1 //===-- msan_allocator.cpp -------------------------- ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemorySanitizer. 10 // 11 // MemorySanitizer allocator. 12 //===----------------------------------------------------------------------===// 13 14 #include "msan_allocator.h" 15 16 #include "msan.h" 17 #include "msan_interface_internal.h" 18 #include "msan_origin.h" 19 #include "msan_poisoning.h" 20 #include "msan_thread.h" 21 #include "sanitizer_common/sanitizer_allocator.h" 22 #include "sanitizer_common/sanitizer_allocator_checks.h" 23 #include "sanitizer_common/sanitizer_allocator_interface.h" 24 #include "sanitizer_common/sanitizer_allocator_report.h" 25 #include "sanitizer_common/sanitizer_errno.h" 26 27 namespace __msan { 28 29 struct Metadata { 30 uptr requested_size; 31 }; 32 33 struct MsanMapUnmapCallback { 34 void OnMap(uptr p, uptr size) const {} 35 void OnMapSecondary(uptr p, uptr size, uptr user_begin, 36 uptr user_size) const {} 37 void OnUnmap(uptr p, uptr size) const { 38 __msan_unpoison((void *)p, size); 39 40 // We are about to unmap a chunk of user memory. 41 // Mark the corresponding shadow memory as not needed. 42 uptr shadow_p = MEM_TO_SHADOW(p); 43 ReleaseMemoryPagesToOS(shadow_p, shadow_p + size); 44 if (__msan_get_track_origins()) { 45 uptr origin_p = MEM_TO_ORIGIN(p); 46 ReleaseMemoryPagesToOS(origin_p, origin_p + size); 47 } 48 } 49 }; 50 51 #if defined(__mips64) 52 static const uptr kMaxAllowedMallocSize = 2UL << 30; 53 54 struct AP32 { 55 static const uptr kSpaceBeg = 0; 56 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; 57 static const uptr kMetadataSize = sizeof(Metadata); 58 typedef __sanitizer::CompactSizeClassMap SizeClassMap; 59 static const uptr kRegionSizeLog = 20; 60 using AddressSpaceView = LocalAddressSpaceView; 61 typedef MsanMapUnmapCallback MapUnmapCallback; 62 static const uptr kFlags = 0; 63 }; 64 typedef SizeClassAllocator32<AP32> PrimaryAllocator; 65 #elif defined(__x86_64__) 66 #if SANITIZER_NETBSD || SANITIZER_LINUX 67 static const uptr kAllocatorSpace = 0x700000000000ULL; 68 #else 69 static const uptr kAllocatorSpace = 0x600000000000ULL; 70 #endif 71 static const uptr kMaxAllowedMallocSize = 8UL << 30; 72 73 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 74 static const uptr kSpaceBeg = kAllocatorSpace; 75 static const uptr kSpaceSize = 0x40000000000; // 4T. 76 static const uptr kMetadataSize = sizeof(Metadata); 77 typedef DefaultSizeClassMap SizeClassMap; 78 typedef MsanMapUnmapCallback MapUnmapCallback; 79 static const uptr kFlags = 0; 80 using AddressSpaceView = LocalAddressSpaceView; 81 }; 82 83 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 84 85 #elif defined(__loongarch_lp64) 86 const uptr kAllocatorSpace = 0x700000000000ULL; 87 const uptr kMaxAllowedMallocSize = 8UL << 30; 88 89 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 90 static const uptr kSpaceBeg = kAllocatorSpace; 91 static const uptr kSpaceSize = 0x40000000000; // 4T. 92 static const uptr kMetadataSize = sizeof(Metadata); 93 typedef DefaultSizeClassMap SizeClassMap; 94 typedef MsanMapUnmapCallback MapUnmapCallback; 95 static const uptr kFlags = 0; 96 using AddressSpaceView = LocalAddressSpaceView; 97 }; 98 99 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 100 101 #elif defined(__powerpc64__) 102 static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G 103 104 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 105 static const uptr kSpaceBeg = 0x300000000000; 106 static const uptr kSpaceSize = 0x020000000000; // 2T. 107 static const uptr kMetadataSize = sizeof(Metadata); 108 typedef DefaultSizeClassMap SizeClassMap; 109 typedef MsanMapUnmapCallback MapUnmapCallback; 110 static const uptr kFlags = 0; 111 using AddressSpaceView = LocalAddressSpaceView; 112 }; 113 114 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 115 #elif defined(__s390x__) 116 static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G 117 118 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 119 static const uptr kSpaceBeg = 0x440000000000; 120 static const uptr kSpaceSize = 0x020000000000; // 2T. 121 static const uptr kMetadataSize = sizeof(Metadata); 122 typedef DefaultSizeClassMap SizeClassMap; 123 typedef MsanMapUnmapCallback MapUnmapCallback; 124 static const uptr kFlags = 0; 125 using AddressSpaceView = LocalAddressSpaceView; 126 }; 127 128 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 129 #elif defined(__aarch64__) 130 static const uptr kMaxAllowedMallocSize = 8UL << 30; 131 132 struct AP64 { 133 static const uptr kSpaceBeg = 0xE00000000000ULL; 134 static const uptr kSpaceSize = 0x40000000000; // 4T. 135 static const uptr kMetadataSize = sizeof(Metadata); 136 typedef DefaultSizeClassMap SizeClassMap; 137 typedef MsanMapUnmapCallback MapUnmapCallback; 138 static const uptr kFlags = 0; 139 using AddressSpaceView = LocalAddressSpaceView; 140 }; 141 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 142 #endif 143 typedef CombinedAllocator<PrimaryAllocator> Allocator; 144 typedef Allocator::AllocatorCache AllocatorCache; 145 146 static Allocator allocator; 147 static AllocatorCache fallback_allocator_cache; 148 static StaticSpinMutex fallback_mutex; 149 150 static uptr max_malloc_size; 151 152 void MsanAllocatorInit() { 153 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 154 allocator.Init(common_flags()->allocator_release_to_os_interval_ms); 155 if (common_flags()->max_allocation_size_mb) 156 max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20, 157 kMaxAllowedMallocSize); 158 else 159 max_malloc_size = kMaxAllowedMallocSize; 160 } 161 162 void LockAllocator() { allocator.ForceLock(); } 163 164 void UnlockAllocator() { allocator.ForceUnlock(); } 165 166 AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) { 167 CHECK(ms); 168 CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); 169 return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); 170 } 171 172 void MsanThreadLocalMallocStorage::Init() { 173 allocator.InitCache(GetAllocatorCache(this)); 174 } 175 176 void MsanThreadLocalMallocStorage::CommitBack() { 177 allocator.SwallowCache(GetAllocatorCache(this)); 178 allocator.DestroyCache(GetAllocatorCache(this)); 179 } 180 181 static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment, 182 bool zeroise) { 183 if (size > max_malloc_size) { 184 if (AllocatorMayReturnNull()) { 185 Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size); 186 return nullptr; 187 } 188 ReportAllocationSizeTooBig(size, max_malloc_size, stack); 189 } 190 if (UNLIKELY(IsRssLimitExceeded())) { 191 if (AllocatorMayReturnNull()) 192 return nullptr; 193 ReportRssLimitExceeded(stack); 194 } 195 MsanThread *t = GetCurrentThread(); 196 void *allocated; 197 if (t) { 198 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 199 allocated = allocator.Allocate(cache, size, alignment); 200 } else { 201 SpinMutexLock l(&fallback_mutex); 202 AllocatorCache *cache = &fallback_allocator_cache; 203 allocated = allocator.Allocate(cache, size, alignment); 204 } 205 if (UNLIKELY(!allocated)) { 206 SetAllocatorOutOfMemory(); 207 if (AllocatorMayReturnNull()) 208 return nullptr; 209 ReportOutOfMemory(size, stack); 210 } 211 Metadata *meta = 212 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated)); 213 meta->requested_size = size; 214 if (zeroise) { 215 if (allocator.FromPrimary(allocated)) 216 __msan_clear_and_unpoison(allocated, size); 217 else 218 __msan_unpoison(allocated, size); // Mem is already zeroed. 219 } else if (flags()->poison_in_malloc) { 220 __msan_poison(allocated, size); 221 if (__msan_get_track_origins()) { 222 stack->tag = StackTrace::TAG_ALLOC; 223 Origin o = Origin::CreateHeapOrigin(stack); 224 __msan_set_origin(allocated, size, o.raw_id()); 225 } 226 } 227 UnpoisonParam(2); 228 RunMallocHooks(allocated, size); 229 return allocated; 230 } 231 232 void MsanDeallocate(StackTrace *stack, void *p) { 233 CHECK(p); 234 UnpoisonParam(1); 235 RunFreeHooks(p); 236 237 Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); 238 uptr size = meta->requested_size; 239 meta->requested_size = 0; 240 // This memory will not be reused by anyone else, so we are free to keep it 241 // poisoned. The secondary allocator will unmap and unpoison by 242 // MsanMapUnmapCallback, no need to poison it here. 243 if (flags()->poison_in_free && allocator.FromPrimary(p)) { 244 __msan_poison(p, size); 245 if (__msan_get_track_origins()) { 246 stack->tag = StackTrace::TAG_DEALLOC; 247 Origin o = Origin::CreateHeapOrigin(stack); 248 __msan_set_origin(p, size, o.raw_id()); 249 } 250 } 251 MsanThread *t = GetCurrentThread(); 252 if (t) { 253 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 254 allocator.Deallocate(cache, p); 255 } else { 256 SpinMutexLock l(&fallback_mutex); 257 AllocatorCache *cache = &fallback_allocator_cache; 258 allocator.Deallocate(cache, p); 259 } 260 } 261 262 static void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size, 263 uptr alignment) { 264 Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p)); 265 uptr old_size = meta->requested_size; 266 uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p); 267 if (new_size <= actually_allocated_size) { 268 // We are not reallocating here. 269 meta->requested_size = new_size; 270 if (new_size > old_size) { 271 if (flags()->poison_in_malloc) { 272 stack->tag = StackTrace::TAG_ALLOC; 273 PoisonMemory((char *)old_p + old_size, new_size - old_size, stack); 274 } 275 } 276 return old_p; 277 } 278 uptr memcpy_size = Min(new_size, old_size); 279 void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/); 280 if (new_p) { 281 CopyMemory(new_p, old_p, memcpy_size, stack); 282 MsanDeallocate(stack, old_p); 283 } 284 return new_p; 285 } 286 287 static void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) { 288 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 289 if (AllocatorMayReturnNull()) 290 return nullptr; 291 ReportCallocOverflow(nmemb, size, stack); 292 } 293 return MsanAllocate(stack, nmemb * size, sizeof(u64), true); 294 } 295 296 static const void *AllocationBegin(const void *p) { 297 if (!p) 298 return nullptr; 299 void *beg = allocator.GetBlockBegin(p); 300 if (!beg) 301 return nullptr; 302 Metadata *b = (Metadata *)allocator.GetMetaData(beg); 303 if (!b) 304 return nullptr; 305 if (b->requested_size == 0) 306 return nullptr; 307 308 return (const void *)beg; 309 } 310 311 static uptr AllocationSize(const void *p) { 312 if (!p) return 0; 313 const void *beg = allocator.GetBlockBegin(p); 314 if (beg != p) return 0; 315 Metadata *b = (Metadata *)allocator.GetMetaData(p); 316 return b->requested_size; 317 } 318 319 static uptr AllocationSizeFast(const void *p) { 320 return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size; 321 } 322 323 void *msan_malloc(uptr size, StackTrace *stack) { 324 return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false)); 325 } 326 327 void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) { 328 return SetErrnoOnNull(MsanCalloc(stack, nmemb, size)); 329 } 330 331 void *msan_realloc(void *ptr, uptr size, StackTrace *stack) { 332 if (!ptr) 333 return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false)); 334 if (size == 0) { 335 MsanDeallocate(stack, ptr); 336 return nullptr; 337 } 338 return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64))); 339 } 340 341 void *msan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) { 342 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 343 errno = errno_ENOMEM; 344 if (AllocatorMayReturnNull()) 345 return nullptr; 346 ReportReallocArrayOverflow(nmemb, size, stack); 347 } 348 return msan_realloc(ptr, nmemb * size, stack); 349 } 350 351 void *msan_valloc(uptr size, StackTrace *stack) { 352 return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false)); 353 } 354 355 void *msan_pvalloc(uptr size, StackTrace *stack) { 356 uptr PageSize = GetPageSizeCached(); 357 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 358 errno = errno_ENOMEM; 359 if (AllocatorMayReturnNull()) 360 return nullptr; 361 ReportPvallocOverflow(size, stack); 362 } 363 // pvalloc(0) should allocate one page. 364 size = size ? RoundUpTo(size, PageSize) : PageSize; 365 return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false)); 366 } 367 368 void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) { 369 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 370 errno = errno_EINVAL; 371 if (AllocatorMayReturnNull()) 372 return nullptr; 373 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 374 } 375 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false)); 376 } 377 378 void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) { 379 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 380 errno = errno_EINVAL; 381 if (AllocatorMayReturnNull()) 382 return nullptr; 383 ReportInvalidAllocationAlignment(alignment, stack); 384 } 385 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false)); 386 } 387 388 int msan_posix_memalign(void **memptr, uptr alignment, uptr size, 389 StackTrace *stack) { 390 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 391 if (AllocatorMayReturnNull()) 392 return errno_EINVAL; 393 ReportInvalidPosixMemalignAlignment(alignment, stack); 394 } 395 void *ptr = MsanAllocate(stack, size, alignment, false); 396 if (UNLIKELY(!ptr)) 397 // OOM error is already taken care of by MsanAllocate. 398 return errno_ENOMEM; 399 CHECK(IsAligned((uptr)ptr, alignment)); 400 *memptr = ptr; 401 return 0; 402 } 403 404 } // namespace __msan 405 406 using namespace __msan; 407 408 uptr __sanitizer_get_current_allocated_bytes() { 409 uptr stats[AllocatorStatCount]; 410 allocator.GetStats(stats); 411 return stats[AllocatorStatAllocated]; 412 } 413 414 uptr __sanitizer_get_heap_size() { 415 uptr stats[AllocatorStatCount]; 416 allocator.GetStats(stats); 417 return stats[AllocatorStatMapped]; 418 } 419 420 uptr __sanitizer_get_free_bytes() { return 1; } 421 422 uptr __sanitizer_get_unmapped_bytes() { return 1; } 423 424 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 425 426 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } 427 428 const void *__sanitizer_get_allocated_begin(const void *p) { 429 return AllocationBegin(p); 430 } 431 432 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } 433 434 uptr __sanitizer_get_allocated_size_fast(const void *p) { 435 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 436 uptr ret = AllocationSizeFast(p); 437 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 438 return ret; 439 } 440 441 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); } 442