xref: /freebsd/contrib/llvm-project/compiler-rt/lib/msan/msan_allocator.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- msan_allocator.cpp -------------------------- ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemorySanitizer.
10 //
11 // MemorySanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_allocator.h"
15 #include "sanitizer_common/sanitizer_allocator_checks.h"
16 #include "sanitizer_common/sanitizer_allocator_interface.h"
17 #include "sanitizer_common/sanitizer_allocator_report.h"
18 #include "sanitizer_common/sanitizer_errno.h"
19 #include "msan.h"
20 #include "msan_allocator.h"
21 #include "msan_origin.h"
22 #include "msan_thread.h"
23 #include "msan_poisoning.h"
24 
25 namespace __msan {
26 
27 struct Metadata {
28   uptr requested_size;
29 };
30 
31 struct MsanMapUnmapCallback {
32   void OnMap(uptr p, uptr size) const {}
33   void OnUnmap(uptr p, uptr size) const {
34     __msan_unpoison((void *)p, size);
35 
36     // We are about to unmap a chunk of user memory.
37     // Mark the corresponding shadow memory as not needed.
38     uptr shadow_p = MEM_TO_SHADOW(p);
39     ReleaseMemoryPagesToOS(shadow_p, shadow_p + size);
40     if (__msan_get_track_origins()) {
41       uptr origin_p = MEM_TO_ORIGIN(p);
42       ReleaseMemoryPagesToOS(origin_p, origin_p + size);
43     }
44   }
45 };
46 
47 #if defined(__mips64)
48 static const uptr kMaxAllowedMallocSize = 2UL << 30;
49 
50 struct AP32 {
51   static const uptr kSpaceBeg = 0;
52   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
53   static const uptr kMetadataSize = sizeof(Metadata);
54   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
55   static const uptr kRegionSizeLog = 20;
56   using AddressSpaceView = LocalAddressSpaceView;
57   typedef MsanMapUnmapCallback MapUnmapCallback;
58   static const uptr kFlags = 0;
59 };
60 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
61 #elif defined(__x86_64__)
62 #if SANITIZER_NETBSD || \
63     (SANITIZER_LINUX && !defined(MSAN_LINUX_X86_64_OLD_MAPPING))
64 static const uptr kAllocatorSpace = 0x700000000000ULL;
65 #else
66 static const uptr kAllocatorSpace = 0x600000000000ULL;
67 #endif
68 static const uptr kMaxAllowedMallocSize = 8UL << 30;
69 
70 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
71   static const uptr kSpaceBeg = kAllocatorSpace;
72   static const uptr kSpaceSize = 0x40000000000;  // 4T.
73   static const uptr kMetadataSize = sizeof(Metadata);
74   typedef DefaultSizeClassMap SizeClassMap;
75   typedef MsanMapUnmapCallback MapUnmapCallback;
76   static const uptr kFlags = 0;
77   using AddressSpaceView = LocalAddressSpaceView;
78 };
79 
80 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
81 
82 #elif defined(__powerpc64__)
83 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
84 
85 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
86   static const uptr kSpaceBeg = 0x300000000000;
87   static const uptr kSpaceSize = 0x020000000000;  // 2T.
88   static const uptr kMetadataSize = sizeof(Metadata);
89   typedef DefaultSizeClassMap SizeClassMap;
90   typedef MsanMapUnmapCallback MapUnmapCallback;
91   static const uptr kFlags = 0;
92   using AddressSpaceView = LocalAddressSpaceView;
93 };
94 
95 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
96 #elif defined(__s390x__)
97 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
98 
99 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
100   static const uptr kSpaceBeg = 0x440000000000;
101   static const uptr kSpaceSize = 0x020000000000;  // 2T.
102   static const uptr kMetadataSize = sizeof(Metadata);
103   typedef DefaultSizeClassMap SizeClassMap;
104   typedef MsanMapUnmapCallback MapUnmapCallback;
105   static const uptr kFlags = 0;
106   using AddressSpaceView = LocalAddressSpaceView;
107 };
108 
109 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
110 #elif defined(__aarch64__)
111 static const uptr kMaxAllowedMallocSize = 2UL << 30;  // 2G
112 
113 struct AP32 {
114   static const uptr kSpaceBeg = 0;
115   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
116   static const uptr kMetadataSize = sizeof(Metadata);
117   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
118   static const uptr kRegionSizeLog = 20;
119   using AddressSpaceView = LocalAddressSpaceView;
120   typedef MsanMapUnmapCallback MapUnmapCallback;
121   static const uptr kFlags = 0;
122 };
123 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
124 #endif
125 typedef CombinedAllocator<PrimaryAllocator> Allocator;
126 typedef Allocator::AllocatorCache AllocatorCache;
127 
128 static Allocator allocator;
129 static AllocatorCache fallback_allocator_cache;
130 static StaticSpinMutex fallback_mutex;
131 
132 static uptr max_malloc_size;
133 
134 void MsanAllocatorInit() {
135   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
136   allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
137   if (common_flags()->max_allocation_size_mb)
138     max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
139                           kMaxAllowedMallocSize);
140   else
141     max_malloc_size = kMaxAllowedMallocSize;
142 }
143 
144 AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) {
145   CHECK(ms);
146   CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
147   return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
148 }
149 
150 void MsanThreadLocalMallocStorage::CommitBack() {
151   allocator.SwallowCache(GetAllocatorCache(this));
152 }
153 
154 static void *MsanAllocate(StackTrace *stack, uptr size, uptr alignment,
155                           bool zeroise) {
156   if (size > max_malloc_size) {
157     if (AllocatorMayReturnNull()) {
158       Report("WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n", size);
159       return nullptr;
160     }
161     ReportAllocationSizeTooBig(size, max_malloc_size, stack);
162   }
163   MsanThread *t = GetCurrentThread();
164   void *allocated;
165   if (t) {
166     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
167     allocated = allocator.Allocate(cache, size, alignment);
168   } else {
169     SpinMutexLock l(&fallback_mutex);
170     AllocatorCache *cache = &fallback_allocator_cache;
171     allocated = allocator.Allocate(cache, size, alignment);
172   }
173   if (UNLIKELY(!allocated)) {
174     SetAllocatorOutOfMemory();
175     if (AllocatorMayReturnNull())
176       return nullptr;
177     ReportOutOfMemory(size, stack);
178   }
179   Metadata *meta =
180       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
181   meta->requested_size = size;
182   if (zeroise) {
183     __msan_clear_and_unpoison(allocated, size);
184   } else if (flags()->poison_in_malloc) {
185     __msan_poison(allocated, size);
186     if (__msan_get_track_origins()) {
187       stack->tag = StackTrace::TAG_ALLOC;
188       Origin o = Origin::CreateHeapOrigin(stack);
189       __msan_set_origin(allocated, size, o.raw_id());
190     }
191   }
192   MSAN_MALLOC_HOOK(allocated, size);
193   return allocated;
194 }
195 
196 void MsanDeallocate(StackTrace *stack, void *p) {
197   CHECK(p);
198   MSAN_FREE_HOOK(p);
199   Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
200   uptr size = meta->requested_size;
201   meta->requested_size = 0;
202   // This memory will not be reused by anyone else, so we are free to keep it
203   // poisoned.
204   if (flags()->poison_in_free) {
205     __msan_poison(p, size);
206     if (__msan_get_track_origins()) {
207       stack->tag = StackTrace::TAG_DEALLOC;
208       Origin o = Origin::CreateHeapOrigin(stack);
209       __msan_set_origin(p, size, o.raw_id());
210     }
211   }
212   MsanThread *t = GetCurrentThread();
213   if (t) {
214     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
215     allocator.Deallocate(cache, p);
216   } else {
217     SpinMutexLock l(&fallback_mutex);
218     AllocatorCache *cache = &fallback_allocator_cache;
219     allocator.Deallocate(cache, p);
220   }
221 }
222 
223 static void *MsanReallocate(StackTrace *stack, void *old_p, uptr new_size,
224                             uptr alignment) {
225   Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
226   uptr old_size = meta->requested_size;
227   uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
228   if (new_size <= actually_allocated_size) {
229     // We are not reallocating here.
230     meta->requested_size = new_size;
231     if (new_size > old_size) {
232       if (flags()->poison_in_malloc) {
233         stack->tag = StackTrace::TAG_ALLOC;
234         PoisonMemory((char *)old_p + old_size, new_size - old_size, stack);
235       }
236     }
237     return old_p;
238   }
239   uptr memcpy_size = Min(new_size, old_size);
240   void *new_p = MsanAllocate(stack, new_size, alignment, false /*zeroise*/);
241   if (new_p) {
242     CopyMemory(new_p, old_p, memcpy_size, stack);
243     MsanDeallocate(stack, old_p);
244   }
245   return new_p;
246 }
247 
248 static void *MsanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
249   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
250     if (AllocatorMayReturnNull())
251       return nullptr;
252     ReportCallocOverflow(nmemb, size, stack);
253   }
254   return MsanAllocate(stack, nmemb * size, sizeof(u64), true);
255 }
256 
257 static uptr AllocationSize(const void *p) {
258   if (!p) return 0;
259   const void *beg = allocator.GetBlockBegin(p);
260   if (beg != p) return 0;
261   Metadata *b = (Metadata *)allocator.GetMetaData(p);
262   return b->requested_size;
263 }
264 
265 void *msan_malloc(uptr size, StackTrace *stack) {
266   return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
267 }
268 
269 void *msan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
270   return SetErrnoOnNull(MsanCalloc(stack, nmemb, size));
271 }
272 
273 void *msan_realloc(void *ptr, uptr size, StackTrace *stack) {
274   if (!ptr)
275     return SetErrnoOnNull(MsanAllocate(stack, size, sizeof(u64), false));
276   if (size == 0) {
277     MsanDeallocate(stack, ptr);
278     return nullptr;
279   }
280   return SetErrnoOnNull(MsanReallocate(stack, ptr, size, sizeof(u64)));
281 }
282 
283 void *msan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
284   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
285     errno = errno_ENOMEM;
286     if (AllocatorMayReturnNull())
287       return nullptr;
288     ReportReallocArrayOverflow(nmemb, size, stack);
289   }
290   return msan_realloc(ptr, nmemb * size, stack);
291 }
292 
293 void *msan_valloc(uptr size, StackTrace *stack) {
294   return SetErrnoOnNull(MsanAllocate(stack, size, GetPageSizeCached(), false));
295 }
296 
297 void *msan_pvalloc(uptr size, StackTrace *stack) {
298   uptr PageSize = GetPageSizeCached();
299   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
300     errno = errno_ENOMEM;
301     if (AllocatorMayReturnNull())
302       return nullptr;
303     ReportPvallocOverflow(size, stack);
304   }
305   // pvalloc(0) should allocate one page.
306   size = size ? RoundUpTo(size, PageSize) : PageSize;
307   return SetErrnoOnNull(MsanAllocate(stack, size, PageSize, false));
308 }
309 
310 void *msan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
311   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
312     errno = errno_EINVAL;
313     if (AllocatorMayReturnNull())
314       return nullptr;
315     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
316   }
317   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
318 }
319 
320 void *msan_memalign(uptr alignment, uptr size, StackTrace *stack) {
321   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
322     errno = errno_EINVAL;
323     if (AllocatorMayReturnNull())
324       return nullptr;
325     ReportInvalidAllocationAlignment(alignment, stack);
326   }
327   return SetErrnoOnNull(MsanAllocate(stack, size, alignment, false));
328 }
329 
330 int msan_posix_memalign(void **memptr, uptr alignment, uptr size,
331                         StackTrace *stack) {
332   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
333     if (AllocatorMayReturnNull())
334       return errno_EINVAL;
335     ReportInvalidPosixMemalignAlignment(alignment, stack);
336   }
337   void *ptr = MsanAllocate(stack, size, alignment, false);
338   if (UNLIKELY(!ptr))
339     // OOM error is already taken care of by MsanAllocate.
340     return errno_ENOMEM;
341   CHECK(IsAligned((uptr)ptr, alignment));
342   *memptr = ptr;
343   return 0;
344 }
345 
346 } // namespace __msan
347 
348 using namespace __msan;
349 
350 uptr __sanitizer_get_current_allocated_bytes() {
351   uptr stats[AllocatorStatCount];
352   allocator.GetStats(stats);
353   return stats[AllocatorStatAllocated];
354 }
355 
356 uptr __sanitizer_get_heap_size() {
357   uptr stats[AllocatorStatCount];
358   allocator.GetStats(stats);
359   return stats[AllocatorStatMapped];
360 }
361 
362 uptr __sanitizer_get_free_bytes() { return 1; }
363 
364 uptr __sanitizer_get_unmapped_bytes() { return 1; }
365 
366 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
367 
368 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
369 
370 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
371