xref: /freebsd/contrib/llvm-project/compiler-rt/lib/interception/interception_win.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- interception_win.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 //
11 // Windows-specific interception methods.
12 //
13 // This file is implementing several hooking techniques to intercept calls
14 // to functions. The hooks are dynamically installed by modifying the assembly
15 // code.
16 //
17 // The hooking techniques are making assumptions on the way the code is
18 // generated and are safe under these assumptions.
19 //
20 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
21 // arbitrary branching on the whole memory space, the notion of trampoline
22 // region is used. A trampoline region is a memory space withing 2G boundary
23 // where it is safe to add custom assembly code to build 64-bit jumps.
24 //
25 // Hooking techniques
26 // ==================
27 //
28 // 1) Detour
29 //
30 //    The Detour hooking technique is assuming the presence of an header with
31 //    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
32 //    nop instruction can safely be replaced by a 2-bytes jump without any need
33 //    to save the instruction. A jump to the target is encoded in the function
34 //    header and the nop instruction is replaced by a short jump to the header.
35 //
36 //        head:  5 x nop                 head:  jmp <hook>
37 //        func:  mov edi, edi    -->     func:  jmp short <head>
38 //               [...]                   real:  [...]
39 //
40 //    This technique is only implemented on 32-bit architecture.
41 //    Most of the time, Windows API are hookable with the detour technique.
42 //
43 // 2) Redirect Jump
44 //
45 //    The redirect jump is applicable when the first instruction is a direct
46 //    jump. The instruction is replaced by jump to the hook.
47 //
48 //        func:  jmp <label>     -->     func:  jmp <hook>
49 //
50 //    On an 64-bit architecture, a trampoline is inserted.
51 //
52 //        func:  jmp <label>     -->     func:  jmp <tramp>
53 //                                              [...]
54 //
55 //                                   [trampoline]
56 //                                      tramp:  jmp QWORD [addr]
57 //                                       addr:  .bytes <hook>
58 //
59 //    Note: <real> is equivalent to <label>.
60 //
61 // 3) HotPatch
62 //
63 //    The HotPatch hooking is assuming the presence of an header with padding
64 //    and a first instruction with at least 2-bytes.
65 //
66 //    The reason to enforce the 2-bytes limitation is to provide the minimal
67 //    space to encode a short jump. HotPatch technique is only rewriting one
68 //    instruction to avoid breaking a sequence of instructions containing a
69 //    branching target.
70 //
71 //    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
72 //      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
73 //    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
74 //
75 //        head:   5 x nop                head:  jmp <hook>
76 //        func:   <instr>        -->     func:  jmp short <head>
77 //                [...]                  body:  [...]
78 //
79 //                                   [trampoline]
80 //                                       real:  <instr>
81 //                                              jmp <body>
82 //
83 //    On an 64-bit architecture:
84 //
85 //        head:   6 x nop                head:  jmp QWORD [addr1]
86 //        func:   <instr>        -->     func:  jmp short <head>
87 //                [...]                  body:  [...]
88 //
89 //                                   [trampoline]
90 //                                      addr1:  .bytes <hook>
91 //                                       real:  <instr>
92 //                                              jmp QWORD [addr2]
93 //                                      addr2:  .bytes <body>
94 //
95 // 4) Trampoline
96 //
97 //    The Trampoline hooking technique is the most aggressive one. It is
98 //    assuming that there is a sequence of instructions that can be safely
99 //    replaced by a jump (enough room and no incoming branches).
100 //
101 //    Unfortunately, these assumptions can't be safely presumed and code may
102 //    be broken after hooking.
103 //
104 //        func:   <instr>        -->     func:  jmp <hook>
105 //                <instr>
106 //                [...]                  body:  [...]
107 //
108 //                                   [trampoline]
109 //                                       real:  <instr>
110 //                                              <instr>
111 //                                              jmp <body>
112 //
113 //    On an 64-bit architecture:
114 //
115 //        func:   <instr>        -->     func:  jmp QWORD [addr1]
116 //                <instr>
117 //                [...]                  body:  [...]
118 //
119 //                                   [trampoline]
120 //                                      addr1:  .bytes <hook>
121 //                                       real:  <instr>
122 //                                              <instr>
123 //                                              jmp QWORD [addr2]
124 //                                      addr2:  .bytes <body>
125 //===----------------------------------------------------------------------===//
126 
127 #include "interception.h"
128 
129 #if SANITIZER_WINDOWS
130 #include "sanitizer_common/sanitizer_platform.h"
131 #define WIN32_LEAN_AND_MEAN
132 #include <windows.h>
133 
134 namespace __interception {
135 
136 static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
137 static const int kJumpInstructionLength = 5;
138 static const int kShortJumpInstructionLength = 2;
139 UNUSED static const int kIndirectJumpInstructionLength = 6;
140 static const int kBranchLength =
141     FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
142 static const int kDirectBranchLength = kBranchLength + kAddressLength;
143 
144 #  if defined(_MSC_VER)
145 #    define INTERCEPTION_FORMAT(f, a)
146 #  else
147 #    define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a)))
148 #  endif
149 
150 static void (*ErrorReportCallback)(const char *format, ...)
151     INTERCEPTION_FORMAT(1, 2);
152 
153 void SetErrorReportCallback(void (*callback)(const char *format, ...)) {
154   ErrorReportCallback = callback;
155 }
156 
157 #  define ReportError(...)                \
158     do {                                  \
159       if (ErrorReportCallback)            \
160         ErrorReportCallback(__VA_ARGS__); \
161     } while (0)
162 
163 static void InterceptionFailed() {
164   ReportError("interception_win: failed due to an unrecoverable error.\n");
165   // This acts like an abort when no debugger is attached. According to an old
166   // comment, calling abort() leads to an infinite recursion in CheckFailed.
167   __debugbreak();
168 }
169 
170 static bool DistanceIsWithin2Gig(uptr from, uptr target) {
171 #if SANITIZER_WINDOWS64
172   if (from < target)
173     return target - from <= (uptr)0x7FFFFFFFU;
174   else
175     return from - target <= (uptr)0x80000000U;
176 #else
177   // In a 32-bit address space, the address calculation will wrap, so this check
178   // is unnecessary.
179   return true;
180 #endif
181 }
182 
183 static uptr GetMmapGranularity() {
184   SYSTEM_INFO si;
185   GetSystemInfo(&si);
186   return si.dwAllocationGranularity;
187 }
188 
189 UNUSED static uptr RoundUpTo(uptr size, uptr boundary) {
190   return (size + boundary - 1) & ~(boundary - 1);
191 }
192 
193 // FIXME: internal_str* and internal_mem* functions should be moved from the
194 // ASan sources into interception/.
195 
196 static size_t _strlen(const char *str) {
197   const char* p = str;
198   while (*p != '\0') ++p;
199   return p - str;
200 }
201 
202 static char* _strchr(char* str, char c) {
203   while (*str) {
204     if (*str == c)
205       return str;
206     ++str;
207   }
208   return nullptr;
209 }
210 
211 static void _memset(void *p, int value, size_t sz) {
212   for (size_t i = 0; i < sz; ++i)
213     ((char*)p)[i] = (char)value;
214 }
215 
216 static void _memcpy(void *dst, void *src, size_t sz) {
217   char *dst_c = (char*)dst,
218        *src_c = (char*)src;
219   for (size_t i = 0; i < sz; ++i)
220     dst_c[i] = src_c[i];
221 }
222 
223 static bool ChangeMemoryProtection(
224     uptr address, uptr size, DWORD *old_protection) {
225   return ::VirtualProtect((void*)address, size,
226                           PAGE_EXECUTE_READWRITE,
227                           old_protection) != FALSE;
228 }
229 
230 static bool RestoreMemoryProtection(
231     uptr address, uptr size, DWORD old_protection) {
232   DWORD unused;
233   return ::VirtualProtect((void*)address, size,
234                           old_protection,
235                           &unused) != FALSE;
236 }
237 
238 static bool IsMemoryPadding(uptr address, uptr size) {
239   u8* function = (u8*)address;
240   for (size_t i = 0; i < size; ++i)
241     if (function[i] != 0x90 && function[i] != 0xCC)
242       return false;
243   return true;
244 }
245 
246 static const u8 kHintNop8Bytes[] = {
247   0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
248 };
249 
250 template<class T>
251 static bool FunctionHasPrefix(uptr address, const T &pattern) {
252   u8* function = (u8*)address - sizeof(pattern);
253   for (size_t i = 0; i < sizeof(pattern); ++i)
254     if (function[i] != pattern[i])
255       return false;
256   return true;
257 }
258 
259 static bool FunctionHasPadding(uptr address, uptr size) {
260   if (IsMemoryPadding(address - size, size))
261     return true;
262   if (size <= sizeof(kHintNop8Bytes) &&
263       FunctionHasPrefix(address, kHintNop8Bytes))
264     return true;
265   return false;
266 }
267 
268 static void WritePadding(uptr from, uptr size) {
269   _memset((void*)from, 0xCC, (size_t)size);
270 }
271 
272 static void WriteJumpInstruction(uptr from, uptr target) {
273   if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) {
274     ReportError(
275         "interception_win: cannot write jmp further than 2GB away, from %p to "
276         "%p.\n",
277         (void *)from, (void *)target);
278     InterceptionFailed();
279   }
280   ptrdiff_t offset = target - from - kJumpInstructionLength;
281   *(u8*)from = 0xE9;
282   *(u32*)(from + 1) = offset;
283 }
284 
285 static void WriteShortJumpInstruction(uptr from, uptr target) {
286   sptr offset = target - from - kShortJumpInstructionLength;
287   if (offset < -128 || offset > 127)
288     InterceptionFailed();
289   *(u8*)from = 0xEB;
290   *(u8*)(from + 1) = (u8)offset;
291 }
292 
293 #if SANITIZER_WINDOWS64
294 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
295   // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
296   // offset.
297   // The offset is the distance from then end of the jump instruction to the
298   // memory location containing the targeted address. The displacement is still
299   // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
300   int offset = indirect_target - from - kIndirectJumpInstructionLength;
301   if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
302                             indirect_target)) {
303     ReportError(
304         "interception_win: cannot write indirect jmp with target further than "
305         "2GB away, from %p to %p.\n",
306         (void *)from, (void *)indirect_target);
307     InterceptionFailed();
308   }
309   *(u16*)from = 0x25FF;
310   *(u32*)(from + 2) = offset;
311 }
312 #endif
313 
314 static void WriteBranch(
315     uptr from, uptr indirect_target, uptr target) {
316 #if SANITIZER_WINDOWS64
317   WriteIndirectJumpInstruction(from, indirect_target);
318   *(u64*)indirect_target = target;
319 #else
320   (void)indirect_target;
321   WriteJumpInstruction(from, target);
322 #endif
323 }
324 
325 static void WriteDirectBranch(uptr from, uptr target) {
326 #if SANITIZER_WINDOWS64
327   // Emit an indirect jump through immediately following bytes:
328   //   jmp [rip + kBranchLength]
329   //   .quad <target>
330   WriteBranch(from, from + kBranchLength, target);
331 #else
332   WriteJumpInstruction(from, target);
333 #endif
334 }
335 
336 struct TrampolineMemoryRegion {
337   uptr content;
338   uptr allocated_size;
339   uptr max_size;
340 };
341 
342 UNUSED static const uptr kTrampolineScanLimitRange = 1ull << 31;  // 2 gig
343 static const int kMaxTrampolineRegion = 1024;
344 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
345 
346 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
347 #if SANITIZER_WINDOWS64
348   uptr address = image_address;
349   uptr scanned = 0;
350   while (scanned < kTrampolineScanLimitRange) {
351     MEMORY_BASIC_INFORMATION info;
352     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
353       return nullptr;
354 
355     // Check whether a region can be allocated at |address|.
356     if (info.State == MEM_FREE && info.RegionSize >= granularity) {
357       void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
358                                   granularity,
359                                   MEM_RESERVE | MEM_COMMIT,
360                                   PAGE_EXECUTE_READWRITE);
361       return page;
362     }
363 
364     // Move to the next region.
365     address = (uptr)info.BaseAddress + info.RegionSize;
366     scanned += info.RegionSize;
367   }
368   return nullptr;
369 #else
370   return ::VirtualAlloc(nullptr,
371                         granularity,
372                         MEM_RESERVE | MEM_COMMIT,
373                         PAGE_EXECUTE_READWRITE);
374 #endif
375 }
376 
377 // Used by unittests to release mapped memory space.
378 void TestOnlyReleaseTrampolineRegions() {
379   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
380     TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
381     if (current->content == 0)
382       return;
383     ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
384     current->content = 0;
385   }
386 }
387 
388 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
389   // Find a region within 2G with enough space to allocate |size| bytes.
390   TrampolineMemoryRegion *region = nullptr;
391   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
392     TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
393     if (current->content == 0) {
394       // No valid region found, allocate a new region.
395       size_t bucket_size = GetMmapGranularity();
396       void *content = AllocateTrampolineRegion(image_address, bucket_size);
397       if (content == nullptr)
398         return 0U;
399 
400       current->content = (uptr)content;
401       current->allocated_size = 0;
402       current->max_size = bucket_size;
403       region = current;
404       break;
405     } else if (current->max_size - current->allocated_size > size) {
406 #if SANITIZER_WINDOWS64
407         // In 64-bits, the memory space must be allocated within 2G boundary.
408         uptr next_address = current->content + current->allocated_size;
409         if (next_address < image_address ||
410             next_address - image_address >= 0x7FFF0000)
411           continue;
412 #endif
413       // The space can be allocated in the current region.
414       region = current;
415       break;
416     }
417   }
418 
419   // Failed to find a region.
420   if (region == nullptr)
421     return 0U;
422 
423   // Allocate the space in the current region.
424   uptr allocated_space = region->content + region->allocated_size;
425   region->allocated_size += size;
426   WritePadding(allocated_space, size);
427 
428   return allocated_space;
429 }
430 
431 // The following prologues cannot be patched because of the short jump
432 // jumping to the patching region.
433 
434 // Short jump patterns  below are only for x86_64.
435 #  if SANITIZER_WINDOWS_x64
436 // ntdll!wcslen in Win11
437 //   488bc1          mov     rax,rcx
438 //   0fb710          movzx   edx,word ptr [rax]
439 //   4883c002        add     rax,2
440 //   6685d2          test    dx,dx
441 //   75f4            jne     -12
442 static const u8 kPrologueWithShortJump1[] = {
443     0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83,
444     0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4,
445 };
446 
447 // ntdll!strrchr in Win11
448 //   4c8bc1          mov     r8,rcx
449 //   8a01            mov     al,byte ptr [rcx]
450 //   48ffc1          inc     rcx
451 //   84c0            test    al,al
452 //   75f7            jne     -9
453 static const u8 kPrologueWithShortJump2[] = {
454     0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1,
455     0x84, 0xc0, 0x75, 0xf7,
456 };
457 #endif
458 
459 // Returns 0 on error.
460 static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
461 #if SANITIZER_ARM64
462   // An ARM64 instruction is 4 bytes long.
463   return 4;
464 #endif
465 
466 #  if SANITIZER_WINDOWS_x64
467   if (memcmp((u8*)address, kPrologueWithShortJump1,
468              sizeof(kPrologueWithShortJump1)) == 0 ||
469       memcmp((u8*)address, kPrologueWithShortJump2,
470              sizeof(kPrologueWithShortJump2)) == 0) {
471     return 0;
472   }
473 #endif
474 
475   switch (*(u64*)address) {
476     case 0x90909090909006EB:  // stub: jmp over 6 x nop.
477       return 8;
478   }
479 
480   switch (*(u8*)address) {
481     case 0x90:  // 90 : nop
482     case 0xC3:  // C3 : ret   (for small/empty function interception
483     case 0xCC:  // CC : int 3  i.e. registering weak functions)
484       return 1;
485 
486     case 0x50:  // push eax / rax
487     case 0x51:  // push ecx / rcx
488     case 0x52:  // push edx / rdx
489     case 0x53:  // push ebx / rbx
490     case 0x54:  // push esp / rsp
491     case 0x55:  // push ebp / rbp
492     case 0x56:  // push esi / rsi
493     case 0x57:  // push edi / rdi
494     case 0x5D:  // pop ebp / rbp
495       return 1;
496 
497     case 0x6A:  // 6A XX = push XX
498       return 2;
499 
500     case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
501     case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
502       return 5;
503 
504     // Cannot overwrite control-instruction. Return 0 to indicate failure.
505     case 0xE9:  // E9 XX XX XX XX : jmp <label>
506     case 0xE8:  // E8 XX XX XX XX : call <func>
507     case 0xEB:  // EB XX : jmp XX (short jump)
508     case 0x70:  // 7Y YY : jy XX (short conditional jump)
509     case 0x71:
510     case 0x72:
511     case 0x73:
512     case 0x74:
513     case 0x75:
514     case 0x76:
515     case 0x77:
516     case 0x78:
517     case 0x79:
518     case 0x7A:
519     case 0x7B:
520     case 0x7C:
521     case 0x7D:
522     case 0x7E:
523     case 0x7F:
524       return 0;
525   }
526 
527   switch (*(u16*)(address)) {
528     case 0x018A:  // 8A 01 : mov al, byte ptr [ecx]
529     case 0xFF8B:  // 8B FF : mov edi, edi
530     case 0xEC8B:  // 8B EC : mov ebp, esp
531     case 0xc889:  // 89 C8 : mov eax, ecx
532     case 0xE589:  // 89 E5 : mov ebp, esp
533     case 0xC18B:  // 8B C1 : mov eax, ecx
534     case 0xC033:  // 33 C0 : xor eax, eax
535     case 0xC933:  // 33 C9 : xor ecx, ecx
536     case 0xD233:  // 33 D2 : xor edx, edx
537       return 2;
538 
539     // Cannot overwrite control-instruction. Return 0 to indicate failure.
540     case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
541       return 0;
542   }
543 
544   switch (0x00FFFFFF & *(u32*)address) {
545     case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
546       return 7;
547   }
548 
549   switch (0x000000FF & *(u32 *)address) {
550     case 0xc2:  // C2 XX XX : ret XX (needed for registering weak functions)
551       return 3;
552   }
553 
554 #  if SANITIZER_WINDOWS_x64
555   switch (*(u8*)address) {
556     case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
557                 //   movabs eax, dword ptr ds:[XXXXXXXX]
558       return 9;
559 
560     case 0x83:
561       const u8 next_byte = *(u8*)(address + 1);
562       const u8 mod = next_byte >> 6;
563       const u8 rm = next_byte & 7;
564       if (mod == 1 && rm == 4)
565         return 5;  // 83 ModR/M SIB Disp8 Imm8
566                    //   add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8
567   }
568 
569   switch (*(u16*)address) {
570     case 0x5040:  // push rax
571     case 0x5140:  // push rcx
572     case 0x5240:  // push rdx
573     case 0x5340:  // push rbx
574     case 0x5440:  // push rsp
575     case 0x5540:  // push rbp
576     case 0x5640:  // push rsi
577     case 0x5740:  // push rdi
578     case 0x5441:  // push r12
579     case 0x5541:  // push r13
580     case 0x5641:  // push r14
581     case 0x5741:  // push r15
582     case 0x9066:  // Two-byte NOP
583     case 0xc084:  // test al, al
584     case 0x018a:  // mov al, byte ptr [rcx]
585       return 2;
586 
587     case 0x058A:  // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX]
588     case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
589       if (rel_offset)
590         *rel_offset = 2;
591       return 6;
592   }
593 
594   switch (0x00FFFFFF & *(u32*)address) {
595     case 0xe58948:    // 48 8b c4 : mov rbp, rsp
596     case 0xc18b48:    // 48 8b c1 : mov rax, rcx
597     case 0xc48b48:    // 48 8b c4 : mov rax, rsp
598     case 0xd9f748:    // 48 f7 d9 : neg rcx
599     case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
600     case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
601     case 0xc98548:    // 48 85 C9 : test rcx, rcx
602     case 0xd28548:    // 48 85 d2 : test rdx, rdx
603     case 0xc0854d:    // 4d 85 c0 : test r8, r8
604     case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
605     case 0xc03345:    // 45 33 c0 : xor r8d, r8d
606     case 0xc93345:    // 45 33 c9 : xor r9d, r9d
607     case 0xdb3345:    // 45 33 DB : xor r11d, r11d
608     case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
609     case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
610     case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
611     case 0xc18b4c:    // 4C 8B C1 : mov r8, rcx
612     case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
613     case 0xca2b48:    // 48 2b ca : sub rcx, rdx
614     case 0xca3b48:    // 48 3b ca : cmp rcx, rdx
615     case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
616     case 0xc00b4d:    // 3d 0b c0 : or r8, r8
617     case 0xc08b41:    // 41 8b c0 : mov eax, r8d
618     case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
619     case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
620     case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
621     case 0xE0E483:    // 83 E4 E0 : and esp, 0xFFFFFFE0
622       return 3;
623 
624     case 0xec8348:    // 48 83 ec XX : sub rsp, XX
625     case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
626     case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
627       return 4;
628 
629     case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
630       return 7;
631 
632     case 0x058b48:    // 48 8b 05 XX XX XX XX :
633                       //   mov rax, QWORD PTR [rip + XXXXXXXX]
634     case 0x058d48:    // 48 8d 05 XX XX XX XX :
635                       //   lea rax, QWORD PTR [rip + XXXXXXXX]
636     case 0x25ff48:    // 48 ff 25 XX XX XX XX :
637                       //   rex.W jmp QWORD PTR [rip + XXXXXXXX]
638     case 0x158D4C:    // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX]
639       // Instructions having offset relative to 'rip' need offset adjustment.
640       if (rel_offset)
641         *rel_offset = 3;
642       return 7;
643 
644     case 0x2444c7:    // C7 44 24 XX YY YY YY YY
645                       //   mov dword ptr [rsp + XX], YYYYYYYY
646       return 8;
647   }
648 
649   switch (*(u32*)(address)) {
650     case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
651     case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
652     case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
653     case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
654     case 0x247c8948:  // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi
655     case 0x244C8948:  // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
656     case 0x24548948:  // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
657     case 0x244c894c:  // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
658     case 0x2444894c:  // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
659       return 5;
660     case 0x24648348:  // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
661       return 6;
662   }
663 
664 #else
665 
666   switch (*(u8*)address) {
667     case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
668       return 5;
669   }
670   switch (*(u16*)address) {
671     case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
672     case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
673     case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
674     case 0xEC83:  // 83 EC XX : sub esp, XX
675     case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
676       return 3;
677     case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
678     case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
679       return 6;
680     case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
681       return 7;
682     case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
683       return 4;
684   }
685 
686   switch (0x00FFFFFF & *(u32*)address) {
687     case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
688     case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
689     case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
690     case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
691     case 0x245C8B:  // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX]
692     case 0x246C8B:  // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX]
693     case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
694     case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
695       return 4;
696   }
697 
698   switch (*(u32*)address) {
699     case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
700       return 5;
701   }
702 #endif
703 
704   // Unknown instruction! This might happen when we add a new interceptor, use
705   // a new compiler version, or if Windows changed how some functions are
706   // compiled. In either case, we print the address and 8 bytes of instructions
707   // to notify the user about the error and to help identify the unknown
708   // instruction. Don't treat this as a fatal error, though we can break the
709   // debugger if one has been attached.
710   u8 *bytes = (u8 *)address;
711   ReportError(
712       "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x "
713       "%02x %02x %02x\n",
714       (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4],
715       bytes[5], bytes[6], bytes[7]);
716   if (::IsDebuggerPresent())
717     __debugbreak();
718   return 0;
719 }
720 
721 // Returns 0 on error.
722 static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
723   size_t cursor = 0;
724   while (cursor < size) {
725     size_t instruction_size = GetInstructionSize(address + cursor);
726     if (!instruction_size)
727       return 0;
728     cursor += instruction_size;
729   }
730   return cursor;
731 }
732 
733 static bool CopyInstructions(uptr to, uptr from, size_t size) {
734   size_t cursor = 0;
735   while (cursor != size) {
736     size_t rel_offset = 0;
737     size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
738     if (!instruction_size)
739       return false;
740     _memcpy((void *)(to + cursor), (void *)(from + cursor),
741             (size_t)instruction_size);
742     if (rel_offset) {
743 #  if SANITIZER_WINDOWS64
744       // we want to make sure that the new relative offset still fits in 32-bits
745       // this will be untrue if relocated_offset \notin [-2**31, 2**31)
746       s64 delta = to - from;
747       s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
748       if (-0x8000'0000ll > relocated_offset || relocated_offset > 0x7FFF'FFFFll)
749         return false;
750 #  else
751       // on 32-bit, the relative offset will always be correct
752       s32 delta = to - from;
753       s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta;
754 #  endif
755       *(s32 *)(to + cursor + rel_offset) = relocated_offset;
756     }
757     cursor += instruction_size;
758   }
759   return true;
760 }
761 
762 
763 #if !SANITIZER_WINDOWS64
764 bool OverrideFunctionWithDetour(
765     uptr old_func, uptr new_func, uptr *orig_old_func) {
766   const int kDetourHeaderLen = 5;
767   const u16 kDetourInstruction = 0xFF8B;
768 
769   uptr header = (uptr)old_func - kDetourHeaderLen;
770   uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
771 
772   // Validate that the function is hookable.
773   if (*(u16*)old_func != kDetourInstruction ||
774       !IsMemoryPadding(header, kDetourHeaderLen))
775     return false;
776 
777   // Change memory protection to writable.
778   DWORD protection = 0;
779   if (!ChangeMemoryProtection(header, patch_length, &protection))
780     return false;
781 
782   // Write a relative jump to the redirected function.
783   WriteJumpInstruction(header, new_func);
784 
785   // Write the short jump to the function prefix.
786   WriteShortJumpInstruction(old_func, header);
787 
788   // Restore previous memory protection.
789   if (!RestoreMemoryProtection(header, patch_length, protection))
790     return false;
791 
792   if (orig_old_func)
793     *orig_old_func = old_func + kShortJumpInstructionLength;
794 
795   return true;
796 }
797 #endif
798 
799 bool OverrideFunctionWithRedirectJump(
800     uptr old_func, uptr new_func, uptr *orig_old_func) {
801   // Check whether the first instruction is a relative jump.
802   if (*(u8*)old_func != 0xE9)
803     return false;
804 
805   if (orig_old_func) {
806     sptr relative_offset = *(s32 *)(old_func + 1);
807     uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
808     *orig_old_func = absolute_target;
809   }
810 
811 #if SANITIZER_WINDOWS64
812   // If needed, get memory space for a trampoline jump.
813   uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
814   if (!trampoline)
815     return false;
816   WriteDirectBranch(trampoline, new_func);
817 #endif
818 
819   // Change memory protection to writable.
820   DWORD protection = 0;
821   if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
822     return false;
823 
824   // Write a relative jump to the redirected function.
825   WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
826 
827   // Restore previous memory protection.
828   if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
829     return false;
830 
831   return true;
832 }
833 
834 bool OverrideFunctionWithHotPatch(
835     uptr old_func, uptr new_func, uptr *orig_old_func) {
836   const int kHotPatchHeaderLen = kBranchLength;
837 
838   uptr header = (uptr)old_func - kHotPatchHeaderLen;
839   uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
840 
841   // Validate that the function is hot patchable.
842   size_t instruction_size = GetInstructionSize(old_func);
843   if (instruction_size < kShortJumpInstructionLength ||
844       !FunctionHasPadding(old_func, kHotPatchHeaderLen))
845     return false;
846 
847   if (orig_old_func) {
848     // Put the needed instructions into the trampoline bytes.
849     uptr trampoline_length = instruction_size + kDirectBranchLength;
850     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
851     if (!trampoline)
852       return false;
853     if (!CopyInstructions(trampoline, old_func, instruction_size))
854       return false;
855     WriteDirectBranch(trampoline + instruction_size,
856                       old_func + instruction_size);
857     *orig_old_func = trampoline;
858   }
859 
860   // If needed, get memory space for indirect address.
861   uptr indirect_address = 0;
862 #if SANITIZER_WINDOWS64
863   indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
864   if (!indirect_address)
865     return false;
866 #endif
867 
868   // Change memory protection to writable.
869   DWORD protection = 0;
870   if (!ChangeMemoryProtection(header, patch_length, &protection))
871     return false;
872 
873   // Write jumps to the redirected function.
874   WriteBranch(header, indirect_address, new_func);
875   WriteShortJumpInstruction(old_func, header);
876 
877   // Restore previous memory protection.
878   if (!RestoreMemoryProtection(header, patch_length, protection))
879     return false;
880 
881   return true;
882 }
883 
884 bool OverrideFunctionWithTrampoline(
885     uptr old_func, uptr new_func, uptr *orig_old_func) {
886 
887   size_t instructions_length = kBranchLength;
888   size_t padding_length = 0;
889   uptr indirect_address = 0;
890 
891   if (orig_old_func) {
892     // Find out the number of bytes of the instructions we need to copy
893     // to the trampoline.
894     instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
895     if (!instructions_length)
896       return false;
897 
898     // Put the needed instructions into the trampoline bytes.
899     uptr trampoline_length = instructions_length + kDirectBranchLength;
900     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
901     if (!trampoline)
902       return false;
903     if (!CopyInstructions(trampoline, old_func, instructions_length))
904       return false;
905     WriteDirectBranch(trampoline + instructions_length,
906                       old_func + instructions_length);
907     *orig_old_func = trampoline;
908   }
909 
910 #if SANITIZER_WINDOWS64
911   // Check if the targeted address can be encoded in the function padding.
912   // Otherwise, allocate it in the trampoline region.
913   if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
914     indirect_address = old_func - kAddressLength;
915     padding_length = kAddressLength;
916   } else {
917     indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
918     if (!indirect_address)
919       return false;
920   }
921 #endif
922 
923   // Change memory protection to writable.
924   uptr patch_address = old_func - padding_length;
925   uptr patch_length = instructions_length + padding_length;
926   DWORD protection = 0;
927   if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
928     return false;
929 
930   // Patch the original function.
931   WriteBranch(old_func, indirect_address, new_func);
932 
933   // Restore previous memory protection.
934   if (!RestoreMemoryProtection(patch_address, patch_length, protection))
935     return false;
936 
937   return true;
938 }
939 
940 bool OverrideFunction(
941     uptr old_func, uptr new_func, uptr *orig_old_func) {
942 #if !SANITIZER_WINDOWS64
943   if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
944     return true;
945 #endif
946   if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
947     return true;
948   if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
949     return true;
950   if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
951     return true;
952   return false;
953 }
954 
955 static void **InterestingDLLsAvailable() {
956   static const char *InterestingDLLs[] = {
957     "kernel32.dll",
958     "msvcr100d.dll",      // VS2010
959     "msvcr110d.dll",      // VS2012
960     "msvcr120d.dll",      // VS2013
961     "vcruntime140d.dll",  // VS2015
962     "ucrtbased.dll",      // Universal CRT
963     "msvcr100.dll",       // VS2010
964     "msvcr110.dll",       // VS2012
965     "msvcr120.dll",       // VS2013
966     "vcruntime140.dll",   // VS2015
967     "ucrtbase.dll",       // Universal CRT
968 #  if (defined(__MINGW32__) && defined(__i386__))
969     "libc++.dll",     // libc++
970     "libunwind.dll",  // libunwind
971 #  endif
972     // NTDLL should go last as it exports some functions that we should
973     // override in the CRT [presumably only used internally].
974     "ntdll.dll",
975     NULL
976   };
977   static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
978   if (!result[0]) {
979     for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
980       if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
981         result[j++] = (void *)h;
982     }
983   }
984   return &result[0];
985 }
986 
987 namespace {
988 // Utility for reading loaded PE images.
989 template <typename T> class RVAPtr {
990  public:
991   RVAPtr(void *module, uptr rva)
992       : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
993   operator T *() { return ptr_; }
994   T *operator->() { return ptr_; }
995   T *operator++() { return ++ptr_; }
996 
997  private:
998   T *ptr_;
999 };
1000 } // namespace
1001 
1002 // Internal implementation of GetProcAddress. At least since Windows 8,
1003 // GetProcAddress appears to initialize DLLs before returning function pointers
1004 // into them. This is problematic for the sanitizers, because they typically
1005 // want to intercept malloc *before* MSVCRT initializes. Our internal
1006 // implementation walks the export list manually without doing initialization.
1007 uptr InternalGetProcAddress(void *module, const char *func_name) {
1008   // Check that the module header is full and present.
1009   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1010   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1011   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
1012       headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
1013       headers->FileHeader.SizeOfOptionalHeader <
1014           sizeof(IMAGE_OPTIONAL_HEADER)) {
1015     return 0;
1016   }
1017 
1018   IMAGE_DATA_DIRECTORY *export_directory =
1019       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
1020   if (export_directory->Size == 0)
1021     return 0;
1022   RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
1023                                          export_directory->VirtualAddress);
1024   RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
1025   RVAPtr<DWORD> names(module, exports->AddressOfNames);
1026   RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
1027 
1028   for (DWORD i = 0; i < exports->NumberOfNames; i++) {
1029     RVAPtr<char> name(module, names[i]);
1030     if (!strcmp(func_name, name)) {
1031       DWORD index = ordinals[i];
1032       RVAPtr<char> func(module, functions[index]);
1033 
1034       // Handle forwarded functions.
1035       DWORD offset = functions[index];
1036       if (offset >= export_directory->VirtualAddress &&
1037           offset < export_directory->VirtualAddress + export_directory->Size) {
1038         // An entry for a forwarded function is a string with the following
1039         // format: "<module> . <function_name>" that is stored into the
1040         // exported directory.
1041         char function_name[256];
1042         size_t funtion_name_length = _strlen(func);
1043         if (funtion_name_length >= sizeof(function_name) - 1)
1044           InterceptionFailed();
1045 
1046         _memcpy(function_name, func, funtion_name_length);
1047         function_name[funtion_name_length] = '\0';
1048         char* separator = _strchr(function_name, '.');
1049         if (!separator)
1050           InterceptionFailed();
1051         *separator = '\0';
1052 
1053         void* redirected_module = GetModuleHandleA(function_name);
1054         if (!redirected_module)
1055           InterceptionFailed();
1056         return InternalGetProcAddress(redirected_module, separator + 1);
1057       }
1058 
1059       return (uptr)(char *)func;
1060     }
1061   }
1062 
1063   return 0;
1064 }
1065 
1066 bool OverrideFunction(
1067     const char *func_name, uptr new_func, uptr *orig_old_func) {
1068   bool hooked = false;
1069   void **DLLs = InterestingDLLsAvailable();
1070   for (size_t i = 0; DLLs[i]; ++i) {
1071     uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
1072     if (func_addr &&
1073         OverrideFunction(func_addr, new_func, orig_old_func)) {
1074       hooked = true;
1075     }
1076   }
1077   return hooked;
1078 }
1079 
1080 bool OverrideImportedFunction(const char *module_to_patch,
1081                               const char *imported_module,
1082                               const char *function_name, uptr new_function,
1083                               uptr *orig_old_func) {
1084   HMODULE module = GetModuleHandleA(module_to_patch);
1085   if (!module)
1086     return false;
1087 
1088   // Check that the module header is full and present.
1089   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1090   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1091   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
1092       headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
1093       headers->FileHeader.SizeOfOptionalHeader <
1094           sizeof(IMAGE_OPTIONAL_HEADER)) {
1095     return false;
1096   }
1097 
1098   IMAGE_DATA_DIRECTORY *import_directory =
1099       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
1100 
1101   // Iterate the list of imported DLLs. FirstThunk will be null for the last
1102   // entry.
1103   RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
1104                                           import_directory->VirtualAddress);
1105   for (; imports->FirstThunk != 0; ++imports) {
1106     RVAPtr<const char> modname(module, imports->Name);
1107     if (_stricmp(&*modname, imported_module) == 0)
1108       break;
1109   }
1110   if (imports->FirstThunk == 0)
1111     return false;
1112 
1113   // We have two parallel arrays: the import address table (IAT) and the table
1114   // of names. They start out containing the same data, but the loader rewrites
1115   // the IAT to hold imported addresses and leaves the name table in
1116   // OriginalFirstThunk alone.
1117   RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
1118   RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
1119   for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
1120     if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
1121       RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
1122           module, name_table->u1.ForwarderString);
1123       const char *funcname = &import_by_name->Name[0];
1124       if (strcmp(funcname, function_name) == 0)
1125         break;
1126     }
1127   }
1128   if (name_table->u1.Ordinal == 0)
1129     return false;
1130 
1131   // Now we have the correct IAT entry. Do the swap. We have to make the page
1132   // read/write first.
1133   if (orig_old_func)
1134     *orig_old_func = iat->u1.AddressOfData;
1135   DWORD old_prot, unused_prot;
1136   if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
1137                       &old_prot))
1138     return false;
1139   iat->u1.AddressOfData = new_function;
1140   if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
1141     return false;  // Not clear if this failure bothers us.
1142   return true;
1143 }
1144 
1145 }  // namespace __interception
1146 
1147 #endif  // SANITIZER_APPLE
1148