xref: /freebsd/contrib/llvm-project/compiler-rt/lib/msan/msan_allocator.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===-- msan_allocator.cpp -------------------------- ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemorySanitizer.
10 //
11 // MemorySanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "msan_allocator.h"
15 
16 #include "msan.h"
17 #include "msan_interface_internal.h"
18 #include "msan_origin.h"
19 #include "msan_poisoning.h"
20 #include "msan_thread.h"
21 #include "sanitizer_common/sanitizer_allocator.h"
22 #include "sanitizer_common/sanitizer_allocator_checks.h"
23 #include "sanitizer_common/sanitizer_allocator_interface.h"
24 #include "sanitizer_common/sanitizer_allocator_report.h"
25 #include "sanitizer_common/sanitizer_errno.h"
26 
27 namespace __msan {
28 
29 struct Metadata {
30   uptr requested_size;
31 };
32 
33 struct MsanMapUnmapCallback {
34   void OnMap(uptr p, uptr size) const {}
35   void OnMapSecondary(uptr p, uptr size, uptr user_begin,
36                       uptr user_size) const {}
37   void OnUnmap(uptr p, uptr size) const {
38     __msan_unpoison((void *)p, size);
39 
40     // We are about to unmap a chunk of user memory.
41     // Mark the corresponding shadow memory as not needed.
42     uptr shadow_p = MEM_TO_SHADOW(p);
43     ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
44     if (__msan_get_track_origins()) {
45       uptr origin_p = MEM_TO_ORIGIN(p);
46       ReleaseMemoryPagesToOS(origin_p, origin_p + size);
47     }
48   }
49 };
50 
51 #if defined(__mips64)
52 static const uptr kMaxAllowedMallocSize = 2UL << 30;
53 
54 struct AP32 {
55   static const uptr kSpaceBeg = 0;
56   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
57   static const uptr kMetadataSize = sizeof(Metadata);
58   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
59   static const uptr kRegionSizeLog = 20;
60   using AddressSpaceView = LocalAddressSpaceView;
61   typedef MsanMapUnmapCallback MapUnmapCallback;
62   static const uptr kFlags = 0;
63 };
64 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
65 #elif defined(__x86_64__)
66 #if SANITIZER_NETBSD || SANITIZER_LINUX
67 static const uptr kAllocatorSpace = 0x700000000000ULL;
68 #else
69 static const uptr kAllocatorSpace = 0x600000000000ULL;
70 #endif
71 static const uptr kMaxAllowedMallocSize = 8UL << 30;
72 
73 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
74   static const uptr kSpaceBeg = kAllocatorSpace;
75   static const uptr kSpaceSize = 0x40000000000;  // 4T.
76   static const uptr kMetadataSize = sizeof(Metadata);
77   typedef DefaultSizeClassMap SizeClassMap;
78   typedef MsanMapUnmapCallback MapUnmapCallback;
79   static const uptr kFlags = 0;
80   using AddressSpaceView = LocalAddressSpaceView;
81 };
82 
83 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
84 
85 #elif defined(__loongarch_lp64)
86 const uptr kAllocatorSpace = 0x700000000000ULL;
87 const uptr kMaxAllowedMallocSize = 8UL << 30;
88 
89 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
90   static const uptr kSpaceBeg = kAllocatorSpace;
91   static const uptr kSpaceSize = 0x40000000000;  // 4T.
92   static const uptr kMetadataSize = sizeof(Metadata);
93   typedef DefaultSizeClassMap SizeClassMap;
94   typedef MsanMapUnmapCallback MapUnmapCallback;
95   static const uptr kFlags = 0;
96   using AddressSpaceView = LocalAddressSpaceView;
97 };
98 
99 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
100 
101 #elif defined(__powerpc64__)
102 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
103 
104 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
105   static const uptr kSpaceBeg = 0x300000000000;
106   static const uptr kSpaceSize = 0x020000000000;  // 2T.
107   static const uptr kMetadataSize = sizeof(Metadata);
108   typedef DefaultSizeClassMap SizeClassMap;
109   typedef MsanMapUnmapCallback MapUnmapCallback;
110   static const uptr kFlags = 0;
111   using AddressSpaceView = LocalAddressSpaceView;
112 };
113 
114 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
115 #elif defined(__s390x__)
116 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
117 
118 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
119   static const uptr kSpaceBeg = 0x440000000000;
120   static const uptr kSpaceSize = 0x020000000000;  // 2T.
121   static const uptr kMetadataSize = sizeof(Metadata);
122   typedef DefaultSizeClassMap SizeClassMap;
123   typedef MsanMapUnmapCallback MapUnmapCallback;
124   static const uptr kFlags = 0;
125   using AddressSpaceView = LocalAddressSpaceView;
126 };
127 
128 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
129 #elif defined(__aarch64__)
130 static const uptr kMaxAllowedMallocSize = 8UL << 30;
131 
132 struct AP64 {
133   static const uptr kSpaceBeg = 0xE00000000000ULL;
134   static const uptr kSpaceSize = 0x40000000000;  // 4T.
135   static const uptr kMetadataSize = sizeof(Metadata);
136   typedef DefaultSizeClassMap SizeClassMap;
137   typedef MsanMapUnmapCallback MapUnmapCallback;
138   static const uptr kFlags = 0;
139   using AddressSpaceView = LocalAddressSpaceView;
140 };
141 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
142 #endif
143 typedef CombinedAllocator<PrimaryAllocator> Allocator;
144 typedef Allocator::AllocatorCache AllocatorCache;
145 
146 static Allocator allocator;
147 static AllocatorCache fallback_allocator_cache;
148 static StaticSpinMutex fallback_mutex;
149 
150 static uptr max_malloc_size;
151 
152 void MsanAllocatorInit() {
153   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
154   allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
155   if (common_flags()->max_allocation_size_mb)
156     max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
157                           kMaxAllowedMallocSize);
158   else
159     max_malloc_size = kMaxAllowedMallocSize;
160 }
161 
162 AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
163   CHECK(ms);
164   CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
165   return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
166 }
167 
168 void MsanThreadLocalMallocStorage::Init() {
169   allocator.InitCache(GetAllocatorCache(this));
170 }
171 
172 void MsanThreadLocalMallocStorage::CommitBack() {
173   allocator.SwallowCache(GetAllocatorCache(this));
174   allocator.DestroyCache(GetAllocatorCache(this));
175 }
176 
177 static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment,
178                           bool zeroise) {
179   if (size > max_malloc_size) {
180     if (AllocatorMayReturnNull()) {
181       Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
182       return nullptr;
183     }
184     ReportAllocationSizeTooBig(size, max_malloc_size, stack);
185   }
186   if (UNLIKELY(IsRssLimitExceeded())) {
187     if (AllocatorMayReturnNull())
188       return nullptr;
189     ReportRssLimitExceeded(stack);
190   }
191   MsanThread *t = GetCurrentThread();
192   void *allocated;
193   if (t) {
194     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
195     allocated = allocator.Allocate(cache, size, alignment);
196   } else {
197     SpinMutexLock l(&fallback_mutex);
198     AllocatorCache *cache = &fallback_allocator_cache;
199     allocated = allocator.Allocate(cache, size, alignment);
200   }
201   if (UNLIKELY(!allocated)) {
202     SetAllocatorOutOfMemory();
203     if (AllocatorMayReturnNull())
204       return nullptr;
205     ReportOutOfMemory(size, stack);
206   }
207   Metadata *meta =
208       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
209   meta->requested_size = size;
210   if (zeroise) {
211     if (allocator.FromPrimary(allocated))
212       __msan_clear_and_unpoison(allocated, size);
213     else
214       __msan_unpoison(allocated, size);  // Mem is already zeroed.
215   } else if (flags()->poison_in_malloc) {
216     __msan_poison(allocated, size);
217     if (__msan_get_track_origins()) {
218       stack->tag = StackTrace::TAG_ALLOC;
219       Origin o = Origin::CreateHeapOrigin(stack);
220       __msan_set_origin(allocated, size, o.raw_id());
221     }
222   }
223   UnpoisonParam(2);
224   RunMallocHooks(allocated, size);
225   return allocated;
226 }
227 
228 void MsanDeallocate(StackTrace *stack, void *p) {
229   CHECK(p);
230   UnpoisonParam(1);
231   RunFreeHooks(p);
232 
233   Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
234   uptr size = meta->requested_size;
235   meta->requested_size = 0;
236   // This memory will not be reused by anyone else, so we are free to keep it
237   // poisoned. The secondary allocator will unmap and unpoison by
238   // MsanMapUnmapCallback, no need to poison it here.
239   if (flags()->poison_in_free && allocator.FromPrimary(p)) {
240     __msan_poison(p, size);
241     if (__msan_get_track_origins()) {
242       stack->tag = StackTrace::TAG_DEALLOC;
243       Origin o = Origin::CreateHeapOrigin(stack);
244       __msan_set_origin(p, size, o.raw_id());
245     }
246   }
247   MsanThread *t = GetCurrentThread();
248   if (t) {
249     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
250     allocator.Deallocate(cache, p);
251   } else {
252     SpinMutexLock l(&fallback_mutex);
253     AllocatorCache *cache = &fallback_allocator_cache;
254     allocator.Deallocate(cache, p);
255   }
256 }
257 
258 static void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
259                             uptr alignment) {
260   Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
261   uptr old_size = meta->requested_size;
262   uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
263   if (new_size <= actually_allocated_size) {
264     // We are not reallocating here.
265     meta->requested_size = new_size;
266     if (new_size > old_size) {
267       if (flags()->poison_in_malloc) {
268         stack->tag = StackTrace::TAG_ALLOC;
269         PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
270       }
271     }
272     return old_p;
273   }
274   uptr memcpy_size = Min(new_size, old_size);
275   void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
276   if (new_p) {
277     CopyMemory(new_p, old_p, memcpy_size, stack);
278     MsanDeallocate(stack, old_p);
279   }
280   return new_p;
281 }
282 
283 static void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
284   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
285     if (AllocatorMayReturnNull())
286       return nullptr;
287     ReportCallocOverflow(nmemb, size, stack);
288   }
289   return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
290 }
291 
292 static const void *AllocationBegin(const void *p) {
293   if (!p)
294     return nullptr;
295   void *beg = allocator.GetBlockBegin(p);
296   if (!beg)
297     return nullptr;
298   Metadata *b = (Metadata *)allocator.GetMetaData(beg);
299   if (!b)
300     return nullptr;
301   if (b->requested_size == 0)
302     return nullptr;
303 
304   return (const void *)beg;
305 }
306 
307 static uptr AllocationSize(const void *p) {
308   if (!p) return 0;
309   const void *beg = allocator.GetBlockBegin(p);
310   if (beg != p) return 0;
311   Metadata *b = (Metadata *)allocator.GetMetaData(p);
312   return b->requested_size;
313 }
314 
315 static uptr AllocationSizeFast(const void *p) {
316   return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
317 }
318 
319 void *msan_malloc(uptr size, StackTrace *stack) {
320   return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
321 }
322 
323 void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
324   return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
325 }
326 
327 void *msan_realloc(void *ptr, uptr size, StackTrace *stack) {
328   if (!ptr)
329     return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
330   if (size == 0) {
331     MsanDeallocate(stack, ptr);
332     return nullptr;
333   }
334   return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
335 }
336 
337 void *msan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
338   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
339     errno = errno_ENOMEM;
340     if (AllocatorMayReturnNull())
341       return nullptr;
342     ReportReallocArrayOverflow(nmemb, size, stack);
343   }
344   return msan_realloc(ptr, nmemb * size, stack);
345 }
346 
347 void *msan_valloc(uptr size, StackTrace *stack) {
348   return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
349 }
350 
351 void *msan_pvalloc(uptr size, StackTrace *stack) {
352   uptr PageSize = GetPageSizeCached();
353   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
354     errno = errno_ENOMEM;
355     if (AllocatorMayReturnNull())
356       return nullptr;
357     ReportPvallocOverflow(size, stack);
358   }
359   // pvalloc(0) should allocate one page.
360   size = size ? RoundUpTo(size, PageSize) : PageSize;
361   return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
362 }
363 
364 void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
365   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
366     errno = errno_EINVAL;
367     if (AllocatorMayReturnNull())
368       return nullptr;
369     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
370   }
371   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
372 }
373 
374 void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) {
375   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
376     errno = errno_EINVAL;
377     if (AllocatorMayReturnNull())
378       return nullptr;
379     ReportInvalidAllocationAlignment(alignment, stack);
380   }
381   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
382 }
383 
384 int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
385                         StackTrace *stack) {
386   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
387     if (AllocatorMayReturnNull())
388       return errno_EINVAL;
389     ReportInvalidPosixMemalignAlignment(alignment, stack);
390   }
391   void *ptr = MsanAllocate(stack, size, alignment, false);
392   if (UNLIKELY(!ptr))
393     // OOM error is already taken care of by MsanAllocate.
394     return errno_ENOMEM;
395   CHECK(IsAligned((uptr)ptr, alignment));
396   *memptr = ptr;
397   return 0;
398 }
399 
400 } // namespace __msan
401 
402 using namespace __msan;
403 
404 uptr __sanitizer_get_current_allocated_bytes() {
405   uptr stats[AllocatorStatCount];
406   allocator.GetStats(stats);
407   return stats[AllocatorStatAllocated];
408 }
409 
410 uptr __sanitizer_get_heap_size() {
411   uptr stats[AllocatorStatCount];
412   allocator.GetStats(stats);
413   return stats[AllocatorStatMapped];
414 }
415 
416 uptr __sanitizer_get_free_bytes() { return 1; }
417 
418 uptr __sanitizer_get_unmapped_bytes() { return 1; }
419 
420 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
421 
422 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
423 
424 const void *__sanitizer_get_allocated_begin(const void *p) {
425   return AllocationBegin(p);
426 }
427 
428 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
429 
430 uptr __sanitizer_get_allocated_size_fast(const void *p) {
431   DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
432   uptr ret = AllocationSizeFast(p);
433   DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
434   return ret;
435 }
436 
437 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
438