xref: /freebsd/contrib/llvm-project/compiler-rt/lib/lsan/lsan_allocator.cpp (revision c8e7f78a3d28ff6e6223ed136ada8e1e2f34965e)
1 //=-- lsan_allocator.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // See lsan_allocator.h for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "lsan_allocator.h"
15 
16 #include "sanitizer_common/sanitizer_allocator.h"
17 #include "sanitizer_common/sanitizer_allocator_checks.h"
18 #include "sanitizer_common/sanitizer_allocator_interface.h"
19 #include "sanitizer_common/sanitizer_allocator_report.h"
20 #include "sanitizer_common/sanitizer_errno.h"
21 #include "sanitizer_common/sanitizer_internal_defs.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "lsan_common.h"
25 
26 extern "C" void *memset(void *ptr, int value, uptr num);
27 
28 namespace __lsan {
29 #if defined(__i386__) || defined(__arm__)
30 static const uptr kMaxAllowedMallocSize = 1ULL << 30;
31 #elif defined(__mips64) || defined(__aarch64__)
32 static const uptr kMaxAllowedMallocSize = 4ULL << 30;
33 #else
34 static const uptr kMaxAllowedMallocSize = 8ULL << 30;
35 #endif
36 
37 static Allocator allocator;
38 
39 static uptr max_malloc_size;
40 
41 void InitializeAllocator() {
42   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
43   allocator.InitLinkerInitialized(
44       common_flags()->allocator_release_to_os_interval_ms);
45   if (common_flags()->max_allocation_size_mb)
46     max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
47                           kMaxAllowedMallocSize);
48   else
49     max_malloc_size = kMaxAllowedMallocSize;
50 }
51 
52 void AllocatorThreadStart() { allocator.InitCache(GetAllocatorCache()); }
53 
54 void AllocatorThreadFinish() {
55   allocator.SwallowCache(GetAllocatorCache());
56   allocator.DestroyCache(GetAllocatorCache());
57 }
58 
59 static ChunkMetadata *Metadata(const void *p) {
60   return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
61 }
62 
63 static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
64   if (!p) return;
65   ChunkMetadata *m = Metadata(p);
66   CHECK(m);
67   m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
68   m->stack_trace_id = StackDepotPut(stack);
69   m->requested_size = size;
70   atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
71   RunMallocHooks(p, size);
72 }
73 
74 static void RegisterDeallocation(void *p) {
75   if (!p) return;
76   ChunkMetadata *m = Metadata(p);
77   CHECK(m);
78   RunFreeHooks(p);
79   atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
80 }
81 
82 static void *ReportAllocationSizeTooBig(uptr size, const StackTrace &stack) {
83   if (AllocatorMayReturnNull()) {
84     Report("WARNING: LeakSanitizer failed to allocate 0x%zx bytes\n", size);
85     return nullptr;
86   }
87   ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
88 }
89 
90 void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
91                bool cleared) {
92   if (size == 0)
93     size = 1;
94   if (size > max_malloc_size)
95     return ReportAllocationSizeTooBig(size, stack);
96   if (UNLIKELY(IsRssLimitExceeded())) {
97     if (AllocatorMayReturnNull())
98       return nullptr;
99     ReportRssLimitExceeded(&stack);
100   }
101   void *p = allocator.Allocate(GetAllocatorCache(), size, alignment);
102   if (UNLIKELY(!p)) {
103     SetAllocatorOutOfMemory();
104     if (AllocatorMayReturnNull())
105       return nullptr;
106     ReportOutOfMemory(size, &stack);
107   }
108   // Do not rely on the allocator to clear the memory (it's slow).
109   if (cleared && allocator.FromPrimary(p))
110     memset(p, 0, size);
111   RegisterAllocation(stack, p, size);
112   return p;
113 }
114 
115 static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) {
116   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
117     if (AllocatorMayReturnNull())
118       return nullptr;
119     ReportCallocOverflow(nmemb, size, &stack);
120   }
121   size *= nmemb;
122   return Allocate(stack, size, 1, true);
123 }
124 
125 void Deallocate(void *p) {
126   RegisterDeallocation(p);
127   allocator.Deallocate(GetAllocatorCache(), p);
128 }
129 
130 void *Reallocate(const StackTrace &stack, void *p, uptr new_size,
131                  uptr alignment) {
132   if (new_size > max_malloc_size) {
133     ReportAllocationSizeTooBig(new_size, stack);
134     return nullptr;
135   }
136   RegisterDeallocation(p);
137   void *new_p =
138       allocator.Reallocate(GetAllocatorCache(), p, new_size, alignment);
139   if (new_p)
140     RegisterAllocation(stack, new_p, new_size);
141   else if (new_size != 0)
142     RegisterAllocation(stack, p, new_size);
143   return new_p;
144 }
145 
146 void GetAllocatorCacheRange(uptr *begin, uptr *end) {
147   *begin = (uptr)GetAllocatorCache();
148   *end = *begin + sizeof(AllocatorCache);
149 }
150 
151 static const void *GetMallocBegin(const void *p) {
152   if (!p)
153     return nullptr;
154   void *beg = allocator.GetBlockBegin(p);
155   if (!beg)
156     return nullptr;
157   ChunkMetadata *m = Metadata(beg);
158   if (!m)
159     return nullptr;
160   if (!m->allocated)
161     return nullptr;
162   if (m->requested_size == 0)
163     return nullptr;
164   return (const void *)beg;
165 }
166 
167 uptr GetMallocUsableSize(const void *p) {
168   if (!p)
169     return 0;
170   ChunkMetadata *m = Metadata(p);
171   if (!m) return 0;
172   return m->requested_size;
173 }
174 
175 uptr GetMallocUsableSizeFast(const void *p) {
176   return Metadata(p)->requested_size;
177 }
178 
179 int lsan_posix_memalign(void **memptr, uptr alignment, uptr size,
180                         const StackTrace &stack) {
181   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
182     if (AllocatorMayReturnNull())
183       return errno_EINVAL;
184     ReportInvalidPosixMemalignAlignment(alignment, &stack);
185   }
186   void *ptr = Allocate(stack, size, alignment, kAlwaysClearMemory);
187   if (UNLIKELY(!ptr))
188     // OOM error is already taken care of by Allocate.
189     return errno_ENOMEM;
190   CHECK(IsAligned((uptr)ptr, alignment));
191   *memptr = ptr;
192   return 0;
193 }
194 
195 void *lsan_aligned_alloc(uptr alignment, uptr size, const StackTrace &stack) {
196   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
197     errno = errno_EINVAL;
198     if (AllocatorMayReturnNull())
199       return nullptr;
200     ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
201   }
202   return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
203 }
204 
205 void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) {
206   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
207     errno = errno_EINVAL;
208     if (AllocatorMayReturnNull())
209       return nullptr;
210     ReportInvalidAllocationAlignment(alignment, &stack);
211   }
212   return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
213 }
214 
215 void *lsan_malloc(uptr size, const StackTrace &stack) {
216   return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory));
217 }
218 
219 void lsan_free(void *p) {
220   Deallocate(p);
221 }
222 
223 void *lsan_realloc(void *p, uptr size, const StackTrace &stack) {
224   return SetErrnoOnNull(Reallocate(stack, p, size, 1));
225 }
226 
227 void *lsan_reallocarray(void *ptr, uptr nmemb, uptr size,
228                         const StackTrace &stack) {
229   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
230     errno = errno_ENOMEM;
231     if (AllocatorMayReturnNull())
232       return nullptr;
233     ReportReallocArrayOverflow(nmemb, size, &stack);
234   }
235   return lsan_realloc(ptr, nmemb * size, stack);
236 }
237 
238 void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) {
239   return SetErrnoOnNull(Calloc(nmemb, size, stack));
240 }
241 
242 void *lsan_valloc(uptr size, const StackTrace &stack) {
243   return SetErrnoOnNull(
244       Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory));
245 }
246 
247 void *lsan_pvalloc(uptr size, const StackTrace &stack) {
248   uptr PageSize = GetPageSizeCached();
249   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
250     errno = errno_ENOMEM;
251     if (AllocatorMayReturnNull())
252       return nullptr;
253     ReportPvallocOverflow(size, &stack);
254   }
255   // pvalloc(0) should allocate one page.
256   size = size ? RoundUpTo(size, PageSize) : PageSize;
257   return SetErrnoOnNull(Allocate(stack, size, PageSize, kAlwaysClearMemory));
258 }
259 
260 uptr lsan_mz_size(const void *p) {
261   return GetMallocUsableSize(p);
262 }
263 
264 ///// Interface to the common LSan module. /////
265 
266 void LockAllocator() {
267   allocator.ForceLock();
268 }
269 
270 void UnlockAllocator() {
271   allocator.ForceUnlock();
272 }
273 
274 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
275   *begin = (uptr)&allocator;
276   *end = *begin + sizeof(allocator);
277 }
278 
279 uptr PointsIntoChunk(void* p) {
280   uptr addr = reinterpret_cast<uptr>(p);
281   uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
282   if (!chunk) return 0;
283   // LargeMmapAllocator considers pointers to the meta-region of a chunk to be
284   // valid, but we don't want that.
285   if (addr < chunk) return 0;
286   ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
287   CHECK(m);
288   if (!m->allocated)
289     return 0;
290   if (addr < chunk + m->requested_size)
291     return chunk;
292   if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr))
293     return chunk;
294   return 0;
295 }
296 
297 uptr GetUserBegin(uptr chunk) {
298   return chunk;
299 }
300 
301 uptr GetUserAddr(uptr chunk) {
302   return chunk;
303 }
304 
305 LsanMetadata::LsanMetadata(uptr chunk) {
306   metadata_ = Metadata(reinterpret_cast<void *>(chunk));
307   CHECK(metadata_);
308 }
309 
310 bool LsanMetadata::allocated() const {
311   return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated;
312 }
313 
314 ChunkTag LsanMetadata::tag() const {
315   return reinterpret_cast<ChunkMetadata *>(metadata_)->tag;
316 }
317 
318 void LsanMetadata::set_tag(ChunkTag value) {
319   reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value;
320 }
321 
322 uptr LsanMetadata::requested_size() const {
323   return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size;
324 }
325 
326 u32 LsanMetadata::stack_trace_id() const {
327   return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
328 }
329 
330 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
331   allocator.ForEachChunk(callback, arg);
332 }
333 
334 IgnoreObjectResult IgnoreObject(const void *p) {
335   void *chunk = allocator.GetBlockBegin(p);
336   if (!chunk || p < chunk) return kIgnoreObjectInvalid;
337   ChunkMetadata *m = Metadata(chunk);
338   CHECK(m);
339   if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) {
340     if (m->tag == kIgnored)
341       return kIgnoreObjectAlreadyIgnored;
342     m->tag = kIgnored;
343     return kIgnoreObjectSuccess;
344   } else {
345     return kIgnoreObjectInvalid;
346   }
347 }
348 
349 } // namespace __lsan
350 
351 using namespace __lsan;
352 
353 extern "C" {
354 SANITIZER_INTERFACE_ATTRIBUTE
355 uptr __sanitizer_get_current_allocated_bytes() {
356   uptr stats[AllocatorStatCount];
357   allocator.GetStats(stats);
358   return stats[AllocatorStatAllocated];
359 }
360 
361 SANITIZER_INTERFACE_ATTRIBUTE
362 uptr __sanitizer_get_heap_size() {
363   uptr stats[AllocatorStatCount];
364   allocator.GetStats(stats);
365   return stats[AllocatorStatMapped];
366 }
367 
368 SANITIZER_INTERFACE_ATTRIBUTE
369 uptr __sanitizer_get_free_bytes() { return 1; }
370 
371 SANITIZER_INTERFACE_ATTRIBUTE
372 uptr __sanitizer_get_unmapped_bytes() { return 0; }
373 
374 SANITIZER_INTERFACE_ATTRIBUTE
375 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
376 
377 SANITIZER_INTERFACE_ATTRIBUTE
378 int __sanitizer_get_ownership(const void *p) {
379   return GetMallocBegin(p) != nullptr;
380 }
381 
382 SANITIZER_INTERFACE_ATTRIBUTE
383 const void * __sanitizer_get_allocated_begin(const void *p) {
384   return GetMallocBegin(p);
385 }
386 
387 SANITIZER_INTERFACE_ATTRIBUTE
388 uptr __sanitizer_get_allocated_size(const void *p) {
389   return GetMallocUsableSize(p);
390 }
391 
392 SANITIZER_INTERFACE_ATTRIBUTE
393 uptr __sanitizer_get_allocated_size_fast(const void *p) {
394   DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
395   uptr ret = GetMallocUsableSizeFast(p);
396   DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
397   return ret;
398 }
399 
400 SANITIZER_INTERFACE_ATTRIBUTE
401 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
402 
403 } // extern "C"
404