xref: /freebsd/contrib/llvm-project/compiler-rt/lib/msan/msan_allocator.cpp (revision d198b8774d2cfb6f140893e1c6236af9e97d1497)
1 //===-- msan_allocator.cpp -------------------------- ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemorySanitizer.
10 //
11 // MemorySanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_allocator.h"
15 #include "sanitizer_common/sanitizer_allocator_checks.h"
16 #include "sanitizer_common/sanitizer_allocator_interface.h"
17 #include "sanitizer_common/sanitizer_allocator_report.h"
18 #include "sanitizer_common/sanitizer_errno.h"
19 #include "msan.h"
20 #include "msan_allocator.h"
21 #include "msan_origin.h"
22 #include "msan_thread.h"
23 #include "msan_poisoning.h"
24 
25 namespace __msan {
26 
27 struct Metadata {
28   uptr requested_size;
29 };
30 
31 struct MsanMapUnmapCallback {
32   void OnMap(uptr p, uptr size) const {}
33   void OnUnmap(uptr p, uptr size) const {
34     __msan_unpoison((void *)p, size);
35 
36     // We are about to unmap a chunk of user memory.
37     // Mark the corresponding shadow memory as not needed.
38     uptr shadow_p = MEM_TO_SHADOW(p);
39     ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
40     if (__msan_get_track_origins()) {
41       uptr origin_p = MEM_TO_ORIGIN(p);
42       ReleaseMemoryPagesToOS(origin_p, origin_p + size);
43     }
44   }
45 };
46 
47 #if defined(__mips64)
48 static const uptr kMaxAllowedMallocSize = 2UL << 30;
49 
50 struct AP32 {
51   static const uptr kSpaceBeg = 0;
52   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
53   static const uptr kMetadataSize = sizeof(Metadata);
54   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
55   static const uptr kRegionSizeLog = 20;
56   using AddressSpaceView = LocalAddressSpaceView;
57   typedef MsanMapUnmapCallback MapUnmapCallback;
58   static const uptr kFlags = 0;
59 };
60 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
61 #elif defined(__x86_64__)
62 #if SANITIZER_NETBSD || \
63     (SANITIZER_LINUX && !defined(MSAN_LINUX_X86_64_OLD_MAPPING))
64 static const uptr kAllocatorSpace = 0x700000000000ULL;
65 #else
66 static const uptr kAllocatorSpace = 0x600000000000ULL;
67 #endif
68 static const uptr kMaxAllowedMallocSize = 8UL << 30;
69 
70 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
71   static const uptr kSpaceBeg = kAllocatorSpace;
72   static const uptr kSpaceSize = 0x40000000000;  // 4T.
73   static const uptr kMetadataSize = sizeof(Metadata);
74   typedef DefaultSizeClassMap SizeClassMap;
75   typedef MsanMapUnmapCallback MapUnmapCallback;
76   static const uptr kFlags = 0;
77   using AddressSpaceView = LocalAddressSpaceView;
78 };
79 
80 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
81 
82 #elif defined(__powerpc64__)
83 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
84 
85 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
86   static const uptr kSpaceBeg = 0x300000000000;
87   static const uptr kSpaceSize = 0x020000000000;  // 2T.
88   static const uptr kMetadataSize = sizeof(Metadata);
89   typedef DefaultSizeClassMap SizeClassMap;
90   typedef MsanMapUnmapCallback MapUnmapCallback;
91   static const uptr kFlags = 0;
92   using AddressSpaceView = LocalAddressSpaceView;
93 };
94 
95 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
96 #elif defined(__s390x__)
97 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
98 
99 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
100   static const uptr kSpaceBeg = 0x440000000000;
101   static const uptr kSpaceSize = 0x020000000000;  // 2T.
102   static const uptr kMetadataSize = sizeof(Metadata);
103   typedef DefaultSizeClassMap SizeClassMap;
104   typedef MsanMapUnmapCallback MapUnmapCallback;
105   static const uptr kFlags = 0;
106   using AddressSpaceView = LocalAddressSpaceView;
107 };
108 
109 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
110 #elif defined(__aarch64__)
111 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
112 
113 struct AP32 {
114   static const uptr kSpaceBeg = 0;
115   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
116   static const uptr kMetadataSize = sizeof(Metadata);
117   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
118   static const uptr kRegionSizeLog = 20;
119   using AddressSpaceView = LocalAddressSpaceView;
120   typedef MsanMapUnmapCallback MapUnmapCallback;
121   static const uptr kFlags = 0;
122 };
123 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
124 #endif
125 typedef CombinedAllocator<PrimaryAllocator> Allocator;
126 typedef Allocator::AllocatorCache AllocatorCache;
127 
128 static Allocator allocator;
129 static AllocatorCache fallback_allocator_cache;
130 static StaticSpinMutex fallback_mutex;
131 
132 static uptr max_malloc_size;
133 
134 void MsanAllocatorInit() {
135   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
136   allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
137   if (common_flags()->max_allocation_size_mb)
138     max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
139                           kMaxAllowedMallocSize);
140   else
141     max_malloc_size = kMaxAllowedMallocSize;
142 }
143 
144 AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
145   CHECK(ms);
146   CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
147   return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
148 }
149 
150 void MsanThreadLocalMallocStorage::CommitBack() {
151   allocator.SwallowCache(GetAllocatorCache(this));
152 }
153 
154 static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment,
155                           bool zeroise) {
156   if (size > max_malloc_size) {
157     if (AllocatorMayReturnNull()) {
158       Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
159       return nullptr;
160     }
161     ReportAllocationSizeTooBig(size, max_malloc_size, stack);
162   }
163   if (UNLIKELY(IsRssLimitExceeded())) {
164     if (AllocatorMayReturnNull())
165       return nullptr;
166     ReportRssLimitExceeded(stack);
167   }
168   MsanThread *t = GetCurrentThread();
169   void *allocated;
170   if (t) {
171     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
172     allocated = allocator.Allocate(cache, size, alignment);
173   } else {
174     SpinMutexLock l(&fallback_mutex);
175     AllocatorCache *cache = &fallback_allocator_cache;
176     allocated = allocator.Allocate(cache, size, alignment);
177   }
178   if (UNLIKELY(!allocated)) {
179     SetAllocatorOutOfMemory();
180     if (AllocatorMayReturnNull())
181       return nullptr;
182     ReportOutOfMemory(size, stack);
183   }
184   Metadata *meta =
185       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
186   meta->requested_size = size;
187   if (zeroise) {
188     __msan_clear_and_unpoison(allocated, size);
189   } else if (flags()->poison_in_malloc) {
190     __msan_poison(allocated, size);
191     if (__msan_get_track_origins()) {
192       stack->tag = StackTrace::TAG_ALLOC;
193       Origin o = Origin::CreateHeapOrigin(stack);
194       __msan_set_origin(allocated, size, o.raw_id());
195     }
196   }
197   UnpoisonParam(2);
198   RunMallocHooks(allocated, size);
199   return allocated;
200 }
201 
202 void MsanDeallocate(StackTrace *stack, void *p) {
203   CHECK(p);
204   UnpoisonParam(1);
205   RunFreeHooks(p);
206 
207   Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
208   uptr size = meta->requested_size;
209   meta->requested_size = 0;
210   // This memory will not be reused by anyone else, so we are free to keep it
211   // poisoned.
212   if (flags()->poison_in_free) {
213     __msan_poison(p, size);
214     if (__msan_get_track_origins()) {
215       stack->tag = StackTrace::TAG_DEALLOC;
216       Origin o = Origin::CreateHeapOrigin(stack);
217       __msan_set_origin(p, size, o.raw_id());
218     }
219   }
220   MsanThread *t = GetCurrentThread();
221   if (t) {
222     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
223     allocator.Deallocate(cache, p);
224   } else {
225     SpinMutexLock l(&fallback_mutex);
226     AllocatorCache *cache = &fallback_allocator_cache;
227     allocator.Deallocate(cache, p);
228   }
229 }
230 
231 static void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
232                             uptr alignment) {
233   Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
234   uptr old_size = meta->requested_size;
235   uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
236   if (new_size <= actually_allocated_size) {
237     // We are not reallocating here.
238     meta->requested_size = new_size;
239     if (new_size > old_size) {
240       if (flags()->poison_in_malloc) {
241         stack->tag = StackTrace::TAG_ALLOC;
242         PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
243       }
244     }
245     return old_p;
246   }
247   uptr memcpy_size = Min(new_size, old_size);
248   void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
249   if (new_p) {
250     CopyMemory(new_p, old_p, memcpy_size, stack);
251     MsanDeallocate(stack, old_p);
252   }
253   return new_p;
254 }
255 
256 static void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
257   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
258     if (AllocatorMayReturnNull())
259       return nullptr;
260     ReportCallocOverflow(nmemb, size, stack);
261   }
262   return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
263 }
264 
265 static uptr AllocationSize(const void *p) {
266   if (!p) return 0;
267   const void *beg = allocator.GetBlockBegin(p);
268   if (beg != p) return 0;
269   Metadata *b = (Metadata *)allocator.GetMetaData(p);
270   return b->requested_size;
271 }
272 
273 void *msan_malloc(uptr size, StackTrace *stack) {
274   return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
275 }
276 
277 void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
278   return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
279 }
280 
281 void *msan_realloc(void *ptr, uptr size, StackTrace *stack) {
282   if (!ptr)
283     return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
284   if (size == 0) {
285     MsanDeallocate(stack, ptr);
286     return nullptr;
287   }
288   return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
289 }
290 
291 void *msan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
292   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
293     errno = errno_ENOMEM;
294     if (AllocatorMayReturnNull())
295       return nullptr;
296     ReportReallocArrayOverflow(nmemb, size, stack);
297   }
298   return msan_realloc(ptr, nmemb * size, stack);
299 }
300 
301 void *msan_valloc(uptr size, StackTrace *stack) {
302   return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
303 }
304 
305 void *msan_pvalloc(uptr size, StackTrace *stack) {
306   uptr PageSize = GetPageSizeCached();
307   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
308     errno = errno_ENOMEM;
309     if (AllocatorMayReturnNull())
310       return nullptr;
311     ReportPvallocOverflow(size, stack);
312   }
313   // pvalloc(0) should allocate one page.
314   size = size ? RoundUpTo(size, PageSize) : PageSize;
315   return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
316 }
317 
318 void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
319   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
320     errno = errno_EINVAL;
321     if (AllocatorMayReturnNull())
322       return nullptr;
323     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
324   }
325   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
326 }
327 
328 void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) {
329   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
330     errno = errno_EINVAL;
331     if (AllocatorMayReturnNull())
332       return nullptr;
333     ReportInvalidAllocationAlignment(alignment, stack);
334   }
335   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
336 }
337 
338 int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
339                         StackTrace *stack) {
340   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
341     if (AllocatorMayReturnNull())
342       return errno_EINVAL;
343     ReportInvalidPosixMemalignAlignment(alignment, stack);
344   }
345   void *ptr = MsanAllocate(stack, size, alignment, false);
346   if (UNLIKELY(!ptr))
347     // OOM error is already taken care of by MsanAllocate.
348     return errno_ENOMEM;
349   CHECK(IsAligned((uptr)ptr, alignment));
350   *memptr = ptr;
351   return 0;
352 }
353 
354 } // namespace __msan
355 
356 using namespace __msan;
357 
358 uptr __sanitizer_get_current_allocated_bytes() {
359   uptr stats[AllocatorStatCount];
360   allocator.GetStats(stats);
361   return stats[AllocatorStatAllocated];
362 }
363 
364 uptr __sanitizer_get_heap_size() {
365   uptr stats[AllocatorStatCount];
366   allocator.GetStats(stats);
367   return stats[AllocatorStatMapped];
368 }
369 
370 uptr __sanitizer_get_free_bytes() { return 1; }
371 
372 uptr __sanitizer_get_unmapped_bytes() { return 1; }
373 
374 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
375 
376 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
377 
378 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
379