1 //===-- interception_win.cpp ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // 11 // Windows-specific interception methods. 12 // 13 // This file is implementing several hooking techniques to intercept calls 14 // to functions. The hooks are dynamically installed by modifying the assembly 15 // code. 16 // 17 // The hooking techniques are making assumptions on the way the code is 18 // generated and are safe under these assumptions. 19 // 20 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow 21 // arbitrary branching on the whole memory space, the notion of trampoline 22 // region is used. A trampoline region is a memory space withing 2G boundary 23 // where it is safe to add custom assembly code to build 64-bit jumps. 24 // 25 // Hooking techniques 26 // ================== 27 // 28 // 1) Detour 29 // 30 // The Detour hooking technique is assuming the presence of an header with 31 // padding and an overridable 2-bytes nop instruction (mov edi, edi). The 32 // nop instruction can safely be replaced by a 2-bytes jump without any need 33 // to save the instruction. A jump to the target is encoded in the function 34 // header and the nop instruction is replaced by a short jump to the header. 35 // 36 // head: 5 x nop head: jmp <hook> 37 // func: mov edi, edi --> func: jmp short <head> 38 // [...] real: [...] 39 // 40 // This technique is only implemented on 32-bit architecture. 41 // Most of the time, Windows API are hookable with the detour technique. 42 // 43 // 2) Redirect Jump 44 // 45 // The redirect jump is applicable when the first instruction is a direct 46 // jump. The instruction is replaced by jump to the hook. 47 // 48 // func: jmp <label> --> func: jmp <hook> 49 // 50 // On an 64-bit architecture, a trampoline is inserted. 51 // 52 // func: jmp <label> --> func: jmp <tramp> 53 // [...] 54 // 55 // [trampoline] 56 // tramp: jmp QWORD [addr] 57 // addr: .bytes <hook> 58 // 59 // Note: <real> is equivalent to <label>. 60 // 61 // 3) HotPatch 62 // 63 // The HotPatch hooking is assuming the presence of an header with padding 64 // and a first instruction with at least 2-bytes. 65 // 66 // The reason to enforce the 2-bytes limitation is to provide the minimal 67 // space to encode a short jump. HotPatch technique is only rewriting one 68 // instruction to avoid breaking a sequence of instructions containing a 69 // branching target. 70 // 71 // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag. 72 // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx 73 // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits. 74 // 75 // head: 5 x nop head: jmp <hook> 76 // func: <instr> --> func: jmp short <head> 77 // [...] body: [...] 78 // 79 // [trampoline] 80 // real: <instr> 81 // jmp <body> 82 // 83 // On an 64-bit architecture: 84 // 85 // head: 6 x nop head: jmp QWORD [addr1] 86 // func: <instr> --> func: jmp short <head> 87 // [...] body: [...] 88 // 89 // [trampoline] 90 // addr1: .bytes <hook> 91 // real: <instr> 92 // jmp QWORD [addr2] 93 // addr2: .bytes <body> 94 // 95 // 4) Trampoline 96 // 97 // The Trampoline hooking technique is the most aggressive one. It is 98 // assuming that there is a sequence of instructions that can be safely 99 // replaced by a jump (enough room and no incoming branches). 100 // 101 // Unfortunately, these assumptions can't be safely presumed and code may 102 // be broken after hooking. 103 // 104 // func: <instr> --> func: jmp <hook> 105 // <instr> 106 // [...] body: [...] 107 // 108 // [trampoline] 109 // real: <instr> 110 // <instr> 111 // jmp <body> 112 // 113 // On an 64-bit architecture: 114 // 115 // func: <instr> --> func: jmp QWORD [addr1] 116 // <instr> 117 // [...] body: [...] 118 // 119 // [trampoline] 120 // addr1: .bytes <hook> 121 // real: <instr> 122 // <instr> 123 // jmp QWORD [addr2] 124 // addr2: .bytes <body> 125 //===----------------------------------------------------------------------===// 126 127 #include "interception.h" 128 129 #if SANITIZER_WINDOWS 130 #include "sanitizer_common/sanitizer_platform.h" 131 #define WIN32_LEAN_AND_MEAN 132 #include <windows.h> 133 134 namespace __interception { 135 136 static const int kAddressLength = FIRST_32_SECOND_64(4, 8); 137 static const int kJumpInstructionLength = 5; 138 static const int kShortJumpInstructionLength = 2; 139 UNUSED static const int kIndirectJumpInstructionLength = 6; 140 static const int kBranchLength = 141 FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength); 142 static const int kDirectBranchLength = kBranchLength + kAddressLength; 143 144 # if defined(_MSC_VER) 145 # define INTERCEPTION_FORMAT(f, a) 146 # else 147 # define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a))) 148 # endif 149 150 static void (*ErrorReportCallback)(const char *format, ...) 151 INTERCEPTION_FORMAT(1, 2); 152 153 void SetErrorReportCallback(void (*callback)(const char *format, ...)) { 154 ErrorReportCallback = callback; 155 } 156 157 # define ReportError(...) \ 158 do { \ 159 if (ErrorReportCallback) \ 160 ErrorReportCallback(__VA_ARGS__); \ 161 } while (0) 162 163 static void InterceptionFailed() { 164 ReportError("interception_win: failed due to an unrecoverable error.\n"); 165 // This acts like an abort when no debugger is attached. According to an old 166 // comment, calling abort() leads to an infinite recursion in CheckFailed. 167 __debugbreak(); 168 } 169 170 static bool DistanceIsWithin2Gig(uptr from, uptr target) { 171 #if SANITIZER_WINDOWS64 172 if (from < target) 173 return target - from <= (uptr)0x7FFFFFFFU; 174 else 175 return from - target <= (uptr)0x80000000U; 176 #else 177 // In a 32-bit address space, the address calculation will wrap, so this check 178 // is unnecessary. 179 return true; 180 #endif 181 } 182 183 static uptr GetMmapGranularity() { 184 SYSTEM_INFO si; 185 GetSystemInfo(&si); 186 return si.dwAllocationGranularity; 187 } 188 189 UNUSED static uptr RoundUpTo(uptr size, uptr boundary) { 190 return (size + boundary - 1) & ~(boundary - 1); 191 } 192 193 // FIXME: internal_str* and internal_mem* functions should be moved from the 194 // ASan sources into interception/. 195 196 static size_t _strlen(const char *str) { 197 const char* p = str; 198 while (*p != '\0') ++p; 199 return p - str; 200 } 201 202 static char* _strchr(char* str, char c) { 203 while (*str) { 204 if (*str == c) 205 return str; 206 ++str; 207 } 208 return nullptr; 209 } 210 211 static void _memset(void *p, int value, size_t sz) { 212 for (size_t i = 0; i < sz; ++i) 213 ((char*)p)[i] = (char)value; 214 } 215 216 static void _memcpy(void *dst, void *src, size_t sz) { 217 char *dst_c = (char*)dst, 218 *src_c = (char*)src; 219 for (size_t i = 0; i < sz; ++i) 220 dst_c[i] = src_c[i]; 221 } 222 223 static bool ChangeMemoryProtection( 224 uptr address, uptr size, DWORD *old_protection) { 225 return ::VirtualProtect((void*)address, size, 226 PAGE_EXECUTE_READWRITE, 227 old_protection) != FALSE; 228 } 229 230 static bool RestoreMemoryProtection( 231 uptr address, uptr size, DWORD old_protection) { 232 DWORD unused; 233 return ::VirtualProtect((void*)address, size, 234 old_protection, 235 &unused) != FALSE; 236 } 237 238 static bool IsMemoryPadding(uptr address, uptr size) { 239 u8* function = (u8*)address; 240 for (size_t i = 0; i < size; ++i) 241 if (function[i] != 0x90 && function[i] != 0xCC) 242 return false; 243 return true; 244 } 245 246 static const u8 kHintNop8Bytes[] = { 247 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 248 }; 249 250 template<class T> 251 static bool FunctionHasPrefix(uptr address, const T &pattern) { 252 u8* function = (u8*)address - sizeof(pattern); 253 for (size_t i = 0; i < sizeof(pattern); ++i) 254 if (function[i] != pattern[i]) 255 return false; 256 return true; 257 } 258 259 static bool FunctionHasPadding(uptr address, uptr size) { 260 if (IsMemoryPadding(address - size, size)) 261 return true; 262 if (size <= sizeof(kHintNop8Bytes) && 263 FunctionHasPrefix(address, kHintNop8Bytes)) 264 return true; 265 return false; 266 } 267 268 static void WritePadding(uptr from, uptr size) { 269 _memset((void*)from, 0xCC, (size_t)size); 270 } 271 272 static void WriteJumpInstruction(uptr from, uptr target) { 273 if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) { 274 ReportError( 275 "interception_win: cannot write jmp further than 2GB away, from %p to " 276 "%p.\n", 277 (void *)from, (void *)target); 278 InterceptionFailed(); 279 } 280 ptrdiff_t offset = target - from - kJumpInstructionLength; 281 *(u8*)from = 0xE9; 282 *(u32*)(from + 1) = offset; 283 } 284 285 static void WriteShortJumpInstruction(uptr from, uptr target) { 286 sptr offset = target - from - kShortJumpInstructionLength; 287 if (offset < -128 || offset > 127) 288 InterceptionFailed(); 289 *(u8*)from = 0xEB; 290 *(u8*)(from + 1) = (u8)offset; 291 } 292 293 #if SANITIZER_WINDOWS64 294 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) { 295 // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative 296 // offset. 297 // The offset is the distance from then end of the jump instruction to the 298 // memory location containing the targeted address. The displacement is still 299 // 32-bit in x64, so indirect_target must be located within +/- 2GB range. 300 int offset = indirect_target - from - kIndirectJumpInstructionLength; 301 if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength, 302 indirect_target)) { 303 ReportError( 304 "interception_win: cannot write indirect jmp with target further than " 305 "2GB away, from %p to %p.\n", 306 (void *)from, (void *)indirect_target); 307 InterceptionFailed(); 308 } 309 *(u16*)from = 0x25FF; 310 *(u32*)(from + 2) = offset; 311 } 312 #endif 313 314 static void WriteBranch( 315 uptr from, uptr indirect_target, uptr target) { 316 #if SANITIZER_WINDOWS64 317 WriteIndirectJumpInstruction(from, indirect_target); 318 *(u64*)indirect_target = target; 319 #else 320 (void)indirect_target; 321 WriteJumpInstruction(from, target); 322 #endif 323 } 324 325 static void WriteDirectBranch(uptr from, uptr target) { 326 #if SANITIZER_WINDOWS64 327 // Emit an indirect jump through immediately following bytes: 328 // jmp [rip + kBranchLength] 329 // .quad <target> 330 WriteBranch(from, from + kBranchLength, target); 331 #else 332 WriteJumpInstruction(from, target); 333 #endif 334 } 335 336 struct TrampolineMemoryRegion { 337 uptr content; 338 uptr allocated_size; 339 uptr max_size; 340 }; 341 342 UNUSED static const uptr kTrampolineScanLimitRange = 1ull << 31; // 2 gig 343 static const int kMaxTrampolineRegion = 1024; 344 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion]; 345 346 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) { 347 #if SANITIZER_WINDOWS64 348 uptr address = image_address; 349 uptr scanned = 0; 350 while (scanned < kTrampolineScanLimitRange) { 351 MEMORY_BASIC_INFORMATION info; 352 if (!::VirtualQuery((void*)address, &info, sizeof(info))) 353 return nullptr; 354 355 // Check whether a region can be allocated at |address|. 356 if (info.State == MEM_FREE && info.RegionSize >= granularity) { 357 void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity), 358 granularity, 359 MEM_RESERVE | MEM_COMMIT, 360 PAGE_EXECUTE_READWRITE); 361 return page; 362 } 363 364 // Move to the next region. 365 address = (uptr)info.BaseAddress + info.RegionSize; 366 scanned += info.RegionSize; 367 } 368 return nullptr; 369 #else 370 return ::VirtualAlloc(nullptr, 371 granularity, 372 MEM_RESERVE | MEM_COMMIT, 373 PAGE_EXECUTE_READWRITE); 374 #endif 375 } 376 377 // Used by unittests to release mapped memory space. 378 void TestOnlyReleaseTrampolineRegions() { 379 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { 380 TrampolineMemoryRegion *current = &TrampolineRegions[bucket]; 381 if (current->content == 0) 382 return; 383 ::VirtualFree((void*)current->content, 0, MEM_RELEASE); 384 current->content = 0; 385 } 386 } 387 388 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) { 389 // Find a region within 2G with enough space to allocate |size| bytes. 390 TrampolineMemoryRegion *region = nullptr; 391 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { 392 TrampolineMemoryRegion* current = &TrampolineRegions[bucket]; 393 if (current->content == 0) { 394 // No valid region found, allocate a new region. 395 size_t bucket_size = GetMmapGranularity(); 396 void *content = AllocateTrampolineRegion(image_address, bucket_size); 397 if (content == nullptr) 398 return 0U; 399 400 current->content = (uptr)content; 401 current->allocated_size = 0; 402 current->max_size = bucket_size; 403 region = current; 404 break; 405 } else if (current->max_size - current->allocated_size > size) { 406 #if SANITIZER_WINDOWS64 407 // In 64-bits, the memory space must be allocated within 2G boundary. 408 uptr next_address = current->content + current->allocated_size; 409 if (next_address < image_address || 410 next_address - image_address >= 0x7FFF0000) 411 continue; 412 #endif 413 // The space can be allocated in the current region. 414 region = current; 415 break; 416 } 417 } 418 419 // Failed to find a region. 420 if (region == nullptr) 421 return 0U; 422 423 // Allocate the space in the current region. 424 uptr allocated_space = region->content + region->allocated_size; 425 region->allocated_size += size; 426 WritePadding(allocated_space, size); 427 428 return allocated_space; 429 } 430 431 // The following prologues cannot be patched because of the short jump 432 // jumping to the patching region. 433 434 // Short jump patterns below are only for x86_64. 435 # if SANITIZER_WINDOWS_x64 436 // ntdll!wcslen in Win11 437 // 488bc1 mov rax,rcx 438 // 0fb710 movzx edx,word ptr [rax] 439 // 4883c002 add rax,2 440 // 6685d2 test dx,dx 441 // 75f4 jne -12 442 static const u8 kPrologueWithShortJump1[] = { 443 0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83, 444 0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4, 445 }; 446 447 // ntdll!strrchr in Win11 448 // 4c8bc1 mov r8,rcx 449 // 8a01 mov al,byte ptr [rcx] 450 // 48ffc1 inc rcx 451 // 84c0 test al,al 452 // 75f7 jne -9 453 static const u8 kPrologueWithShortJump2[] = { 454 0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1, 455 0x84, 0xc0, 0x75, 0xf7, 456 }; 457 #endif 458 459 // Returns 0 on error. 460 static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) { 461 #if SANITIZER_ARM64 462 // An ARM64 instruction is 4 bytes long. 463 return 4; 464 #endif 465 466 # if SANITIZER_WINDOWS_x64 467 if (memcmp((u8*)address, kPrologueWithShortJump1, 468 sizeof(kPrologueWithShortJump1)) == 0 || 469 memcmp((u8*)address, kPrologueWithShortJump2, 470 sizeof(kPrologueWithShortJump2)) == 0) { 471 return 0; 472 } 473 #endif 474 475 switch (*(u64*)address) { 476 case 0x90909090909006EB: // stub: jmp over 6 x nop. 477 return 8; 478 } 479 480 switch (*(u8*)address) { 481 case 0x90: // 90 : nop 482 case 0xC3: // C3 : ret (for small/empty function interception 483 case 0xCC: // CC : int 3 i.e. registering weak functions) 484 return 1; 485 486 case 0x50: // push eax / rax 487 case 0x51: // push ecx / rcx 488 case 0x52: // push edx / rdx 489 case 0x53: // push ebx / rbx 490 case 0x54: // push esp / rsp 491 case 0x55: // push ebp / rbp 492 case 0x56: // push esi / rsi 493 case 0x57: // push edi / rdi 494 case 0x5D: // pop ebp / rbp 495 return 1; 496 497 case 0x6A: // 6A XX = push XX 498 return 2; 499 500 case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX 501 case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX 502 return 5; 503 504 // Cannot overwrite control-instruction. Return 0 to indicate failure. 505 case 0xE9: // E9 XX XX XX XX : jmp <label> 506 case 0xE8: // E8 XX XX XX XX : call <func> 507 case 0xEB: // EB XX : jmp XX (short jump) 508 case 0x70: // 7Y YY : jy XX (short conditional jump) 509 case 0x71: 510 case 0x72: 511 case 0x73: 512 case 0x74: 513 case 0x75: 514 case 0x76: 515 case 0x77: 516 case 0x78: 517 case 0x79: 518 case 0x7A: 519 case 0x7B: 520 case 0x7C: 521 case 0x7D: 522 case 0x7E: 523 case 0x7F: 524 return 0; 525 } 526 527 switch (*(u16*)(address)) { 528 case 0x018A: // 8A 01 : mov al, byte ptr [ecx] 529 case 0xFF8B: // 8B FF : mov edi, edi 530 case 0xEC8B: // 8B EC : mov ebp, esp 531 case 0xc889: // 89 C8 : mov eax, ecx 532 case 0xE589: // 89 E5 : mov ebp, esp 533 case 0xC18B: // 8B C1 : mov eax, ecx 534 case 0xC033: // 33 C0 : xor eax, eax 535 case 0xC933: // 33 C9 : xor ecx, ecx 536 case 0xD233: // 33 D2 : xor edx, edx 537 return 2; 538 539 // Cannot overwrite control-instruction. Return 0 to indicate failure. 540 case 0x25FF: // FF 25 XX XX XX XX : jmp [XXXXXXXX] 541 return 0; 542 } 543 544 switch (0x00FFFFFF & *(u32*)address) { 545 case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX] 546 return 7; 547 } 548 549 switch (0x000000FF & *(u32 *)address) { 550 case 0xc2: // C2 XX XX : ret XX (needed for registering weak functions) 551 return 3; 552 } 553 554 # if SANITIZER_WINDOWS_x64 555 switch (*(u8*)address) { 556 case 0xA1: // A1 XX XX XX XX XX XX XX XX : 557 // movabs eax, dword ptr ds:[XXXXXXXX] 558 return 9; 559 560 case 0x83: 561 const u8 next_byte = *(u8*)(address + 1); 562 const u8 mod = next_byte >> 6; 563 const u8 rm = next_byte & 7; 564 if (mod == 1 && rm == 4) 565 return 5; // 83 ModR/M SIB Disp8 Imm8 566 // add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8 567 } 568 569 switch (*(u16*)address) { 570 case 0x5040: // push rax 571 case 0x5140: // push rcx 572 case 0x5240: // push rdx 573 case 0x5340: // push rbx 574 case 0x5440: // push rsp 575 case 0x5540: // push rbp 576 case 0x5640: // push rsi 577 case 0x5740: // push rdi 578 case 0x5441: // push r12 579 case 0x5541: // push r13 580 case 0x5641: // push r14 581 case 0x5741: // push r15 582 case 0x9066: // Two-byte NOP 583 case 0xc084: // test al, al 584 case 0x018a: // mov al, byte ptr [rcx] 585 return 2; 586 587 case 0x058A: // 8A 05 XX XX XX XX : mov al, byte ptr [XX XX XX XX] 588 case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX] 589 if (rel_offset) 590 *rel_offset = 2; 591 return 6; 592 } 593 594 switch (0x00FFFFFF & *(u32*)address) { 595 case 0xe58948: // 48 8b c4 : mov rbp, rsp 596 case 0xc18b48: // 48 8b c1 : mov rax, rcx 597 case 0xc48b48: // 48 8b c4 : mov rax, rsp 598 case 0xd9f748: // 48 f7 d9 : neg rcx 599 case 0xd12b48: // 48 2b d1 : sub rdx, rcx 600 case 0x07c1f6: // f6 c1 07 : test cl, 0x7 601 case 0xc98548: // 48 85 C9 : test rcx, rcx 602 case 0xd28548: // 48 85 d2 : test rdx, rdx 603 case 0xc0854d: // 4d 85 c0 : test r8, r8 604 case 0xc2b60f: // 0f b6 c2 : movzx eax, dl 605 case 0xc03345: // 45 33 c0 : xor r8d, r8d 606 case 0xc93345: // 45 33 c9 : xor r9d, r9d 607 case 0xdb3345: // 45 33 DB : xor r11d, r11d 608 case 0xd98b4c: // 4c 8b d9 : mov r11, rcx 609 case 0xd28b4c: // 4c 8b d2 : mov r10, rdx 610 case 0xc98b4c: // 4C 8B C9 : mov r9, rcx 611 case 0xc18b4c: // 4C 8B C1 : mov r8, rcx 612 case 0xd2b60f: // 0f b6 d2 : movzx edx, dl 613 case 0xca2b48: // 48 2b ca : sub rcx, rdx 614 case 0xca3b48: // 48 3b ca : cmp rcx, rdx 615 case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax] 616 case 0xc00b4d: // 3d 0b c0 : or r8, r8 617 case 0xc08b41: // 41 8b c0 : mov eax, r8d 618 case 0xd18b48: // 48 8b d1 : mov rdx, rcx 619 case 0xdc8b4c: // 4c 8b dc : mov r11, rsp 620 case 0xd18b4c: // 4c 8b d1 : mov r10, rcx 621 case 0xE0E483: // 83 E4 E0 : and esp, 0xFFFFFFE0 622 return 3; 623 624 case 0xec8348: // 48 83 ec XX : sub rsp, XX 625 case 0xf88349: // 49 83 f8 XX : cmp r8, XX 626 case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx 627 return 4; 628 629 case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX 630 return 7; 631 632 case 0x058b48: // 48 8b 05 XX XX XX XX : 633 // mov rax, QWORD PTR [rip + XXXXXXXX] 634 case 0x058d48: // 48 8d 05 XX XX XX XX : 635 // lea rax, QWORD PTR [rip + XXXXXXXX] 636 case 0x25ff48: // 48 ff 25 XX XX XX XX : 637 // rex.W jmp QWORD PTR [rip + XXXXXXXX] 638 case 0x158D4C: // 4c 8d 15 XX XX XX XX : lea r10, [rip + XX] 639 // Instructions having offset relative to 'rip' need offset adjustment. 640 if (rel_offset) 641 *rel_offset = 3; 642 return 7; 643 644 case 0x2444c7: // C7 44 24 XX YY YY YY YY 645 // mov dword ptr [rsp + XX], YYYYYYYY 646 return 8; 647 } 648 649 switch (*(u32*)(address)) { 650 case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX] 651 case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp 652 case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx 653 case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi 654 case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi 655 case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx 656 case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx 657 case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9 658 case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8 659 return 5; 660 case 0x24648348: // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY 661 return 6; 662 } 663 664 #else 665 666 switch (*(u8*)address) { 667 case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX] 668 return 5; 669 } 670 switch (*(u16*)address) { 671 case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX] 672 case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX] 673 case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX] 674 case 0xEC83: // 83 EC XX : sub esp, XX 675 case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX] 676 return 3; 677 case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX 678 case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX] 679 return 6; 680 case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX 681 return 7; 682 case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY 683 return 4; 684 } 685 686 switch (0x00FFFFFF & *(u32*)address) { 687 case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX] 688 case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX] 689 case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX] 690 case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX] 691 case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX] 692 case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX] 693 case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX] 694 case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX] 695 return 4; 696 } 697 698 switch (*(u32*)address) { 699 case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX] 700 return 5; 701 } 702 #endif 703 704 // Unknown instruction! This might happen when we add a new interceptor, use 705 // a new compiler version, or if Windows changed how some functions are 706 // compiled. In either case, we print the address and 8 bytes of instructions 707 // to notify the user about the error and to help identify the unknown 708 // instruction. Don't treat this as a fatal error, though we can break the 709 // debugger if one has been attached. 710 u8 *bytes = (u8 *)address; 711 ReportError( 712 "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x " 713 "%02x %02x %02x\n", 714 (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], 715 bytes[5], bytes[6], bytes[7]); 716 if (::IsDebuggerPresent()) 717 __debugbreak(); 718 return 0; 719 } 720 721 // Returns 0 on error. 722 static size_t RoundUpToInstrBoundary(size_t size, uptr address) { 723 size_t cursor = 0; 724 while (cursor < size) { 725 size_t instruction_size = GetInstructionSize(address + cursor); 726 if (!instruction_size) 727 return 0; 728 cursor += instruction_size; 729 } 730 return cursor; 731 } 732 733 static bool CopyInstructions(uptr to, uptr from, size_t size) { 734 size_t cursor = 0; 735 while (cursor != size) { 736 size_t rel_offset = 0; 737 size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset); 738 if (!instruction_size) 739 return false; 740 _memcpy((void *)(to + cursor), (void *)(from + cursor), 741 (size_t)instruction_size); 742 if (rel_offset) { 743 # if SANITIZER_WINDOWS64 744 // we want to make sure that the new relative offset still fits in 32-bits 745 // this will be untrue if relocated_offset \notin [-2**31, 2**31) 746 s64 delta = to - from; 747 s64 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; 748 if (-0x8000'0000ll > relocated_offset || relocated_offset > 0x7FFF'FFFFll) 749 return false; 750 # else 751 // on 32-bit, the relative offset will always be correct 752 s32 delta = to - from; 753 s32 relocated_offset = *(s32 *)(to + cursor + rel_offset) - delta; 754 # endif 755 *(s32 *)(to + cursor + rel_offset) = relocated_offset; 756 } 757 cursor += instruction_size; 758 } 759 return true; 760 } 761 762 763 #if !SANITIZER_WINDOWS64 764 bool OverrideFunctionWithDetour( 765 uptr old_func, uptr new_func, uptr *orig_old_func) { 766 const int kDetourHeaderLen = 5; 767 const u16 kDetourInstruction = 0xFF8B; 768 769 uptr header = (uptr)old_func - kDetourHeaderLen; 770 uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength; 771 772 // Validate that the function is hookable. 773 if (*(u16*)old_func != kDetourInstruction || 774 !IsMemoryPadding(header, kDetourHeaderLen)) 775 return false; 776 777 // Change memory protection to writable. 778 DWORD protection = 0; 779 if (!ChangeMemoryProtection(header, patch_length, &protection)) 780 return false; 781 782 // Write a relative jump to the redirected function. 783 WriteJumpInstruction(header, new_func); 784 785 // Write the short jump to the function prefix. 786 WriteShortJumpInstruction(old_func, header); 787 788 // Restore previous memory protection. 789 if (!RestoreMemoryProtection(header, patch_length, protection)) 790 return false; 791 792 if (orig_old_func) 793 *orig_old_func = old_func + kShortJumpInstructionLength; 794 795 return true; 796 } 797 #endif 798 799 bool OverrideFunctionWithRedirectJump( 800 uptr old_func, uptr new_func, uptr *orig_old_func) { 801 // Check whether the first instruction is a relative jump. 802 if (*(u8*)old_func != 0xE9) 803 return false; 804 805 if (orig_old_func) { 806 sptr relative_offset = *(s32 *)(old_func + 1); 807 uptr absolute_target = old_func + relative_offset + kJumpInstructionLength; 808 *orig_old_func = absolute_target; 809 } 810 811 #if SANITIZER_WINDOWS64 812 // If needed, get memory space for a trampoline jump. 813 uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength); 814 if (!trampoline) 815 return false; 816 WriteDirectBranch(trampoline, new_func); 817 #endif 818 819 // Change memory protection to writable. 820 DWORD protection = 0; 821 if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection)) 822 return false; 823 824 // Write a relative jump to the redirected function. 825 WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline)); 826 827 // Restore previous memory protection. 828 if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection)) 829 return false; 830 831 return true; 832 } 833 834 bool OverrideFunctionWithHotPatch( 835 uptr old_func, uptr new_func, uptr *orig_old_func) { 836 const int kHotPatchHeaderLen = kBranchLength; 837 838 uptr header = (uptr)old_func - kHotPatchHeaderLen; 839 uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength; 840 841 // Validate that the function is hot patchable. 842 size_t instruction_size = GetInstructionSize(old_func); 843 if (instruction_size < kShortJumpInstructionLength || 844 !FunctionHasPadding(old_func, kHotPatchHeaderLen)) 845 return false; 846 847 if (orig_old_func) { 848 // Put the needed instructions into the trampoline bytes. 849 uptr trampoline_length = instruction_size + kDirectBranchLength; 850 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); 851 if (!trampoline) 852 return false; 853 if (!CopyInstructions(trampoline, old_func, instruction_size)) 854 return false; 855 WriteDirectBranch(trampoline + instruction_size, 856 old_func + instruction_size); 857 *orig_old_func = trampoline; 858 } 859 860 // If needed, get memory space for indirect address. 861 uptr indirect_address = 0; 862 #if SANITIZER_WINDOWS64 863 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); 864 if (!indirect_address) 865 return false; 866 #endif 867 868 // Change memory protection to writable. 869 DWORD protection = 0; 870 if (!ChangeMemoryProtection(header, patch_length, &protection)) 871 return false; 872 873 // Write jumps to the redirected function. 874 WriteBranch(header, indirect_address, new_func); 875 WriteShortJumpInstruction(old_func, header); 876 877 // Restore previous memory protection. 878 if (!RestoreMemoryProtection(header, patch_length, protection)) 879 return false; 880 881 return true; 882 } 883 884 bool OverrideFunctionWithTrampoline( 885 uptr old_func, uptr new_func, uptr *orig_old_func) { 886 887 size_t instructions_length = kBranchLength; 888 size_t padding_length = 0; 889 uptr indirect_address = 0; 890 891 if (orig_old_func) { 892 // Find out the number of bytes of the instructions we need to copy 893 // to the trampoline. 894 instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func); 895 if (!instructions_length) 896 return false; 897 898 // Put the needed instructions into the trampoline bytes. 899 uptr trampoline_length = instructions_length + kDirectBranchLength; 900 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); 901 if (!trampoline) 902 return false; 903 if (!CopyInstructions(trampoline, old_func, instructions_length)) 904 return false; 905 WriteDirectBranch(trampoline + instructions_length, 906 old_func + instructions_length); 907 *orig_old_func = trampoline; 908 } 909 910 #if SANITIZER_WINDOWS64 911 // Check if the targeted address can be encoded in the function padding. 912 // Otherwise, allocate it in the trampoline region. 913 if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) { 914 indirect_address = old_func - kAddressLength; 915 padding_length = kAddressLength; 916 } else { 917 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); 918 if (!indirect_address) 919 return false; 920 } 921 #endif 922 923 // Change memory protection to writable. 924 uptr patch_address = old_func - padding_length; 925 uptr patch_length = instructions_length + padding_length; 926 DWORD protection = 0; 927 if (!ChangeMemoryProtection(patch_address, patch_length, &protection)) 928 return false; 929 930 // Patch the original function. 931 WriteBranch(old_func, indirect_address, new_func); 932 933 // Restore previous memory protection. 934 if (!RestoreMemoryProtection(patch_address, patch_length, protection)) 935 return false; 936 937 return true; 938 } 939 940 bool OverrideFunction( 941 uptr old_func, uptr new_func, uptr *orig_old_func) { 942 #if !SANITIZER_WINDOWS64 943 if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func)) 944 return true; 945 #endif 946 if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func)) 947 return true; 948 if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func)) 949 return true; 950 if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func)) 951 return true; 952 return false; 953 } 954 955 static void **InterestingDLLsAvailable() { 956 static const char *InterestingDLLs[] = { 957 "kernel32.dll", 958 "msvcr100d.dll", // VS2010 959 "msvcr110d.dll", // VS2012 960 "msvcr120d.dll", // VS2013 961 "vcruntime140d.dll", // VS2015 962 "ucrtbased.dll", // Universal CRT 963 "msvcr100.dll", // VS2010 964 "msvcr110.dll", // VS2012 965 "msvcr120.dll", // VS2013 966 "vcruntime140.dll", // VS2015 967 "ucrtbase.dll", // Universal CRT 968 # if (defined(__MINGW32__) && defined(__i386__)) 969 "libc++.dll", // libc++ 970 "libunwind.dll", // libunwind 971 # endif 972 // NTDLL should go last as it exports some functions that we should 973 // override in the CRT [presumably only used internally]. 974 "ntdll.dll", 975 NULL 976 }; 977 static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 }; 978 if (!result[0]) { 979 for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) { 980 if (HMODULE h = GetModuleHandleA(InterestingDLLs[i])) 981 result[j++] = (void *)h; 982 } 983 } 984 return &result[0]; 985 } 986 987 namespace { 988 // Utility for reading loaded PE images. 989 template <typename T> class RVAPtr { 990 public: 991 RVAPtr(void *module, uptr rva) 992 : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {} 993 operator T *() { return ptr_; } 994 T *operator->() { return ptr_; } 995 T *operator++() { return ++ptr_; } 996 997 private: 998 T *ptr_; 999 }; 1000 } // namespace 1001 1002 // Internal implementation of GetProcAddress. At least since Windows 8, 1003 // GetProcAddress appears to initialize DLLs before returning function pointers 1004 // into them. This is problematic for the sanitizers, because they typically 1005 // want to intercept malloc *before* MSVCRT initializes. Our internal 1006 // implementation walks the export list manually without doing initialization. 1007 uptr InternalGetProcAddress(void *module, const char *func_name) { 1008 // Check that the module header is full and present. 1009 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); 1010 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); 1011 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" 1012 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" 1013 headers->FileHeader.SizeOfOptionalHeader < 1014 sizeof(IMAGE_OPTIONAL_HEADER)) { 1015 return 0; 1016 } 1017 1018 IMAGE_DATA_DIRECTORY *export_directory = 1019 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; 1020 if (export_directory->Size == 0) 1021 return 0; 1022 RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module, 1023 export_directory->VirtualAddress); 1024 RVAPtr<DWORD> functions(module, exports->AddressOfFunctions); 1025 RVAPtr<DWORD> names(module, exports->AddressOfNames); 1026 RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals); 1027 1028 for (DWORD i = 0; i < exports->NumberOfNames; i++) { 1029 RVAPtr<char> name(module, names[i]); 1030 if (!strcmp(func_name, name)) { 1031 DWORD index = ordinals[i]; 1032 RVAPtr<char> func(module, functions[index]); 1033 1034 // Handle forwarded functions. 1035 DWORD offset = functions[index]; 1036 if (offset >= export_directory->VirtualAddress && 1037 offset < export_directory->VirtualAddress + export_directory->Size) { 1038 // An entry for a forwarded function is a string with the following 1039 // format: "<module> . <function_name>" that is stored into the 1040 // exported directory. 1041 char function_name[256]; 1042 size_t funtion_name_length = _strlen(func); 1043 if (funtion_name_length >= sizeof(function_name) - 1) 1044 InterceptionFailed(); 1045 1046 _memcpy(function_name, func, funtion_name_length); 1047 function_name[funtion_name_length] = '\0'; 1048 char* separator = _strchr(function_name, '.'); 1049 if (!separator) 1050 InterceptionFailed(); 1051 *separator = '\0'; 1052 1053 void* redirected_module = GetModuleHandleA(function_name); 1054 if (!redirected_module) 1055 InterceptionFailed(); 1056 return InternalGetProcAddress(redirected_module, separator + 1); 1057 } 1058 1059 return (uptr)(char *)func; 1060 } 1061 } 1062 1063 return 0; 1064 } 1065 1066 bool OverrideFunction( 1067 const char *func_name, uptr new_func, uptr *orig_old_func) { 1068 bool hooked = false; 1069 void **DLLs = InterestingDLLsAvailable(); 1070 for (size_t i = 0; DLLs[i]; ++i) { 1071 uptr func_addr = InternalGetProcAddress(DLLs[i], func_name); 1072 if (func_addr && 1073 OverrideFunction(func_addr, new_func, orig_old_func)) { 1074 hooked = true; 1075 } 1076 } 1077 return hooked; 1078 } 1079 1080 bool OverrideImportedFunction(const char *module_to_patch, 1081 const char *imported_module, 1082 const char *function_name, uptr new_function, 1083 uptr *orig_old_func) { 1084 HMODULE module = GetModuleHandleA(module_to_patch); 1085 if (!module) 1086 return false; 1087 1088 // Check that the module header is full and present. 1089 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); 1090 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); 1091 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" 1092 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" 1093 headers->FileHeader.SizeOfOptionalHeader < 1094 sizeof(IMAGE_OPTIONAL_HEADER)) { 1095 return false; 1096 } 1097 1098 IMAGE_DATA_DIRECTORY *import_directory = 1099 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; 1100 1101 // Iterate the list of imported DLLs. FirstThunk will be null for the last 1102 // entry. 1103 RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module, 1104 import_directory->VirtualAddress); 1105 for (; imports->FirstThunk != 0; ++imports) { 1106 RVAPtr<const char> modname(module, imports->Name); 1107 if (_stricmp(&*modname, imported_module) == 0) 1108 break; 1109 } 1110 if (imports->FirstThunk == 0) 1111 return false; 1112 1113 // We have two parallel arrays: the import address table (IAT) and the table 1114 // of names. They start out containing the same data, but the loader rewrites 1115 // the IAT to hold imported addresses and leaves the name table in 1116 // OriginalFirstThunk alone. 1117 RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk); 1118 RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk); 1119 for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) { 1120 if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) { 1121 RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name( 1122 module, name_table->u1.ForwarderString); 1123 const char *funcname = &import_by_name->Name[0]; 1124 if (strcmp(funcname, function_name) == 0) 1125 break; 1126 } 1127 } 1128 if (name_table->u1.Ordinal == 0) 1129 return false; 1130 1131 // Now we have the correct IAT entry. Do the swap. We have to make the page 1132 // read/write first. 1133 if (orig_old_func) 1134 *orig_old_func = iat->u1.AddressOfData; 1135 DWORD old_prot, unused_prot; 1136 if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE, 1137 &old_prot)) 1138 return false; 1139 iat->u1.AddressOfData = new_function; 1140 if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot)) 1141 return false; // Not clear if this failure bothers us. 1142 return true; 1143 } 1144 1145 } // namespace __interception 1146 1147 #endif // SANITIZER_APPLE 1148