1 //===-- msan_allocator.cpp -------------------------- ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemorySanitizer. 10 // 11 // MemorySanitizer allocator. 12 //===----------------------------------------------------------------------===// 13 14 #include "msan_allocator.h" 15 16 #include "msan.h" 17 #include "msan_interface_internal.h" 18 #include "msan_origin.h" 19 #include "msan_poisoning.h" 20 #include "msan_thread.h" 21 #include "sanitizer_common/sanitizer_allocator.h" 22 #include "sanitizer_common/sanitizer_allocator_checks.h" 23 #include "sanitizer_common/sanitizer_allocator_interface.h" 24 #include "sanitizer_common/sanitizer_allocator_report.h" 25 #include "sanitizer_common/sanitizer_errno.h" 26 27 namespace __msan { 28 29 struct Metadata { 30 uptr requested_size; 31 }; 32 33 struct MsanMapUnmapCallback { 34 void OnMap(uptr p, uptr size) const {} 35 void OnMapSecondary(uptr p, uptr size, uptr user_begin, 36 uptr user_size) const {} 37 void OnUnmap(uptr p, uptr size) const { 38 __msan_unpoison((void *)p, size); 39 40 // We are about to unmap a chunk of user memory. 41 // Mark the corresponding shadow memory as not needed. 42 uptr shadow_p = MEM_TO_SHADOW(p); 43 ReleaseMemoryPagesToOS(shadow_p, shadow_p + size); 44 if (__msan_get_track_origins()) { 45 uptr origin_p = MEM_TO_ORIGIN(p); 46 ReleaseMemoryPagesToOS(origin_p, origin_p + size); 47 } 48 } 49 }; 50 51 #if defined(__mips64) 52 static const uptr kMaxAllowedMallocSize = 2UL << 30; 53 54 struct AP32 { 55 static const uptr kSpaceBeg = 0; 56 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; 57 static const uptr kMetadataSize = sizeof(Metadata); 58 typedef __sanitizer::CompactSizeClassMap SizeClassMap; 59 static const uptr kRegionSizeLog = 20; 60 using AddressSpaceView = LocalAddressSpaceView; 61 typedef MsanMapUnmapCallback MapUnmapCallback; 62 static const uptr kFlags = 0; 63 }; 64 typedef SizeClassAllocator32<AP32> PrimaryAllocator; 65 #elif defined(__x86_64__) 66 #if SANITIZER_NETBSD || SANITIZER_LINUX 67 static const uptr kAllocatorSpace = 0x700000000000ULL; 68 #else 69 static const uptr kAllocatorSpace = 0x600000000000ULL; 70 #endif 71 static const uptr kMaxAllowedMallocSize = 8UL << 30; 72 73 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 74 static const uptr kSpaceBeg = kAllocatorSpace; 75 static const uptr kSpaceSize = 0x40000000000; // 4T. 76 static const uptr kMetadataSize = sizeof(Metadata); 77 typedef DefaultSizeClassMap SizeClassMap; 78 typedef MsanMapUnmapCallback MapUnmapCallback; 79 static const uptr kFlags = 0; 80 using AddressSpaceView = LocalAddressSpaceView; 81 }; 82 83 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 84 85 #elif defined(__loongarch_lp64) 86 const uptr kAllocatorSpace = 0x700000000000ULL; 87 const uptr kMaxAllowedMallocSize = 8UL << 30; 88 89 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 90 static const uptr kSpaceBeg = kAllocatorSpace; 91 static const uptr kSpaceSize = 0x40000000000; // 4T. 92 static const uptr kMetadataSize = sizeof(Metadata); 93 typedef DefaultSizeClassMap SizeClassMap; 94 typedef MsanMapUnmapCallback MapUnmapCallback; 95 static const uptr kFlags = 0; 96 using AddressSpaceView = LocalAddressSpaceView; 97 }; 98 99 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 100 101 #elif defined(__powerpc64__) 102 static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G 103 104 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 105 static const uptr kSpaceBeg = 0x300000000000; 106 static const uptr kSpaceSize = 0x020000000000; // 2T. 107 static const uptr kMetadataSize = sizeof(Metadata); 108 typedef DefaultSizeClassMap SizeClassMap; 109 typedef MsanMapUnmapCallback MapUnmapCallback; 110 static const uptr kFlags = 0; 111 using AddressSpaceView = LocalAddressSpaceView; 112 }; 113 114 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 115 #elif defined(__s390x__) 116 static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G 117 118 struct AP64 { // Allocator64 parameters. Deliberately using a short name. 119 static const uptr kSpaceBeg = 0x440000000000; 120 static const uptr kSpaceSize = 0x020000000000; // 2T. 121 static const uptr kMetadataSize = sizeof(Metadata); 122 typedef DefaultSizeClassMap SizeClassMap; 123 typedef MsanMapUnmapCallback MapUnmapCallback; 124 static const uptr kFlags = 0; 125 using AddressSpaceView = LocalAddressSpaceView; 126 }; 127 128 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 129 #elif defined(__aarch64__) 130 static const uptr kMaxAllowedMallocSize = 8UL << 30; 131 132 struct AP64 { 133 static const uptr kSpaceBeg = 0xE00000000000ULL; 134 static const uptr kSpaceSize = 0x40000000000; // 4T. 135 static const uptr kMetadataSize = sizeof(Metadata); 136 typedef DefaultSizeClassMap SizeClassMap; 137 typedef MsanMapUnmapCallback MapUnmapCallback; 138 static const uptr kFlags = 0; 139 using AddressSpaceView = LocalAddressSpaceView; 140 }; 141 typedef SizeClassAllocator64<AP64> PrimaryAllocator; 142 #endif 143 typedef CombinedAllocator<PrimaryAllocator> Allocator; 144 typedef Allocator::AllocatorCache AllocatorCache; 145 146 static Allocator allocator; 147 static AllocatorCache fallback_allocator_cache; 148 static StaticSpinMutex fallback_mutex; 149 150 static uptr max_malloc_size; 151 152 void MsanAllocatorInit() { 153 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 154 allocator.Init(common_flags()->allocator_release_to_os_interval_ms); 155 if (common_flags()->max_allocation_size_mb) 156 max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20, 157 kMaxAllowedMallocSize); 158 else 159 max_malloc_size = kMaxAllowedMallocSize; 160 } 161 162 AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) { 163 CHECK(ms); 164 CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); 165 return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); 166 } 167 168 void MsanThreadLocalMallocStorage::Init() { 169 allocator.InitCache(GetAllocatorCache(this)); 170 } 171 172 void MsanThreadLocalMallocStorage::CommitBack() { 173 allocator.SwallowCache(GetAllocatorCache(this)); 174 allocator.DestroyCache(GetAllocatorCache(this)); 175 } 176 177 static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment, 178 bool zeroise) { 179 if (size > max_malloc_size) { 180 if (AllocatorMayReturnNull()) { 181 Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size); 182 return nullptr; 183 } 184 ReportAllocationSizeTooBig(size, max_malloc_size, stack); 185 } 186 if (UNLIKELY(IsRssLimitExceeded())) { 187 if (AllocatorMayReturnNull()) 188 return nullptr; 189 ReportRssLimitExceeded(stack); 190 } 191 MsanThread *t = GetCurrentThread(); 192 void *allocated; 193 if (t) { 194 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 195 allocated = allocator.Allocate(cache, size, alignment); 196 } else { 197 SpinMutexLock l(&fallback_mutex); 198 AllocatorCache *cache = &fallback_allocator_cache; 199 allocated = allocator.Allocate(cache, size, alignment); 200 } 201 if (UNLIKELY(!allocated)) { 202 SetAllocatorOutOfMemory(); 203 if (AllocatorMayReturnNull()) 204 return nullptr; 205 ReportOutOfMemory(size, stack); 206 } 207 Metadata *meta = 208 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated)); 209 meta->requested_size = size; 210 if (zeroise) { 211 if (allocator.FromPrimary(allocated)) 212 __msan_clear_and_unpoison(allocated, size); 213 else 214 __msan_unpoison(allocated, size); // Mem is already zeroed. 215 } else if (flags()->poison_in_malloc) { 216 __msan_poison(allocated, size); 217 if (__msan_get_track_origins()) { 218 stack->tag = StackTrace::TAG_ALLOC; 219 Origin o = Origin::CreateHeapOrigin(stack); 220 __msan_set_origin(allocated, size, o.raw_id()); 221 } 222 } 223 UnpoisonParam(2); 224 RunMallocHooks(allocated, size); 225 return allocated; 226 } 227 228 void MsanDeallocate(StackTrace *stack, void *p) { 229 CHECK(p); 230 UnpoisonParam(1); 231 RunFreeHooks(p); 232 233 Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); 234 uptr size = meta->requested_size; 235 meta->requested_size = 0; 236 // This memory will not be reused by anyone else, so we are free to keep it 237 // poisoned. The secondary allocator will unmap and unpoison by 238 // MsanMapUnmapCallback, no need to poison it here. 239 if (flags()->poison_in_free && allocator.FromPrimary(p)) { 240 __msan_poison(p, size); 241 if (__msan_get_track_origins()) { 242 stack->tag = StackTrace::TAG_DEALLOC; 243 Origin o = Origin::CreateHeapOrigin(stack); 244 __msan_set_origin(p, size, o.raw_id()); 245 } 246 } 247 MsanThread *t = GetCurrentThread(); 248 if (t) { 249 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 250 allocator.Deallocate(cache, p); 251 } else { 252 SpinMutexLock l(&fallback_mutex); 253 AllocatorCache *cache = &fallback_allocator_cache; 254 allocator.Deallocate(cache, p); 255 } 256 } 257 258 static void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size, 259 uptr alignment) { 260 Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p)); 261 uptr old_size = meta->requested_size; 262 uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p); 263 if (new_size <= actually_allocated_size) { 264 // We are not reallocating here. 265 meta->requested_size = new_size; 266 if (new_size > old_size) { 267 if (flags()->poison_in_malloc) { 268 stack->tag = StackTrace::TAG_ALLOC; 269 PoisonMemory((char *)old_p + old_size, new_size - old_size, stack); 270 } 271 } 272 return old_p; 273 } 274 uptr memcpy_size = Min(new_size, old_size); 275 void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/); 276 if (new_p) { 277 CopyMemory(new_p, old_p, memcpy_size, stack); 278 MsanDeallocate(stack, old_p); 279 } 280 return new_p; 281 } 282 283 static void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) { 284 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 285 if (AllocatorMayReturnNull()) 286 return nullptr; 287 ReportCallocOverflow(nmemb, size, stack); 288 } 289 return MsanAllocate(stack, nmemb * size, sizeof(u64), true); 290 } 291 292 static const void *AllocationBegin(const void *p) { 293 if (!p) 294 return nullptr; 295 void *beg = allocator.GetBlockBegin(p); 296 if (!beg) 297 return nullptr; 298 Metadata *b = (Metadata *)allocator.GetMetaData(beg); 299 if (!b) 300 return nullptr; 301 if (b->requested_size == 0) 302 return nullptr; 303 304 return (const void *)beg; 305 } 306 307 static uptr AllocationSize(const void *p) { 308 if (!p) return 0; 309 const void *beg = allocator.GetBlockBegin(p); 310 if (beg != p) return 0; 311 Metadata *b = (Metadata *)allocator.GetMetaData(p); 312 return b->requested_size; 313 } 314 315 static uptr AllocationSizeFast(const void *p) { 316 return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size; 317 } 318 319 void *msan_malloc(uptr size, StackTrace *stack) { 320 return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false)); 321 } 322 323 void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) { 324 return SetErrnoOnNull(MsanCalloc(stack, nmemb, size)); 325 } 326 327 void *msan_realloc(void *ptr, uptr size, StackTrace *stack) { 328 if (!ptr) 329 return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false)); 330 if (size == 0) { 331 MsanDeallocate(stack, ptr); 332 return nullptr; 333 } 334 return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64))); 335 } 336 337 void *msan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) { 338 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 339 errno = errno_ENOMEM; 340 if (AllocatorMayReturnNull()) 341 return nullptr; 342 ReportReallocArrayOverflow(nmemb, size, stack); 343 } 344 return msan_realloc(ptr, nmemb * size, stack); 345 } 346 347 void *msan_valloc(uptr size, StackTrace *stack) { 348 return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false)); 349 } 350 351 void *msan_pvalloc(uptr size, StackTrace *stack) { 352 uptr PageSize = GetPageSizeCached(); 353 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 354 errno = errno_ENOMEM; 355 if (AllocatorMayReturnNull()) 356 return nullptr; 357 ReportPvallocOverflow(size, stack); 358 } 359 // pvalloc(0) should allocate one page. 360 size = size ? RoundUpTo(size, PageSize) : PageSize; 361 return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false)); 362 } 363 364 void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) { 365 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 366 errno = errno_EINVAL; 367 if (AllocatorMayReturnNull()) 368 return nullptr; 369 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 370 } 371 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false)); 372 } 373 374 void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) { 375 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 376 errno = errno_EINVAL; 377 if (AllocatorMayReturnNull()) 378 return nullptr; 379 ReportInvalidAllocationAlignment(alignment, stack); 380 } 381 return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false)); 382 } 383 384 int msan_posix_memalign(void **memptr, uptr alignment, uptr size, 385 StackTrace *stack) { 386 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 387 if (AllocatorMayReturnNull()) 388 return errno_EINVAL; 389 ReportInvalidPosixMemalignAlignment(alignment, stack); 390 } 391 void *ptr = MsanAllocate(stack, size, alignment, false); 392 if (UNLIKELY(!ptr)) 393 // OOM error is already taken care of by MsanAllocate. 394 return errno_ENOMEM; 395 CHECK(IsAligned((uptr)ptr, alignment)); 396 *memptr = ptr; 397 return 0; 398 } 399 400 } // namespace __msan 401 402 using namespace __msan; 403 404 uptr __sanitizer_get_current_allocated_bytes() { 405 uptr stats[AllocatorStatCount]; 406 allocator.GetStats(stats); 407 return stats[AllocatorStatAllocated]; 408 } 409 410 uptr __sanitizer_get_heap_size() { 411 uptr stats[AllocatorStatCount]; 412 allocator.GetStats(stats); 413 return stats[AllocatorStatMapped]; 414 } 415 416 uptr __sanitizer_get_free_bytes() { return 1; } 417 418 uptr __sanitizer_get_unmapped_bytes() { return 1; } 419 420 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 421 422 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } 423 424 const void *__sanitizer_get_allocated_begin(const void *p) { 425 return AllocationBegin(p); 426 } 427 428 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } 429 430 uptr __sanitizer_get_allocated_size_fast(const void *p) { 431 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 432 uptr ret = AllocationSizeFast(p); 433 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 434 return ret; 435 } 436 437 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); } 438