1 //===-- memprof_allocator.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemProfiler, a memory profiler. 10 // 11 // Implementation of MemProf's memory allocator, which uses the allocator 12 // from sanitizer_common. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "memprof_allocator.h" 17 #include "memprof_mapping.h" 18 #include "memprof_mibmap.h" 19 #include "memprof_rawprofile.h" 20 #include "memprof_stack.h" 21 #include "memprof_thread.h" 22 #include "profile/MemProfData.inc" 23 #include "sanitizer_common/sanitizer_allocator_checks.h" 24 #include "sanitizer_common/sanitizer_allocator_interface.h" 25 #include "sanitizer_common/sanitizer_allocator_report.h" 26 #include "sanitizer_common/sanitizer_errno.h" 27 #include "sanitizer_common/sanitizer_file.h" 28 #include "sanitizer_common/sanitizer_flags.h" 29 #include "sanitizer_common/sanitizer_internal_defs.h" 30 #include "sanitizer_common/sanitizer_procmaps.h" 31 #include "sanitizer_common/sanitizer_stackdepot.h" 32 33 #include <sched.h> 34 #include <time.h> 35 36 namespace __memprof { 37 namespace { 38 using ::llvm::memprof::MemInfoBlock; 39 40 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { 41 u64 p; 42 43 if (print_terse) { 44 p = M.TotalSize * 100 / M.AllocCount; 45 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, 46 M.MinSize, M.MaxSize); 47 p = M.TotalAccessCount * 100 / M.AllocCount; 48 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, 49 M.MaxAccessCount); 50 p = M.TotalLifetime * 100 / M.AllocCount; 51 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, 52 M.MaxLifetime); 53 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, 54 M.NumSameAllocCpu, M.NumSameDeallocCpu); 55 } else { 56 p = M.TotalSize * 100 / M.AllocCount; 57 Printf("Memory allocation stack id = %llu\n", id); 58 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", 59 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); 60 p = M.TotalAccessCount * 100 / M.AllocCount; 61 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, 62 p % 100, M.MinAccessCount, M.MaxAccessCount); 63 p = M.TotalLifetime * 100 / M.AllocCount; 64 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, 65 p % 100, M.MinLifetime, M.MaxLifetime); 66 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " 67 "cpu: %u, num same dealloc_cpu: %u\n", 68 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, 69 M.NumSameDeallocCpu); 70 } 71 } 72 } // namespace 73 74 static int GetCpuId(void) { 75 // _memprof_preinit is called via the preinit_array, which subsequently calls 76 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 77 // will seg fault as the address of __vdso_getcpu will be null. 78 if (!memprof_init_done) 79 return -1; 80 return sched_getcpu(); 81 } 82 83 // Compute the timestamp in ms. 84 static int GetTimestamp(void) { 85 // timespec_get will segfault if called from dl_init 86 if (!memprof_timestamp_inited) { 87 // By returning 0, this will be effectively treated as being 88 // timestamped at memprof init time (when memprof_init_timestamp_s 89 // is initialized). 90 return 0; 91 } 92 timespec ts; 93 clock_gettime(CLOCK_REALTIME, &ts); 94 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 95 } 96 97 static MemprofAllocator &get_allocator(); 98 99 // The memory chunk allocated from the underlying allocator looks like this: 100 // H H U U U U U U 101 // H -- ChunkHeader (32 bytes) 102 // U -- user memory. 103 104 // If there is left padding before the ChunkHeader (due to use of memalign), 105 // we store a magic value in the first uptr word of the memory block and 106 // store the address of ChunkHeader in the next uptr. 107 // M B L L L L L L L L L H H U U U U U U 108 // | ^ 109 // ---------------------| 110 // M -- magic value kAllocBegMagic 111 // B -- address of ChunkHeader pointing to the first 'H' 112 113 constexpr uptr kMaxAllowedMallocBits = 40; 114 115 // Should be no more than 32-bytes 116 struct ChunkHeader { 117 // 1-st 4 bytes. 118 u32 alloc_context_id; 119 // 2-nd 4 bytes 120 u32 cpu_id; 121 // 3-rd 4 bytes 122 u32 timestamp_ms; 123 // 4-th 4 bytes 124 // Note only 1 bit is needed for this flag if we need space in the future for 125 // more fields. 126 u32 from_memalign; 127 // 5-th and 6-th 4 bytes 128 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 129 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 130 // more fields. 131 atomic_uint64_t user_requested_size; 132 // 23 bits available 133 // 7-th and 8-th 4 bytes 134 u64 data_type_id; // TODO: hash of type name 135 }; 136 137 static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 138 COMPILER_CHECK(kChunkHeaderSize == 32); 139 140 struct MemprofChunk : ChunkHeader { 141 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 142 uptr UsedSize() { 143 return atomic_load(&user_requested_size, memory_order_relaxed); 144 } 145 void *AllocBeg() { 146 if (from_memalign) 147 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 148 return reinterpret_cast<void *>(this); 149 } 150 }; 151 152 class LargeChunkHeader { 153 static constexpr uptr kAllocBegMagic = 154 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 155 atomic_uintptr_t magic; 156 MemprofChunk *chunk_header; 157 158 public: 159 MemprofChunk *Get() const { 160 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 161 ? chunk_header 162 : nullptr; 163 } 164 165 void Set(MemprofChunk *p) { 166 if (p) { 167 chunk_header = p; 168 atomic_store(&magic, kAllocBegMagic, memory_order_release); 169 return; 170 } 171 172 uptr old = kAllocBegMagic; 173 if (!atomic_compare_exchange_strong(&magic, &old, 0, 174 memory_order_release)) { 175 CHECK_EQ(old, kAllocBegMagic); 176 } 177 } 178 }; 179 180 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 181 // Since memprof's mapping is compacting, the shadow chunk may be 182 // not page-aligned, so we only flush the page-aligned portion. 183 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 184 } 185 186 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 187 // Statistics. 188 MemprofStats &thread_stats = GetCurrentThreadStats(); 189 thread_stats.mmaps++; 190 thread_stats.mmaped += size; 191 } 192 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 193 // We are about to unmap a chunk of user memory. 194 // Mark the corresponding shadow memory as not needed. 195 FlushUnneededMemProfShadowMemory(p, size); 196 // Statistics. 197 MemprofStats &thread_stats = GetCurrentThreadStats(); 198 thread_stats.munmaps++; 199 thread_stats.munmaped += size; 200 } 201 202 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 203 CHECK(ms); 204 return &ms->allocator_cache; 205 } 206 207 // Accumulates the access count from the shadow for the given pointer and size. 208 u64 GetShadowCount(uptr p, u32 size) { 209 u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 210 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 211 u64 count = 0; 212 for (; shadow <= shadow_end; shadow++) 213 count += *shadow; 214 return count; 215 } 216 217 // Clears the shadow counters (when memory is allocated). 218 void ClearShadow(uptr addr, uptr size) { 219 CHECK(AddrIsAlignedByGranularity(addr)); 220 CHECK(AddrIsInMem(addr)); 221 CHECK(AddrIsAlignedByGranularity(addr + size)); 222 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 223 CHECK(REAL(memset)); 224 uptr shadow_beg = MEM_TO_SHADOW(addr); 225 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 226 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 227 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 228 } else { 229 uptr page_size = GetPageSizeCached(); 230 uptr page_beg = RoundUpTo(shadow_beg, page_size); 231 uptr page_end = RoundDownTo(shadow_end, page_size); 232 233 if (page_beg >= page_end) { 234 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 235 } else { 236 if (page_beg != shadow_beg) { 237 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 238 } 239 if (page_end != shadow_end) { 240 REAL(memset)((void *)page_end, 0, shadow_end - page_end); 241 } 242 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 243 } 244 } 245 } 246 247 struct Allocator { 248 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 249 250 MemprofAllocator allocator; 251 StaticSpinMutex fallback_mutex; 252 AllocatorCache fallback_allocator_cache; 253 254 uptr max_user_defined_malloc_size; 255 256 // Holds the mapping of stack ids to MemInfoBlocks. 257 MIBMapTy MIBMap; 258 259 atomic_uint8_t destructing; 260 atomic_uint8_t constructed; 261 bool print_text; 262 263 // ------------------- Initialization ------------------------ 264 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 265 atomic_store_relaxed(&destructing, 0); 266 atomic_store_relaxed(&constructed, 1); 267 } 268 269 ~Allocator() { 270 atomic_store_relaxed(&destructing, 1); 271 FinishAndWrite(); 272 } 273 274 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 275 void *Arg) { 276 SpinMutexLock l(&Value->mutex); 277 Print(Value->mib, Key, bool(Arg)); 278 } 279 280 void FinishAndWrite() { 281 if (print_text && common_flags()->print_module_map) 282 DumpProcessMap(); 283 284 allocator.ForceLock(); 285 286 InsertLiveBlocks(); 287 if (print_text) { 288 if (!flags()->print_terse) 289 Printf("Recorded MIBs (incl. live on exit):\n"); 290 MIBMap.ForEach(PrintCallback, 291 reinterpret_cast<void *>(flags()->print_terse)); 292 StackDepotPrintAll(); 293 } else { 294 // Serialize the contents to a raw profile. Format documented in 295 // memprof_rawprofile.h. 296 char *Buffer = nullptr; 297 298 MemoryMappingLayout Layout(/*cache_enabled=*/true); 299 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Layout, Buffer); 300 CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 301 report_file.Write(Buffer, BytesSerialized); 302 } 303 304 allocator.ForceUnlock(); 305 } 306 307 // Inserts any blocks which have been allocated but not yet deallocated. 308 void InsertLiveBlocks() { 309 allocator.ForEachChunk( 310 [](uptr chunk, void *alloc) { 311 u64 user_requested_size; 312 Allocator *A = (Allocator *)alloc; 313 MemprofChunk *m = 314 A->GetMemprofChunk((void *)chunk, user_requested_size); 315 if (!m) 316 return; 317 uptr user_beg = ((uptr)m) + kChunkHeaderSize; 318 u64 c = GetShadowCount(user_beg, user_requested_size); 319 long curtime = GetTimestamp(); 320 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 321 m->cpu_id, GetCpuId()); 322 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 323 }, 324 this); 325 } 326 327 void InitLinkerInitialized() { 328 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 329 allocator.InitLinkerInitialized( 330 common_flags()->allocator_release_to_os_interval_ms); 331 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 332 ? common_flags()->max_allocation_size_mb 333 << 20 334 : kMaxAllowedMallocSize; 335 } 336 337 // -------------------- Allocation/Deallocation routines --------------- 338 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 339 AllocType alloc_type) { 340 if (UNLIKELY(!memprof_inited)) 341 MemprofInitFromRtl(); 342 if (UNLIKELY(IsRssLimitExceeded())) { 343 if (AllocatorMayReturnNull()) 344 return nullptr; 345 ReportRssLimitExceeded(stack); 346 } 347 CHECK(stack); 348 const uptr min_alignment = MEMPROF_ALIGNMENT; 349 if (alignment < min_alignment) 350 alignment = min_alignment; 351 if (size == 0) { 352 // We'd be happy to avoid allocating memory for zero-size requests, but 353 // some programs/tests depend on this behavior and assume that malloc 354 // would not return NULL even for zero-size allocations. Moreover, it 355 // looks like operator new should never return NULL, and results of 356 // consecutive "new" calls must be different even if the allocated size 357 // is zero. 358 size = 1; 359 } 360 CHECK(IsPowerOfTwo(alignment)); 361 uptr rounded_size = RoundUpTo(size, alignment); 362 uptr needed_size = rounded_size + kChunkHeaderSize; 363 if (alignment > min_alignment) 364 needed_size += alignment; 365 CHECK(IsAligned(needed_size, min_alignment)); 366 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 367 size > max_user_defined_malloc_size) { 368 if (AllocatorMayReturnNull()) { 369 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 370 return nullptr; 371 } 372 uptr malloc_limit = 373 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 374 ReportAllocationSizeTooBig(size, malloc_limit, stack); 375 } 376 377 MemprofThread *t = GetCurrentThread(); 378 void *allocated; 379 if (t) { 380 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 381 allocated = allocator.Allocate(cache, needed_size, 8); 382 } else { 383 SpinMutexLock l(&fallback_mutex); 384 AllocatorCache *cache = &fallback_allocator_cache; 385 allocated = allocator.Allocate(cache, needed_size, 8); 386 } 387 if (UNLIKELY(!allocated)) { 388 SetAllocatorOutOfMemory(); 389 if (AllocatorMayReturnNull()) 390 return nullptr; 391 ReportOutOfMemory(size, stack); 392 } 393 394 uptr alloc_beg = reinterpret_cast<uptr>(allocated); 395 uptr alloc_end = alloc_beg + needed_size; 396 uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 397 uptr user_beg = beg_plus_header; 398 if (!IsAligned(user_beg, alignment)) 399 user_beg = RoundUpTo(user_beg, alignment); 400 uptr user_end = user_beg + size; 401 CHECK_LE(user_end, alloc_end); 402 uptr chunk_beg = user_beg - kChunkHeaderSize; 403 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 404 m->from_memalign = alloc_beg != chunk_beg; 405 CHECK(size); 406 407 m->cpu_id = GetCpuId(); 408 m->timestamp_ms = GetTimestamp(); 409 m->alloc_context_id = StackDepotPut(*stack); 410 411 uptr size_rounded_down_to_granularity = 412 RoundDownTo(size, SHADOW_GRANULARITY); 413 if (size_rounded_down_to_granularity) 414 ClearShadow(user_beg, size_rounded_down_to_granularity); 415 416 MemprofStats &thread_stats = GetCurrentThreadStats(); 417 thread_stats.mallocs++; 418 thread_stats.malloced += size; 419 thread_stats.malloced_overhead += needed_size - size; 420 if (needed_size > SizeClassMap::kMaxSize) 421 thread_stats.malloc_large++; 422 else 423 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 424 425 void *res = reinterpret_cast<void *>(user_beg); 426 atomic_store(&m->user_requested_size, size, memory_order_release); 427 if (alloc_beg != chunk_beg) { 428 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 429 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 430 } 431 RunMallocHooks(res, size); 432 return res; 433 } 434 435 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 436 BufferedStackTrace *stack, AllocType alloc_type) { 437 uptr p = reinterpret_cast<uptr>(ptr); 438 if (p == 0) 439 return; 440 441 RunFreeHooks(ptr); 442 443 uptr chunk_beg = p - kChunkHeaderSize; 444 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 445 446 u64 user_requested_size = 447 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 448 if (memprof_inited && memprof_init_done && 449 atomic_load_relaxed(&constructed) && 450 !atomic_load_relaxed(&destructing)) { 451 u64 c = GetShadowCount(p, user_requested_size); 452 long curtime = GetTimestamp(); 453 454 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 455 m->cpu_id, GetCpuId()); 456 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 457 } 458 459 MemprofStats &thread_stats = GetCurrentThreadStats(); 460 thread_stats.frees++; 461 thread_stats.freed += user_requested_size; 462 463 void *alloc_beg = m->AllocBeg(); 464 if (alloc_beg != m) { 465 // Clear the magic value, as allocator internals may overwrite the 466 // contents of deallocated chunk, confusing GetMemprofChunk lookup. 467 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 468 } 469 470 MemprofThread *t = GetCurrentThread(); 471 if (t) { 472 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 473 allocator.Deallocate(cache, alloc_beg); 474 } else { 475 SpinMutexLock l(&fallback_mutex); 476 AllocatorCache *cache = &fallback_allocator_cache; 477 allocator.Deallocate(cache, alloc_beg); 478 } 479 } 480 481 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 482 CHECK(old_ptr && new_size); 483 uptr p = reinterpret_cast<uptr>(old_ptr); 484 uptr chunk_beg = p - kChunkHeaderSize; 485 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 486 487 MemprofStats &thread_stats = GetCurrentThreadStats(); 488 thread_stats.reallocs++; 489 thread_stats.realloced += new_size; 490 491 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 492 if (new_ptr) { 493 CHECK_NE(REAL(memcpy), nullptr); 494 uptr memcpy_size = Min(new_size, m->UsedSize()); 495 REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 496 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 497 } 498 return new_ptr; 499 } 500 501 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 502 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 503 if (AllocatorMayReturnNull()) 504 return nullptr; 505 ReportCallocOverflow(nmemb, size, stack); 506 } 507 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 508 // If the memory comes from the secondary allocator no need to clear it 509 // as it comes directly from mmap. 510 if (ptr && allocator.FromPrimary(ptr)) 511 REAL(memset)(ptr, 0, nmemb * size); 512 return ptr; 513 } 514 515 void CommitBack(MemprofThreadLocalMallocStorage *ms, 516 BufferedStackTrace *stack) { 517 AllocatorCache *ac = GetAllocatorCache(ms); 518 allocator.SwallowCache(ac); 519 } 520 521 // -------------------------- Chunk lookup ---------------------- 522 523 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 524 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 525 if (!alloc_beg) 526 return nullptr; 527 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 528 if (!p) { 529 if (!allocator.FromPrimary(alloc_beg)) 530 return nullptr; 531 p = reinterpret_cast<MemprofChunk *>(alloc_beg); 532 } 533 // The size is reset to 0 on deallocation (and a min of 1 on 534 // allocation). 535 user_requested_size = 536 atomic_load(&p->user_requested_size, memory_order_acquire); 537 if (user_requested_size) 538 return p; 539 return nullptr; 540 } 541 542 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 543 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 544 return GetMemprofChunk(alloc_beg, user_requested_size); 545 } 546 547 uptr AllocationSize(uptr p) { 548 u64 user_requested_size; 549 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 550 if (!m) 551 return 0; 552 if (m->Beg() != p) 553 return 0; 554 return user_requested_size; 555 } 556 557 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); } 558 559 void PrintStats() { allocator.PrintStats(); } 560 561 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 562 allocator.ForceLock(); 563 fallback_mutex.Lock(); 564 } 565 566 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 567 fallback_mutex.Unlock(); 568 allocator.ForceUnlock(); 569 } 570 }; 571 572 static Allocator instance(LINKER_INITIALIZED); 573 574 static MemprofAllocator &get_allocator() { return instance.allocator; } 575 576 void InitializeAllocator() { instance.InitLinkerInitialized(); } 577 578 void MemprofThreadLocalMallocStorage::CommitBack() { 579 GET_STACK_TRACE_MALLOC; 580 instance.CommitBack(this, &stack); 581 } 582 583 void PrintInternalAllocatorStats() { instance.PrintStats(); } 584 585 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 586 instance.Deallocate(ptr, 0, 0, stack, alloc_type); 587 } 588 589 void memprof_delete(void *ptr, uptr size, uptr alignment, 590 BufferedStackTrace *stack, AllocType alloc_type) { 591 instance.Deallocate(ptr, size, alignment, stack, alloc_type); 592 } 593 594 void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 595 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 596 } 597 598 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 599 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 600 } 601 602 void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 603 BufferedStackTrace *stack) { 604 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 605 errno = errno_ENOMEM; 606 if (AllocatorMayReturnNull()) 607 return nullptr; 608 ReportReallocArrayOverflow(nmemb, size, stack); 609 } 610 return memprof_realloc(p, nmemb * size, stack); 611 } 612 613 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 614 if (!p) 615 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 616 if (size == 0) { 617 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 618 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 619 return nullptr; 620 } 621 // Allocate a size of 1 if we shouldn't free() on Realloc to 0 622 size = 1; 623 } 624 return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 625 } 626 627 void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 628 return SetErrnoOnNull( 629 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 630 } 631 632 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 633 uptr PageSize = GetPageSizeCached(); 634 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 635 errno = errno_ENOMEM; 636 if (AllocatorMayReturnNull()) 637 return nullptr; 638 ReportPvallocOverflow(size, stack); 639 } 640 // pvalloc(0) should allocate one page. 641 size = size ? RoundUpTo(size, PageSize) : PageSize; 642 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 643 } 644 645 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 646 AllocType alloc_type) { 647 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 648 errno = errno_EINVAL; 649 if (AllocatorMayReturnNull()) 650 return nullptr; 651 ReportInvalidAllocationAlignment(alignment, stack); 652 } 653 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 654 } 655 656 void *memprof_aligned_alloc(uptr alignment, uptr size, 657 BufferedStackTrace *stack) { 658 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 659 errno = errno_EINVAL; 660 if (AllocatorMayReturnNull()) 661 return nullptr; 662 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 663 } 664 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 665 } 666 667 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 668 BufferedStackTrace *stack) { 669 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 670 if (AllocatorMayReturnNull()) 671 return errno_EINVAL; 672 ReportInvalidPosixMemalignAlignment(alignment, stack); 673 } 674 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 675 if (UNLIKELY(!ptr)) 676 // OOM error is already taken care of by Allocate. 677 return errno_ENOMEM; 678 CHECK(IsAligned((uptr)ptr, alignment)); 679 *memptr = ptr; 680 return 0; 681 } 682 683 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 684 if (!ptr) 685 return 0; 686 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 687 return usable_size; 688 } 689 690 } // namespace __memprof 691 692 // ---------------------- Interface ---------------- {{{1 693 using namespace __memprof; 694 695 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 696 697 int __sanitizer_get_ownership(const void *p) { 698 return memprof_malloc_usable_size(p, 0, 0) != 0; 699 } 700 701 uptr __sanitizer_get_allocated_size(const void *p) { 702 return memprof_malloc_usable_size(p, 0, 0); 703 } 704 705 int __memprof_profile_dump() { 706 instance.FinishAndWrite(); 707 // In the future we may want to return non-zero if there are any errors 708 // detected during the dumping process. 709 return 0; 710 } 711