xref: /freebsd/contrib/llvm-project/compiler-rt/lib/msan/msan_allocator.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- msan_allocator.cpp -------------------------- ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemorySanitizer.
10 //
11 // MemorySanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "msan_allocator.h"
15 
16 #include "msan.h"
17 #include "msan_interface_internal.h"
18 #include "msan_origin.h"
19 #include "msan_poisoning.h"
20 #include "msan_thread.h"
21 #include "sanitizer_common/sanitizer_allocator.h"
22 #include "sanitizer_common/sanitizer_allocator_checks.h"
23 #include "sanitizer_common/sanitizer_allocator_interface.h"
24 #include "sanitizer_common/sanitizer_allocator_report.h"
25 #include "sanitizer_common/sanitizer_errno.h"
26 
27 namespace __msan {
28 
29 struct Metadata {
30   uptr requested_size;
31 };
32 
33 struct MsanMapUnmapCallback {
34   void OnMap(uptr p, uptr size) const {}
35   void OnMapSecondary(uptr p, uptr size, uptr user_begin,
36                       uptr user_size) const {}
37   void OnUnmap(uptr p, uptr size) const {
38     __msan_unpoison((void *)p, size);
39 
40     // We are about to unmap a chunk of user memory.
41     // Mark the corresponding shadow memory as not needed.
42     uptr shadow_p = MEM_TO_SHADOW(p);
43     ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
44     if (__msan_get_track_origins()) {
45       uptr origin_p = MEM_TO_ORIGIN(p);
46       ReleaseMemoryPagesToOS(origin_p, origin_p + size);
47     }
48   }
49 };
50 
51 // Note: to ensure that the allocator is compatible with the application memory
52 // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be
53 // duplicated as MappingDesc::ALLOCATOR in msan.h.
54 #if defined(__mips64)
55 static const uptr kMaxAllowedMallocSize = 2UL << 30;
56 
57 struct AP32 {
58   static const uptr kSpaceBeg = 0;
59   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
60   static const uptr kMetadataSize = sizeof(Metadata);
61   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
62   static const uptr kRegionSizeLog = 20;
63   using AddressSpaceView = LocalAddressSpaceView;
64   typedef MsanMapUnmapCallback MapUnmapCallback;
65   static const uptr kFlags = 0;
66 };
67 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
68 #elif defined(__x86_64__)
69 #if SANITIZER_NETBSD || SANITIZER_LINUX
70 static const uptr kAllocatorSpace = 0x700000000000ULL;
71 #else
72 static const uptr kAllocatorSpace = 0x600000000000ULL;
73 #endif
74 static const uptr kMaxAllowedMallocSize = 8UL << 30;
75 
76 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
77   static const uptr kSpaceBeg = kAllocatorSpace;
78   static const uptr kSpaceSize = 0x40000000000;  // 4T.
79   static const uptr kMetadataSize = sizeof(Metadata);
80   typedef DefaultSizeClassMap SizeClassMap;
81   typedef MsanMapUnmapCallback MapUnmapCallback;
82   static const uptr kFlags = 0;
83   using AddressSpaceView = LocalAddressSpaceView;
84 };
85 
86 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
87 
88 #elif defined(__loongarch_lp64)
89 const uptr kAllocatorSpace = 0x700000000000ULL;
90 const uptr kMaxAllowedMallocSize = 8UL << 30;
91 
92 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
93   static const uptr kSpaceBeg = kAllocatorSpace;
94   static const uptr kSpaceSize = 0x40000000000;  // 4T.
95   static const uptr kMetadataSize = sizeof(Metadata);
96   typedef DefaultSizeClassMap SizeClassMap;
97   typedef MsanMapUnmapCallback MapUnmapCallback;
98   static const uptr kFlags = 0;
99   using AddressSpaceView = LocalAddressSpaceView;
100 };
101 
102 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
103 
104 #elif defined(__powerpc64__)
105 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
106 
107 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
108   static const uptr kSpaceBeg = 0x300000000000;
109   static const uptr kSpaceSize = 0x020000000000;  // 2T.
110   static const uptr kMetadataSize = sizeof(Metadata);
111   typedef DefaultSizeClassMap SizeClassMap;
112   typedef MsanMapUnmapCallback MapUnmapCallback;
113   static const uptr kFlags = 0;
114   using AddressSpaceView = LocalAddressSpaceView;
115 };
116 
117 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
118 #elif defined(__s390x__)
119 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
120 
121 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
122   static const uptr kSpaceBeg = 0x440000000000;
123   static const uptr kSpaceSize = 0x020000000000;  // 2T.
124   static const uptr kMetadataSize = sizeof(Metadata);
125   typedef DefaultSizeClassMap SizeClassMap;
126   typedef MsanMapUnmapCallback MapUnmapCallback;
127   static const uptr kFlags = 0;
128   using AddressSpaceView = LocalAddressSpaceView;
129 };
130 
131 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
132 #elif defined(__aarch64__)
133 static const uptr kMaxAllowedMallocSize = 8UL << 30;
134 
135 struct AP64 {
136   static const uptr kSpaceBeg = 0xE00000000000ULL;
137   static const uptr kSpaceSize = 0x40000000000;  // 4T.
138   static const uptr kMetadataSize = sizeof(Metadata);
139   typedef DefaultSizeClassMap SizeClassMap;
140   typedef MsanMapUnmapCallback MapUnmapCallback;
141   static const uptr kFlags = 0;
142   using AddressSpaceView = LocalAddressSpaceView;
143 };
144 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
145 #endif
146 typedef CombinedAllocator<PrimaryAllocator> Allocator;
147 typedef Allocator::AllocatorCache AllocatorCache;
148 
149 static Allocator allocator;
150 static AllocatorCache fallback_allocator_cache;
151 static StaticSpinMutex fallback_mutex;
152 
153 static uptr max_malloc_size;
154 
155 void MsanAllocatorInit() {
156   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
157   allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
158   if (common_flags()->max_allocation_size_mb)
159     max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
160                           kMaxAllowedMallocSize);
161   else
162     max_malloc_size = kMaxAllowedMallocSize;
163 }
164 
165 void LockAllocator() { allocator.ForceLock(); }
166 
167 void UnlockAllocator() { allocator.ForceUnlock(); }
168 
169 AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
170   CHECK(ms);
171   CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
172   return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
173 }
174 
175 void MsanThreadLocalMallocStorage::Init() {
176   allocator.InitCache(GetAllocatorCache(this));
177 }
178 
179 void MsanThreadLocalMallocStorage::CommitBack() {
180   allocator.SwallowCache(GetAllocatorCache(this));
181   allocator.DestroyCache(GetAllocatorCache(this));
182 }
183 
184 static void *MsanAllocate(BufferedStackTrace *stack, uptr size, uptr alignment,
185                           bool zeroise) {
186   if (UNLIKELY(size > max_malloc_size)) {
187     if (AllocatorMayReturnNull()) {
188       Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
189       return nullptr;
190     }
191     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
192     ReportAllocationSizeTooBig(size, max_malloc_size, stack);
193   }
194   if (UNLIKELY(IsRssLimitExceeded())) {
195     if (AllocatorMayReturnNull())
196       return nullptr;
197     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
198     ReportRssLimitExceeded(stack);
199   }
200   MsanThread *t = GetCurrentThread();
201   void *allocated;
202   if (t) {
203     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
204     allocated = allocator.Allocate(cache, size, alignment);
205   } else {
206     SpinMutexLock l(&fallback_mutex);
207     AllocatorCache *cache = &fallback_allocator_cache;
208     allocated = allocator.Allocate(cache, size, alignment);
209   }
210   if (UNLIKELY(!allocated)) {
211     SetAllocatorOutOfMemory();
212     if (AllocatorMayReturnNull())
213       return nullptr;
214     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
215     ReportOutOfMemory(size, stack);
216   }
217   Metadata *meta =
218       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
219   meta->requested_size = size;
220   if (zeroise) {
221     if (allocator.FromPrimary(allocated))
222       __msan_clear_and_unpoison(allocated, size);
223     else
224       __msan_unpoison(allocated, size);  // Mem is already zeroed.
225   } else if (flags()->poison_in_malloc) {
226     __msan_poison(allocated, size);
227     if (__msan_get_track_origins()) {
228       stack->tag = StackTrace::TAG_ALLOC;
229       Origin o = Origin::CreateHeapOrigin(stack);
230       __msan_set_origin(allocated, size, o.raw_id());
231     }
232   }
233   UnpoisonParam(2);
234   RunMallocHooks(allocated, size);
235   return allocated;
236 }
237 
238 void MsanDeallocate(BufferedStackTrace *stack, void *p) {
239   CHECK(p);
240   UnpoisonParam(1);
241   RunFreeHooks(p);
242 
243   Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
244   uptr size = meta->requested_size;
245   meta->requested_size = 0;
246   // This memory will not be reused by anyone else, so we are free to keep it
247   // poisoned. The secondary allocator will unmap and unpoison by
248   // MsanMapUnmapCallback, no need to poison it here.
249   if (flags()->poison_in_free && allocator.FromPrimary(p)) {
250     __msan_poison(p, size);
251     if (__msan_get_track_origins()) {
252       stack->tag = StackTrace::TAG_DEALLOC;
253       Origin o = Origin::CreateHeapOrigin(stack);
254       __msan_set_origin(p, size, o.raw_id());
255     }
256   }
257   MsanThread *t = GetCurrentThread();
258   if (t) {
259     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
260     allocator.Deallocate(cache, p);
261   } else {
262     SpinMutexLock l(&fallback_mutex);
263     AllocatorCache *cache = &fallback_allocator_cache;
264     allocator.Deallocate(cache, p);
265   }
266 }
267 
268 static void *MsanReallocate(BufferedStackTrace *stack, void *old_p,
269                             uptr new_size, uptr alignment) {
270   Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
271   uptr old_size = meta->requested_size;
272   uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
273   if (new_size <= actually_allocated_size) {
274     // We are not reallocating here.
275     meta->requested_size = new_size;
276     if (new_size > old_size) {
277       if (flags()->poison_in_malloc) {
278         stack->tag = StackTrace::TAG_ALLOC;
279         PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
280       }
281     }
282     return old_p;
283   }
284   uptr memcpy_size = Min(new_size, old_size);
285   void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
286   if (new_p) {
287     CopyMemory(new_p, old_p, memcpy_size, stack);
288     MsanDeallocate(stack, old_p);
289   }
290   return new_p;
291 }
292 
293 static void *MsanCalloc(BufferedStackTrace *stack, uptr nmemb, uptr size) {
294   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
295     if (AllocatorMayReturnNull())
296       return nullptr;
297     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
298     ReportCallocOverflow(nmemb, size, stack);
299   }
300   return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
301 }
302 
303 static const void *AllocationBegin(const void *p) {
304   if (!p)
305     return nullptr;
306   void *beg = allocator.GetBlockBegin(p);
307   if (!beg)
308     return nullptr;
309   Metadata *b = (Metadata *)allocator.GetMetaData(beg);
310   if (!b)
311     return nullptr;
312   if (b->requested_size == 0)
313     return nullptr;
314 
315   return (const void *)beg;
316 }
317 
318 static uptr AllocationSize(const void *p) {
319   if (!p) return 0;
320   const void *beg = allocator.GetBlockBegin(p);
321   if (beg != p) return 0;
322   Metadata *b = (Metadata *)allocator.GetMetaData(p);
323   return b->requested_size;
324 }
325 
326 static uptr AllocationSizeFast(const void *p) {
327   return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
328 }
329 
330 void *msan_malloc(uptr size, BufferedStackTrace *stack) {
331   return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
332 }
333 
334 void *msan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
335   return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
336 }
337 
338 void *msan_realloc(void *ptr, uptr size, BufferedStackTrace *stack) {
339   if (!ptr)
340     return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
341   if (size == 0) {
342     MsanDeallocate(stack, ptr);
343     return nullptr;
344   }
345   return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
346 }
347 
348 void *msan_reallocarray(void *ptr, uptr nmemb, uptr size,
349                         BufferedStackTrace *stack) {
350   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
351     errno = errno_ENOMEM;
352     if (AllocatorMayReturnNull())
353       return nullptr;
354     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
355     ReportReallocArrayOverflow(nmemb, size, stack);
356   }
357   return msan_realloc(ptr, nmemb * size, stack);
358 }
359 
360 void *msan_valloc(uptr size, BufferedStackTrace *stack) {
361   return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
362 }
363 
364 void *msan_pvalloc(uptr size, BufferedStackTrace *stack) {
365   uptr PageSize = GetPageSizeCached();
366   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
367     errno = errno_ENOMEM;
368     if (AllocatorMayReturnNull())
369       return nullptr;
370     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
371     ReportPvallocOverflow(size, stack);
372   }
373   // pvalloc(0) should allocate one page.
374   size = size ? RoundUpTo(size, PageSize) : PageSize;
375   return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
376 }
377 
378 void *msan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
379   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
380     errno = errno_EINVAL;
381     if (AllocatorMayReturnNull())
382       return nullptr;
383     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
384     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
385   }
386   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
387 }
388 
389 void *msan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack) {
390   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
391     errno = errno_EINVAL;
392     if (AllocatorMayReturnNull())
393       return nullptr;
394     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
395     ReportInvalidAllocationAlignment(alignment, stack);
396   }
397   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
398 }
399 
400 int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
401                         BufferedStackTrace *stack) {
402   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
403     if (AllocatorMayReturnNull())
404       return errno_EINVAL;
405     GET_FATAL_STACK_TRACE_IF_EMPTY(stack);
406     ReportInvalidPosixMemalignAlignment(alignment, stack);
407   }
408   void *ptr = MsanAllocate(stack, size, alignment, false);
409   if (UNLIKELY(!ptr))
410     // OOM error is already taken care of by MsanAllocate.
411     return errno_ENOMEM;
412   CHECK(IsAligned((uptr)ptr, alignment));
413   *memptr = ptr;
414   return 0;
415 }
416 
417 } // namespace __msan
418 
419 using namespace __msan;
420 
421 uptr __sanitizer_get_current_allocated_bytes() {
422   uptr stats[AllocatorStatCount];
423   allocator.GetStats(stats);
424   return stats[AllocatorStatAllocated];
425 }
426 
427 uptr __sanitizer_get_heap_size() {
428   uptr stats[AllocatorStatCount];
429   allocator.GetStats(stats);
430   return stats[AllocatorStatMapped];
431 }
432 
433 uptr __sanitizer_get_free_bytes() { return 1; }
434 
435 uptr __sanitizer_get_unmapped_bytes() { return 1; }
436 
437 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
438 
439 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
440 
441 const void *__sanitizer_get_allocated_begin(const void *p) {
442   return AllocationBegin(p);
443 }
444 
445 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
446 
447 uptr __sanitizer_get_allocated_size_fast(const void *p) {
448   DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
449   uptr ret = AllocationSizeFast(p);
450   DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
451   return ret;
452 }
453 
454 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
455