1 //===-- memprof_allocator.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of MemProfiler, a memory profiler. 10 // 11 // Implementation of MemProf's memory allocator, which uses the allocator 12 // from sanitizer_common. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "memprof_allocator.h" 17 #include "memprof_mapping.h" 18 #include "memprof_mibmap.h" 19 #include "memprof_rawprofile.h" 20 #include "memprof_stack.h" 21 #include "memprof_thread.h" 22 #include "profile/MemProfData.inc" 23 #include "sanitizer_common/sanitizer_allocator_checks.h" 24 #include "sanitizer_common/sanitizer_allocator_interface.h" 25 #include "sanitizer_common/sanitizer_allocator_report.h" 26 #include "sanitizer_common/sanitizer_array_ref.h" 27 #include "sanitizer_common/sanitizer_common.h" 28 #include "sanitizer_common/sanitizer_errno.h" 29 #include "sanitizer_common/sanitizer_file.h" 30 #include "sanitizer_common/sanitizer_flags.h" 31 #include "sanitizer_common/sanitizer_internal_defs.h" 32 #include "sanitizer_common/sanitizer_stackdepot.h" 33 34 #include <sched.h> 35 #include <time.h> 36 37 namespace __memprof { 38 namespace { 39 using ::llvm::memprof::MemInfoBlock; 40 41 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { 42 u64 p; 43 44 if (print_terse) { 45 p = M.TotalSize * 100 / M.AllocCount; 46 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, 47 M.MinSize, M.MaxSize); 48 p = M.TotalAccessCount * 100 / M.AllocCount; 49 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, 50 M.MaxAccessCount); 51 p = M.TotalLifetime * 100 / M.AllocCount; 52 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, 53 M.MaxLifetime); 54 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, 55 M.NumSameAllocCpu, M.NumSameDeallocCpu); 56 } else { 57 p = M.TotalSize * 100 / M.AllocCount; 58 Printf("Memory allocation stack id = %llu\n", id); 59 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", 60 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); 61 p = M.TotalAccessCount * 100 / M.AllocCount; 62 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, 63 p % 100, M.MinAccessCount, M.MaxAccessCount); 64 p = M.TotalLifetime * 100 / M.AllocCount; 65 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, 66 p % 100, M.MinLifetime, M.MaxLifetime); 67 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " 68 "cpu: %u, num same dealloc_cpu: %u\n", 69 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, 70 M.NumSameDeallocCpu); 71 } 72 } 73 } // namespace 74 75 static int GetCpuId(void) { 76 // _memprof_preinit is called via the preinit_array, which subsequently calls 77 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 78 // will seg fault as the address of __vdso_getcpu will be null. 79 if (!memprof_inited) 80 return -1; 81 return sched_getcpu(); 82 } 83 84 // Compute the timestamp in ms. 85 static int GetTimestamp(void) { 86 // timespec_get will segfault if called from dl_init 87 if (!memprof_timestamp_inited) { 88 // By returning 0, this will be effectively treated as being 89 // timestamped at memprof init time (when memprof_init_timestamp_s 90 // is initialized). 91 return 0; 92 } 93 timespec ts; 94 clock_gettime(CLOCK_REALTIME, &ts); 95 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 96 } 97 98 static MemprofAllocator &get_allocator(); 99 100 // The memory chunk allocated from the underlying allocator looks like this: 101 // H H U U U U U U 102 // H -- ChunkHeader (32 bytes) 103 // U -- user memory. 104 105 // If there is left padding before the ChunkHeader (due to use of memalign), 106 // we store a magic value in the first uptr word of the memory block and 107 // store the address of ChunkHeader in the next uptr. 108 // M B L L L L L L L L L H H U U U U U U 109 // | ^ 110 // ---------------------| 111 // M -- magic value kAllocBegMagic 112 // B -- address of ChunkHeader pointing to the first 'H' 113 114 constexpr uptr kMaxAllowedMallocBits = 40; 115 116 // Should be no more than 32-bytes 117 struct ChunkHeader { 118 // 1-st 4 bytes. 119 u32 alloc_context_id; 120 // 2-nd 4 bytes 121 u32 cpu_id; 122 // 3-rd 4 bytes 123 u32 timestamp_ms; 124 // 4-th 4 bytes 125 // Note only 1 bit is needed for this flag if we need space in the future for 126 // more fields. 127 u32 from_memalign; 128 // 5-th and 6-th 4 bytes 129 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 130 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 131 // more fields. 132 atomic_uint64_t user_requested_size; 133 // 23 bits available 134 // 7-th and 8-th 4 bytes 135 u64 data_type_id; // TODO: hash of type name 136 }; 137 138 static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 139 COMPILER_CHECK(kChunkHeaderSize == 32); 140 141 struct MemprofChunk : ChunkHeader { 142 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 143 uptr UsedSize() { 144 return atomic_load(&user_requested_size, memory_order_relaxed); 145 } 146 void *AllocBeg() { 147 if (from_memalign) 148 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 149 return reinterpret_cast<void *>(this); 150 } 151 }; 152 153 class LargeChunkHeader { 154 static constexpr uptr kAllocBegMagic = 155 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 156 atomic_uintptr_t magic; 157 MemprofChunk *chunk_header; 158 159 public: 160 MemprofChunk *Get() const { 161 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 162 ? chunk_header 163 : nullptr; 164 } 165 166 void Set(MemprofChunk *p) { 167 if (p) { 168 chunk_header = p; 169 atomic_store(&magic, kAllocBegMagic, memory_order_release); 170 return; 171 } 172 173 uptr old = kAllocBegMagic; 174 if (!atomic_compare_exchange_strong(&magic, &old, 0, 175 memory_order_release)) { 176 CHECK_EQ(old, kAllocBegMagic); 177 } 178 } 179 }; 180 181 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 182 // Since memprof's mapping is compacting, the shadow chunk may be 183 // not page-aligned, so we only flush the page-aligned portion. 184 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 185 } 186 187 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 188 // Statistics. 189 MemprofStats &thread_stats = GetCurrentThreadStats(); 190 thread_stats.mmaps++; 191 thread_stats.mmaped += size; 192 } 193 194 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 195 // We are about to unmap a chunk of user memory. 196 // Mark the corresponding shadow memory as not needed. 197 FlushUnneededMemProfShadowMemory(p, size); 198 // Statistics. 199 MemprofStats &thread_stats = GetCurrentThreadStats(); 200 thread_stats.munmaps++; 201 thread_stats.munmaped += size; 202 } 203 204 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 205 CHECK(ms); 206 return &ms->allocator_cache; 207 } 208 209 // Accumulates the access count from the shadow for the given pointer and size. 210 u64 GetShadowCount(uptr p, u32 size) { 211 u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 212 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 213 u64 count = 0; 214 for (; shadow <= shadow_end; shadow++) 215 count += *shadow; 216 return count; 217 } 218 219 // Clears the shadow counters (when memory is allocated). 220 void ClearShadow(uptr addr, uptr size) { 221 CHECK(AddrIsAlignedByGranularity(addr)); 222 CHECK(AddrIsInMem(addr)); 223 CHECK(AddrIsAlignedByGranularity(addr + size)); 224 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 225 CHECK(REAL(memset)); 226 uptr shadow_beg = MEM_TO_SHADOW(addr); 227 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 228 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 229 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 230 } else { 231 uptr page_size = GetPageSizeCached(); 232 uptr page_beg = RoundUpTo(shadow_beg, page_size); 233 uptr page_end = RoundDownTo(shadow_end, page_size); 234 235 if (page_beg >= page_end) { 236 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 237 } else { 238 if (page_beg != shadow_beg) { 239 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 240 } 241 if (page_end != shadow_end) { 242 REAL(memset)((void *)page_end, 0, shadow_end - page_end); 243 } 244 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 245 } 246 } 247 } 248 249 struct Allocator { 250 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 251 252 MemprofAllocator allocator; 253 StaticSpinMutex fallback_mutex; 254 AllocatorCache fallback_allocator_cache; 255 256 uptr max_user_defined_malloc_size; 257 258 // Holds the mapping of stack ids to MemInfoBlocks. 259 MIBMapTy MIBMap; 260 261 atomic_uint8_t destructing; 262 atomic_uint8_t constructed; 263 bool print_text; 264 265 // ------------------- Initialization ------------------------ 266 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 267 atomic_store_relaxed(&destructing, 0); 268 atomic_store_relaxed(&constructed, 1); 269 } 270 271 ~Allocator() { 272 atomic_store_relaxed(&destructing, 1); 273 FinishAndWrite(); 274 } 275 276 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 277 void *Arg) { 278 SpinMutexLock l(&Value->mutex); 279 Print(Value->mib, Key, bool(Arg)); 280 } 281 282 void FinishAndWrite() { 283 if (print_text && common_flags()->print_module_map) 284 DumpProcessMap(); 285 286 allocator.ForceLock(); 287 288 InsertLiveBlocks(); 289 if (print_text) { 290 if (!flags()->print_terse) 291 Printf("Recorded MIBs (incl. live on exit):\n"); 292 MIBMap.ForEach(PrintCallback, 293 reinterpret_cast<void *>(flags()->print_terse)); 294 StackDepotPrintAll(); 295 } else { 296 // Serialize the contents to a raw profile. Format documented in 297 // memprof_rawprofile.h. 298 char *Buffer = nullptr; 299 300 __sanitizer::ListOfModules List; 301 List.init(); 302 ArrayRef<LoadedModule> Modules(List.begin(), List.end()); 303 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer); 304 CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 305 report_file.Write(Buffer, BytesSerialized); 306 } 307 308 allocator.ForceUnlock(); 309 } 310 311 // Inserts any blocks which have been allocated but not yet deallocated. 312 void InsertLiveBlocks() { 313 allocator.ForEachChunk( 314 [](uptr chunk, void *alloc) { 315 u64 user_requested_size; 316 Allocator *A = (Allocator *)alloc; 317 MemprofChunk *m = 318 A->GetMemprofChunk((void *)chunk, user_requested_size); 319 if (!m) 320 return; 321 uptr user_beg = ((uptr)m) + kChunkHeaderSize; 322 u64 c = GetShadowCount(user_beg, user_requested_size); 323 long curtime = GetTimestamp(); 324 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 325 m->cpu_id, GetCpuId()); 326 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 327 }, 328 this); 329 } 330 331 void InitLinkerInitialized() { 332 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 333 allocator.InitLinkerInitialized( 334 common_flags()->allocator_release_to_os_interval_ms); 335 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 336 ? common_flags()->max_allocation_size_mb 337 << 20 338 : kMaxAllowedMallocSize; 339 } 340 341 // -------------------- Allocation/Deallocation routines --------------- 342 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 343 AllocType alloc_type) { 344 if (UNLIKELY(!memprof_inited)) 345 MemprofInitFromRtl(); 346 if (UNLIKELY(IsRssLimitExceeded())) { 347 if (AllocatorMayReturnNull()) 348 return nullptr; 349 ReportRssLimitExceeded(stack); 350 } 351 CHECK(stack); 352 const uptr min_alignment = MEMPROF_ALIGNMENT; 353 if (alignment < min_alignment) 354 alignment = min_alignment; 355 if (size == 0) { 356 // We'd be happy to avoid allocating memory for zero-size requests, but 357 // some programs/tests depend on this behavior and assume that malloc 358 // would not return NULL even for zero-size allocations. Moreover, it 359 // looks like operator new should never return NULL, and results of 360 // consecutive "new" calls must be different even if the allocated size 361 // is zero. 362 size = 1; 363 } 364 CHECK(IsPowerOfTwo(alignment)); 365 uptr rounded_size = RoundUpTo(size, alignment); 366 uptr needed_size = rounded_size + kChunkHeaderSize; 367 if (alignment > min_alignment) 368 needed_size += alignment; 369 CHECK(IsAligned(needed_size, min_alignment)); 370 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 371 size > max_user_defined_malloc_size) { 372 if (AllocatorMayReturnNull()) { 373 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 374 return nullptr; 375 } 376 uptr malloc_limit = 377 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 378 ReportAllocationSizeTooBig(size, malloc_limit, stack); 379 } 380 381 MemprofThread *t = GetCurrentThread(); 382 void *allocated; 383 if (t) { 384 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 385 allocated = allocator.Allocate(cache, needed_size, 8); 386 } else { 387 SpinMutexLock l(&fallback_mutex); 388 AllocatorCache *cache = &fallback_allocator_cache; 389 allocated = allocator.Allocate(cache, needed_size, 8); 390 } 391 if (UNLIKELY(!allocated)) { 392 SetAllocatorOutOfMemory(); 393 if (AllocatorMayReturnNull()) 394 return nullptr; 395 ReportOutOfMemory(size, stack); 396 } 397 398 uptr alloc_beg = reinterpret_cast<uptr>(allocated); 399 uptr alloc_end = alloc_beg + needed_size; 400 uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 401 uptr user_beg = beg_plus_header; 402 if (!IsAligned(user_beg, alignment)) 403 user_beg = RoundUpTo(user_beg, alignment); 404 uptr user_end = user_beg + size; 405 CHECK_LE(user_end, alloc_end); 406 uptr chunk_beg = user_beg - kChunkHeaderSize; 407 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 408 m->from_memalign = alloc_beg != chunk_beg; 409 CHECK(size); 410 411 m->cpu_id = GetCpuId(); 412 m->timestamp_ms = GetTimestamp(); 413 m->alloc_context_id = StackDepotPut(*stack); 414 415 uptr size_rounded_down_to_granularity = 416 RoundDownTo(size, SHADOW_GRANULARITY); 417 if (size_rounded_down_to_granularity) 418 ClearShadow(user_beg, size_rounded_down_to_granularity); 419 420 MemprofStats &thread_stats = GetCurrentThreadStats(); 421 thread_stats.mallocs++; 422 thread_stats.malloced += size; 423 thread_stats.malloced_overhead += needed_size - size; 424 if (needed_size > SizeClassMap::kMaxSize) 425 thread_stats.malloc_large++; 426 else 427 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 428 429 void *res = reinterpret_cast<void *>(user_beg); 430 atomic_store(&m->user_requested_size, size, memory_order_release); 431 if (alloc_beg != chunk_beg) { 432 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 433 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 434 } 435 RunMallocHooks(res, size); 436 return res; 437 } 438 439 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 440 BufferedStackTrace *stack, AllocType alloc_type) { 441 uptr p = reinterpret_cast<uptr>(ptr); 442 if (p == 0) 443 return; 444 445 RunFreeHooks(ptr); 446 447 uptr chunk_beg = p - kChunkHeaderSize; 448 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 449 450 u64 user_requested_size = 451 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 452 if (memprof_inited && atomic_load_relaxed(&constructed) && 453 !atomic_load_relaxed(&destructing)) { 454 u64 c = GetShadowCount(p, user_requested_size); 455 long curtime = GetTimestamp(); 456 457 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime, 458 m->cpu_id, GetCpuId()); 459 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 460 } 461 462 MemprofStats &thread_stats = GetCurrentThreadStats(); 463 thread_stats.frees++; 464 thread_stats.freed += user_requested_size; 465 466 void *alloc_beg = m->AllocBeg(); 467 if (alloc_beg != m) { 468 // Clear the magic value, as allocator internals may overwrite the 469 // contents of deallocated chunk, confusing GetMemprofChunk lookup. 470 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 471 } 472 473 MemprofThread *t = GetCurrentThread(); 474 if (t) { 475 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 476 allocator.Deallocate(cache, alloc_beg); 477 } else { 478 SpinMutexLock l(&fallback_mutex); 479 AllocatorCache *cache = &fallback_allocator_cache; 480 allocator.Deallocate(cache, alloc_beg); 481 } 482 } 483 484 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 485 CHECK(old_ptr && new_size); 486 uptr p = reinterpret_cast<uptr>(old_ptr); 487 uptr chunk_beg = p - kChunkHeaderSize; 488 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 489 490 MemprofStats &thread_stats = GetCurrentThreadStats(); 491 thread_stats.reallocs++; 492 thread_stats.realloced += new_size; 493 494 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 495 if (new_ptr) { 496 CHECK_NE(REAL(memcpy), nullptr); 497 uptr memcpy_size = Min(new_size, m->UsedSize()); 498 REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 499 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 500 } 501 return new_ptr; 502 } 503 504 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 505 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 506 if (AllocatorMayReturnNull()) 507 return nullptr; 508 ReportCallocOverflow(nmemb, size, stack); 509 } 510 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 511 // If the memory comes from the secondary allocator no need to clear it 512 // as it comes directly from mmap. 513 if (ptr && allocator.FromPrimary(ptr)) 514 REAL(memset)(ptr, 0, nmemb * size); 515 return ptr; 516 } 517 518 void CommitBack(MemprofThreadLocalMallocStorage *ms, 519 BufferedStackTrace *stack) { 520 AllocatorCache *ac = GetAllocatorCache(ms); 521 allocator.SwallowCache(ac); 522 } 523 524 // -------------------------- Chunk lookup ---------------------- 525 526 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 527 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 528 if (!alloc_beg) 529 return nullptr; 530 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 531 if (!p) { 532 if (!allocator.FromPrimary(alloc_beg)) 533 return nullptr; 534 p = reinterpret_cast<MemprofChunk *>(alloc_beg); 535 } 536 // The size is reset to 0 on deallocation (and a min of 1 on 537 // allocation). 538 user_requested_size = 539 atomic_load(&p->user_requested_size, memory_order_acquire); 540 if (user_requested_size) 541 return p; 542 return nullptr; 543 } 544 545 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 546 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 547 return GetMemprofChunk(alloc_beg, user_requested_size); 548 } 549 550 uptr AllocationSize(uptr p) { 551 u64 user_requested_size; 552 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 553 if (!m) 554 return 0; 555 if (m->Beg() != p) 556 return 0; 557 return user_requested_size; 558 } 559 560 uptr AllocationSizeFast(uptr p) { 561 return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize(); 562 } 563 564 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); } 565 566 void PrintStats() { allocator.PrintStats(); } 567 568 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 569 allocator.ForceLock(); 570 fallback_mutex.Lock(); 571 } 572 573 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 574 fallback_mutex.Unlock(); 575 allocator.ForceUnlock(); 576 } 577 }; 578 579 static Allocator instance(LINKER_INITIALIZED); 580 581 static MemprofAllocator &get_allocator() { return instance.allocator; } 582 583 void InitializeAllocator() { instance.InitLinkerInitialized(); } 584 585 void MemprofThreadLocalMallocStorage::CommitBack() { 586 GET_STACK_TRACE_MALLOC; 587 instance.CommitBack(this, &stack); 588 } 589 590 void PrintInternalAllocatorStats() { instance.PrintStats(); } 591 592 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 593 instance.Deallocate(ptr, 0, 0, stack, alloc_type); 594 } 595 596 void memprof_delete(void *ptr, uptr size, uptr alignment, 597 BufferedStackTrace *stack, AllocType alloc_type) { 598 instance.Deallocate(ptr, size, alignment, stack, alloc_type); 599 } 600 601 void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 602 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 603 } 604 605 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 606 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 607 } 608 609 void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 610 BufferedStackTrace *stack) { 611 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 612 errno = errno_ENOMEM; 613 if (AllocatorMayReturnNull()) 614 return nullptr; 615 ReportReallocArrayOverflow(nmemb, size, stack); 616 } 617 return memprof_realloc(p, nmemb * size, stack); 618 } 619 620 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 621 if (!p) 622 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 623 if (size == 0) { 624 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 625 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 626 return nullptr; 627 } 628 // Allocate a size of 1 if we shouldn't free() on Realloc to 0 629 size = 1; 630 } 631 return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 632 } 633 634 void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 635 return SetErrnoOnNull( 636 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 637 } 638 639 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 640 uptr PageSize = GetPageSizeCached(); 641 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 642 errno = errno_ENOMEM; 643 if (AllocatorMayReturnNull()) 644 return nullptr; 645 ReportPvallocOverflow(size, stack); 646 } 647 // pvalloc(0) should allocate one page. 648 size = size ? RoundUpTo(size, PageSize) : PageSize; 649 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 650 } 651 652 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 653 AllocType alloc_type) { 654 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 655 errno = errno_EINVAL; 656 if (AllocatorMayReturnNull()) 657 return nullptr; 658 ReportInvalidAllocationAlignment(alignment, stack); 659 } 660 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 661 } 662 663 void *memprof_aligned_alloc(uptr alignment, uptr size, 664 BufferedStackTrace *stack) { 665 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 666 errno = errno_EINVAL; 667 if (AllocatorMayReturnNull()) 668 return nullptr; 669 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 670 } 671 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 672 } 673 674 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 675 BufferedStackTrace *stack) { 676 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 677 if (AllocatorMayReturnNull()) 678 return errno_EINVAL; 679 ReportInvalidPosixMemalignAlignment(alignment, stack); 680 } 681 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 682 if (UNLIKELY(!ptr)) 683 // OOM error is already taken care of by Allocate. 684 return errno_ENOMEM; 685 CHECK(IsAligned((uptr)ptr, alignment)); 686 *memptr = ptr; 687 return 0; 688 } 689 690 static const void *memprof_malloc_begin(const void *p) { 691 u64 user_requested_size; 692 MemprofChunk *m = 693 instance.GetMemprofChunkByAddr((uptr)p, user_requested_size); 694 if (!m) 695 return nullptr; 696 if (user_requested_size == 0) 697 return nullptr; 698 699 return (const void *)m->Beg(); 700 } 701 702 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { 703 if (!ptr) 704 return 0; 705 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 706 return usable_size; 707 } 708 709 } // namespace __memprof 710 711 // ---------------------- Interface ---------------- {{{1 712 using namespace __memprof; 713 714 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 715 716 int __sanitizer_get_ownership(const void *p) { 717 return memprof_malloc_usable_size(p, 0, 0) != 0; 718 } 719 720 const void *__sanitizer_get_allocated_begin(const void *p) { 721 return memprof_malloc_begin(p); 722 } 723 724 uptr __sanitizer_get_allocated_size(const void *p) { 725 return memprof_malloc_usable_size(p, 0, 0); 726 } 727 728 uptr __sanitizer_get_allocated_size_fast(const void *p) { 729 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 730 uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p)); 731 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 732 return ret; 733 } 734 735 int __memprof_profile_dump() { 736 instance.FinishAndWrite(); 737 // In the future we may want to return non-zero if there are any errors 738 // detected during the dumping process. 739 return 0; 740 } 741