 161 162 // Make sure out thread-specific destructor will be called 163 pthread_setspecific(thread_cleanup_key, (void *)1); 164 165 return start_routine(start_routine_arg); 166 } 167 168 /// Linked list used to store exiting threads stack/thread information. 169 struct thread_stack_ll { 170 struct thread_stack_ll *next; 171 void *stack_base; 172 size_t size; 173 pid_t pid; 174 ThreadId tid; 175 }; 176 177 /// Linked list of unsafe stacks for threads that are exiting. We delay 178 /// unmapping them until the thread exits. 179 thread_stack_ll *thread_stacks = nullptr; 180 pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER; 181 182 /// Thread-specific data destructor. We want to free the unsafe stack only after 183 /// this thread is terminated. libc can call functions in safestack-instrumented 184 /// code (like free) after thread-specific data destructors have run. 185 void thread_cleanup_handler(void *_iter) { 186 SFS_CHECK(unsafe_stack_start != nullptr); 187 pthread_setspecific(thread_cleanup_key, NULL); 188 189 pthread_mutex_lock(&thread_stacks_mutex); 190 // Temporary list to hold the previous threads stacks so we don't hold the 191 // thread_stacks_mutex for long. 192 thread_stack_ll *temp_stacks = thread_stacks; 193 thread_stacks = nullptr; 194 pthread_mutex_unlock(&thread_stacks_mutex); 195 196 pid_t pid = getpid(); 197 ThreadId tid = GetTid(); 198 199 // Free stacks for dead threads 200 thread_stack_ll **stackp = &temp_stacks; 201 while (*stackp) { 202 thread_stack_ll *stack = *stackp; 203 if (stack->pid != pid || 204 (-1 == TgKill(stack->pid, stack->tid, 0) && errno == ESRCH)) { 205 Munmap(stack->stack_base, stack->size); 206 *stackp = stack->next; 207 free(stack); 208 } else 209 stackp = &stack->next; 210 } 211 212 thread_stack_ll *cur_stack = 213 (thread_stack_ll *)malloc(sizeof(thread_stack_ll)); 214 cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard; 215 cur_stack->size = unsafe_stack_size + unsafe_stack_guard; 216 cur_stack->pid = pid; 217 cur_stack->tid = tid; 218 219 pthread_mutex_lock(&thread_stacks_mutex); 220 // Merge thread_stacks with the current thread's stack and any remaining 221 // temp_stacks 222 *stackp = thread_stacks; 223 cur_stack->next = temp_stacks; 224 thread_stacks = cur_stack; 225 pthread_mutex_unlock(&thread_stacks_mutex); 226 227 unsafe_stack_start = nullptr; 228 } 229 230 void EnsureInterceptorsInitialized(); 231 232 /// Intercept thread creation operation to allocate and setup the unsafe stack 233 INTERCEPTOR(int, pthread_create, pthread_t *thread, 234 const pthread_attr_t *attr, 235 void *(*start_routine)(void*), void *arg) { 236 EnsureInterceptorsInitialized(); 237 size_t size = 0; 238 size_t guard = 0; 239 240 if (attr) { 241 pthread_attr_getstacksize(attr, &size); 242 pthread_attr_getguardsize(attr, &guard); 243 } else { 244 // get pthread default stack size 245 pthread_attr_t tmpattr; 246 pthread_attr_init(&tmpattr); 247 pthread_attr_getstacksize(&tmpattr, &size); 248 pthread_attr_getguardsize(&tmpattr, &guard); 249 pthread_attr_destroy(&tmpattr); 250 } 251 252 #if SANITIZER_SOLARIS 253 // Solaris pthread_attr_init initializes stacksize to 0 (the default), so 254 // hardcode the actual values as documented in pthread_create(3C). 255 if (size == 0) 256 # if defined(_LP64) 257 size = 2 * 1024 * 1024; 258 # else 259 size = 1024 * 1024; 260 # endif 261 #endif 262 263 SFS_CHECK(size); 264 size = RoundUpTo(size, kStackAlign); 265 266 void *addr = unsafe_stack_alloc(size, guard); 267 // Put tinfo at the end of the buffer. guard may be not page aligned. 268 // If that is so then some bytes after addr can be mprotected. 269 struct tinfo *tinfo = 270 (struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo)); 271 tinfo->start_routine = start_routine; 272 tinfo->start_routine_arg = arg; 273 tinfo->unsafe_stack_start = addr; 274 tinfo->unsafe_stack_size = size; 275 tinfo->unsafe_stack_guard = guard; 276 277 return REAL(pthread_create)(thread, attr, thread_start, tinfo); 278 } 279 280 pthread_mutex_t interceptor_init_mutex = PTHREAD_MUTEX_INITIALIZER; 281 bool interceptors_inited = false; 282 283 void EnsureInterceptorsInitialized() { 284 MutexLock lock(interceptor_init_mutex); 285 if (interceptors_inited) 286 return; 287 288 // Initialize pthread interceptors for thread allocation 289 INTERCEPT_FUNCTION(pthread_create); 290 291 interceptors_inited = true; 292 } 293 294 } // namespace 295 296 extern "C" __attribute__((visibility("default"))) 297 #if !SANITIZER_CAN_USE_PREINIT_ARRAY 298 // On ELF platforms, the constructor is invoked using .preinit_array (see below) 299 __attribute__((constructor(0))) 300 #endif 301 void __safestack_init() { 302 // Determine the stack size for the main thread. 303 size_t size = kDefaultUnsafeStackSize; 304 size_t guard = 4096; 305 306 struct rlimit limit; 307 if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY) 308 size = limit.rlim_cur; 309 310 // Allocate unsafe stack for main thread 311 void *addr = unsafe_stack_alloc(size, guard); 312 unsafe_stack_setup(addr, size, guard); 313 314 // Setup the cleanup handler 315 pthread_key_create(&thread_cleanup_key, thread_cleanup_handler); 316 } 317 318 #if SANITIZER_CAN_USE_PREINIT_ARRAY 319 // On ELF platforms, run safestack initialization before any other constructors. 320 // On other platforms we use the constructor attribute to arrange to run our 321 // initialization early. 322 extern "C" { 323 __attribute__((section(".preinit_array"), 324 used)) void (*__safestack_preinit)(void) = __safestack_init; 325 } 326 #endif 327 328 extern "C" 329 __attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() { 330 return unsafe_stack_start; 331 } 332 333 extern "C" 334 __attribute__((visibility("default"))) void *__get_unsafe_stack_top() { 335 return (char*)unsafe_stack_start + unsafe_stack_size; 336 } 337 338 extern "C" 339 __attribute__((visibility("default"))) void *__get_unsafe_stack_start() { 340 return unsafe_stack_start; 341 } 342 343 extern "C" 344 __attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() { 345 return __safestack_unsafe_stack_ptr; 346 } 347