1 //===-- interception_linux.cpp ----------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of AddressSanitizer, an address sanity checker. 10 // 11 // Windows-specific interception methods. 12 // 13 // This file is implementing several hooking techniques to intercept calls 14 // to functions. The hooks are dynamically installed by modifying the assembly 15 // code. 16 // 17 // The hooking techniques are making assumptions on the way the code is 18 // generated and are safe under these assumptions. 19 // 20 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow 21 // arbitrary branching on the whole memory space, the notion of trampoline 22 // region is used. A trampoline region is a memory space withing 2G boundary 23 // where it is safe to add custom assembly code to build 64-bit jumps. 24 // 25 // Hooking techniques 26 // ================== 27 // 28 // 1) Detour 29 // 30 // The Detour hooking technique is assuming the presence of an header with 31 // padding and an overridable 2-bytes nop instruction (mov edi, edi). The 32 // nop instruction can safely be replaced by a 2-bytes jump without any need 33 // to save the instruction. A jump to the target is encoded in the function 34 // header and the nop instruction is replaced by a short jump to the header. 35 // 36 // head: 5 x nop head: jmp <hook> 37 // func: mov edi, edi --> func: jmp short <head> 38 // [...] real: [...] 39 // 40 // This technique is only implemented on 32-bit architecture. 41 // Most of the time, Windows API are hookable with the detour technique. 42 // 43 // 2) Redirect Jump 44 // 45 // The redirect jump is applicable when the first instruction is a direct 46 // jump. The instruction is replaced by jump to the hook. 47 // 48 // func: jmp <label> --> func: jmp <hook> 49 // 50 // On an 64-bit architecture, a trampoline is inserted. 51 // 52 // func: jmp <label> --> func: jmp <tramp> 53 // [...] 54 // 55 // [trampoline] 56 // tramp: jmp QWORD [addr] 57 // addr: .bytes <hook> 58 // 59 // Note: <real> is equivalent to <label>. 60 // 61 // 3) HotPatch 62 // 63 // The HotPatch hooking is assuming the presence of an header with padding 64 // and a first instruction with at least 2-bytes. 65 // 66 // The reason to enforce the 2-bytes limitation is to provide the minimal 67 // space to encode a short jump. HotPatch technique is only rewriting one 68 // instruction to avoid breaking a sequence of instructions containing a 69 // branching target. 70 // 71 // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag. 72 // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx 73 // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits. 74 // 75 // head: 5 x nop head: jmp <hook> 76 // func: <instr> --> func: jmp short <head> 77 // [...] body: [...] 78 // 79 // [trampoline] 80 // real: <instr> 81 // jmp <body> 82 // 83 // On an 64-bit architecture: 84 // 85 // head: 6 x nop head: jmp QWORD [addr1] 86 // func: <instr> --> func: jmp short <head> 87 // [...] body: [...] 88 // 89 // [trampoline] 90 // addr1: .bytes <hook> 91 // real: <instr> 92 // jmp QWORD [addr2] 93 // addr2: .bytes <body> 94 // 95 // 4) Trampoline 96 // 97 // The Trampoline hooking technique is the most aggressive one. It is 98 // assuming that there is a sequence of instructions that can be safely 99 // replaced by a jump (enough room and no incoming branches). 100 // 101 // Unfortunately, these assumptions can't be safely presumed and code may 102 // be broken after hooking. 103 // 104 // func: <instr> --> func: jmp <hook> 105 // <instr> 106 // [...] body: [...] 107 // 108 // [trampoline] 109 // real: <instr> 110 // <instr> 111 // jmp <body> 112 // 113 // On an 64-bit architecture: 114 // 115 // func: <instr> --> func: jmp QWORD [addr1] 116 // <instr> 117 // [...] body: [...] 118 // 119 // [trampoline] 120 // addr1: .bytes <hook> 121 // real: <instr> 122 // <instr> 123 // jmp QWORD [addr2] 124 // addr2: .bytes <body> 125 //===----------------------------------------------------------------------===// 126 127 #include "interception.h" 128 129 #if SANITIZER_WINDOWS 130 #include "sanitizer_common/sanitizer_platform.h" 131 #define WIN32_LEAN_AND_MEAN 132 #include <windows.h> 133 134 namespace __interception { 135 136 static const int kAddressLength = FIRST_32_SECOND_64(4, 8); 137 static const int kJumpInstructionLength = 5; 138 static const int kShortJumpInstructionLength = 2; 139 UNUSED static const int kIndirectJumpInstructionLength = 6; 140 static const int kBranchLength = 141 FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength); 142 static const int kDirectBranchLength = kBranchLength + kAddressLength; 143 144 # if defined(_MSC_VER) 145 # define INTERCEPTION_FORMAT(f, a) 146 # else 147 # define INTERCEPTION_FORMAT(f, a) __attribute__((format(printf, f, a))) 148 # endif 149 150 static void (*ErrorReportCallback)(const char *format, ...) 151 INTERCEPTION_FORMAT(1, 2); 152 153 void SetErrorReportCallback(void (*callback)(const char *format, ...)) { 154 ErrorReportCallback = callback; 155 } 156 157 # define ReportError(...) \ 158 do { \ 159 if (ErrorReportCallback) \ 160 ErrorReportCallback(__VA_ARGS__); \ 161 } while (0) 162 163 static void InterceptionFailed() { 164 ReportError("interception_win: failed due to an unrecoverable error.\n"); 165 // This acts like an abort when no debugger is attached. According to an old 166 // comment, calling abort() leads to an infinite recursion in CheckFailed. 167 __debugbreak(); 168 } 169 170 static bool DistanceIsWithin2Gig(uptr from, uptr target) { 171 #if SANITIZER_WINDOWS64 172 if (from < target) 173 return target - from <= (uptr)0x7FFFFFFFU; 174 else 175 return from - target <= (uptr)0x80000000U; 176 #else 177 // In a 32-bit address space, the address calculation will wrap, so this check 178 // is unnecessary. 179 return true; 180 #endif 181 } 182 183 static uptr GetMmapGranularity() { 184 SYSTEM_INFO si; 185 GetSystemInfo(&si); 186 return si.dwAllocationGranularity; 187 } 188 189 UNUSED static uptr RoundUpTo(uptr size, uptr boundary) { 190 return (size + boundary - 1) & ~(boundary - 1); 191 } 192 193 // FIXME: internal_str* and internal_mem* functions should be moved from the 194 // ASan sources into interception/. 195 196 static size_t _strlen(const char *str) { 197 const char* p = str; 198 while (*p != '\0') ++p; 199 return p - str; 200 } 201 202 static char* _strchr(char* str, char c) { 203 while (*str) { 204 if (*str == c) 205 return str; 206 ++str; 207 } 208 return nullptr; 209 } 210 211 static void _memset(void *p, int value, size_t sz) { 212 for (size_t i = 0; i < sz; ++i) 213 ((char*)p)[i] = (char)value; 214 } 215 216 static void _memcpy(void *dst, void *src, size_t sz) { 217 char *dst_c = (char*)dst, 218 *src_c = (char*)src; 219 for (size_t i = 0; i < sz; ++i) 220 dst_c[i] = src_c[i]; 221 } 222 223 static bool ChangeMemoryProtection( 224 uptr address, uptr size, DWORD *old_protection) { 225 return ::VirtualProtect((void*)address, size, 226 PAGE_EXECUTE_READWRITE, 227 old_protection) != FALSE; 228 } 229 230 static bool RestoreMemoryProtection( 231 uptr address, uptr size, DWORD old_protection) { 232 DWORD unused; 233 return ::VirtualProtect((void*)address, size, 234 old_protection, 235 &unused) != FALSE; 236 } 237 238 static bool IsMemoryPadding(uptr address, uptr size) { 239 u8* function = (u8*)address; 240 for (size_t i = 0; i < size; ++i) 241 if (function[i] != 0x90 && function[i] != 0xCC) 242 return false; 243 return true; 244 } 245 246 static const u8 kHintNop8Bytes[] = { 247 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 248 }; 249 250 template<class T> 251 static bool FunctionHasPrefix(uptr address, const T &pattern) { 252 u8* function = (u8*)address - sizeof(pattern); 253 for (size_t i = 0; i < sizeof(pattern); ++i) 254 if (function[i] != pattern[i]) 255 return false; 256 return true; 257 } 258 259 static bool FunctionHasPadding(uptr address, uptr size) { 260 if (IsMemoryPadding(address - size, size)) 261 return true; 262 if (size <= sizeof(kHintNop8Bytes) && 263 FunctionHasPrefix(address, kHintNop8Bytes)) 264 return true; 265 return false; 266 } 267 268 static void WritePadding(uptr from, uptr size) { 269 _memset((void*)from, 0xCC, (size_t)size); 270 } 271 272 static void WriteJumpInstruction(uptr from, uptr target) { 273 if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target)) { 274 ReportError( 275 "interception_win: cannot write jmp further than 2GB away, from %p to " 276 "%p.\n", 277 (void *)from, (void *)target); 278 InterceptionFailed(); 279 } 280 ptrdiff_t offset = target - from - kJumpInstructionLength; 281 *(u8*)from = 0xE9; 282 *(u32*)(from + 1) = offset; 283 } 284 285 static void WriteShortJumpInstruction(uptr from, uptr target) { 286 sptr offset = target - from - kShortJumpInstructionLength; 287 if (offset < -128 || offset > 127) 288 InterceptionFailed(); 289 *(u8*)from = 0xEB; 290 *(u8*)(from + 1) = (u8)offset; 291 } 292 293 #if SANITIZER_WINDOWS64 294 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) { 295 // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative 296 // offset. 297 // The offset is the distance from then end of the jump instruction to the 298 // memory location containing the targeted address. The displacement is still 299 // 32-bit in x64, so indirect_target must be located within +/- 2GB range. 300 int offset = indirect_target - from - kIndirectJumpInstructionLength; 301 if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength, 302 indirect_target)) { 303 ReportError( 304 "interception_win: cannot write indirect jmp with target further than " 305 "2GB away, from %p to %p.\n", 306 (void *)from, (void *)indirect_target); 307 InterceptionFailed(); 308 } 309 *(u16*)from = 0x25FF; 310 *(u32*)(from + 2) = offset; 311 } 312 #endif 313 314 static void WriteBranch( 315 uptr from, uptr indirect_target, uptr target) { 316 #if SANITIZER_WINDOWS64 317 WriteIndirectJumpInstruction(from, indirect_target); 318 *(u64*)indirect_target = target; 319 #else 320 (void)indirect_target; 321 WriteJumpInstruction(from, target); 322 #endif 323 } 324 325 static void WriteDirectBranch(uptr from, uptr target) { 326 #if SANITIZER_WINDOWS64 327 // Emit an indirect jump through immediately following bytes: 328 // jmp [rip + kBranchLength] 329 // .quad <target> 330 WriteBranch(from, from + kBranchLength, target); 331 #else 332 WriteJumpInstruction(from, target); 333 #endif 334 } 335 336 struct TrampolineMemoryRegion { 337 uptr content; 338 uptr allocated_size; 339 uptr max_size; 340 }; 341 342 UNUSED static const uptr kTrampolineScanLimitRange = 1 << 31; // 2 gig 343 static const int kMaxTrampolineRegion = 1024; 344 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion]; 345 346 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) { 347 #if SANITIZER_WINDOWS64 348 uptr address = image_address; 349 uptr scanned = 0; 350 while (scanned < kTrampolineScanLimitRange) { 351 MEMORY_BASIC_INFORMATION info; 352 if (!::VirtualQuery((void*)address, &info, sizeof(info))) 353 return nullptr; 354 355 // Check whether a region can be allocated at |address|. 356 if (info.State == MEM_FREE && info.RegionSize >= granularity) { 357 void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity), 358 granularity, 359 MEM_RESERVE | MEM_COMMIT, 360 PAGE_EXECUTE_READWRITE); 361 return page; 362 } 363 364 // Move to the next region. 365 address = (uptr)info.BaseAddress + info.RegionSize; 366 scanned += info.RegionSize; 367 } 368 return nullptr; 369 #else 370 return ::VirtualAlloc(nullptr, 371 granularity, 372 MEM_RESERVE | MEM_COMMIT, 373 PAGE_EXECUTE_READWRITE); 374 #endif 375 } 376 377 // Used by unittests to release mapped memory space. 378 void TestOnlyReleaseTrampolineRegions() { 379 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { 380 TrampolineMemoryRegion *current = &TrampolineRegions[bucket]; 381 if (current->content == 0) 382 return; 383 ::VirtualFree((void*)current->content, 0, MEM_RELEASE); 384 current->content = 0; 385 } 386 } 387 388 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) { 389 // Find a region within 2G with enough space to allocate |size| bytes. 390 TrampolineMemoryRegion *region = nullptr; 391 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) { 392 TrampolineMemoryRegion* current = &TrampolineRegions[bucket]; 393 if (current->content == 0) { 394 // No valid region found, allocate a new region. 395 size_t bucket_size = GetMmapGranularity(); 396 void *content = AllocateTrampolineRegion(image_address, bucket_size); 397 if (content == nullptr) 398 return 0U; 399 400 current->content = (uptr)content; 401 current->allocated_size = 0; 402 current->max_size = bucket_size; 403 region = current; 404 break; 405 } else if (current->max_size - current->allocated_size > size) { 406 #if SANITIZER_WINDOWS64 407 // In 64-bits, the memory space must be allocated within 2G boundary. 408 uptr next_address = current->content + current->allocated_size; 409 if (next_address < image_address || 410 next_address - image_address >= 0x7FFF0000) 411 continue; 412 #endif 413 // The space can be allocated in the current region. 414 region = current; 415 break; 416 } 417 } 418 419 // Failed to find a region. 420 if (region == nullptr) 421 return 0U; 422 423 // Allocate the space in the current region. 424 uptr allocated_space = region->content + region->allocated_size; 425 region->allocated_size += size; 426 WritePadding(allocated_space, size); 427 428 return allocated_space; 429 } 430 431 // The following prologues cannot be patched because of the short jump 432 // jumping to the patching region. 433 434 #if SANITIZER_WINDOWS64 435 // ntdll!wcslen in Win11 436 // 488bc1 mov rax,rcx 437 // 0fb710 movzx edx,word ptr [rax] 438 // 4883c002 add rax,2 439 // 6685d2 test dx,dx 440 // 75f4 jne -12 441 static const u8 kPrologueWithShortJump1[] = { 442 0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83, 443 0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4, 444 }; 445 446 // ntdll!strrchr in Win11 447 // 4c8bc1 mov r8,rcx 448 // 8a01 mov al,byte ptr [rcx] 449 // 48ffc1 inc rcx 450 // 84c0 test al,al 451 // 75f7 jne -9 452 static const u8 kPrologueWithShortJump2[] = { 453 0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1, 454 0x84, 0xc0, 0x75, 0xf7, 455 }; 456 #endif 457 458 // Returns 0 on error. 459 static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) { 460 #if SANITIZER_WINDOWS64 461 if (memcmp((u8*)address, kPrologueWithShortJump1, 462 sizeof(kPrologueWithShortJump1)) == 0 || 463 memcmp((u8*)address, kPrologueWithShortJump2, 464 sizeof(kPrologueWithShortJump2)) == 0) { 465 return 0; 466 } 467 #endif 468 469 switch (*(u64*)address) { 470 case 0x90909090909006EB: // stub: jmp over 6 x nop. 471 return 8; 472 } 473 474 switch (*(u8*)address) { 475 case 0x90: // 90 : nop 476 return 1; 477 478 case 0x50: // push eax / rax 479 case 0x51: // push ecx / rcx 480 case 0x52: // push edx / rdx 481 case 0x53: // push ebx / rbx 482 case 0x54: // push esp / rsp 483 case 0x55: // push ebp / rbp 484 case 0x56: // push esi / rsi 485 case 0x57: // push edi / rdi 486 case 0x5D: // pop ebp / rbp 487 return 1; 488 489 case 0x6A: // 6A XX = push XX 490 return 2; 491 492 case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX 493 case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX 494 return 5; 495 496 // Cannot overwrite control-instruction. Return 0 to indicate failure. 497 case 0xE9: // E9 XX XX XX XX : jmp <label> 498 case 0xE8: // E8 XX XX XX XX : call <func> 499 case 0xC3: // C3 : ret 500 case 0xEB: // EB XX : jmp XX (short jump) 501 case 0x70: // 7Y YY : jy XX (short conditional jump) 502 case 0x71: 503 case 0x72: 504 case 0x73: 505 case 0x74: 506 case 0x75: 507 case 0x76: 508 case 0x77: 509 case 0x78: 510 case 0x79: 511 case 0x7A: 512 case 0x7B: 513 case 0x7C: 514 case 0x7D: 515 case 0x7E: 516 case 0x7F: 517 return 0; 518 } 519 520 switch (*(u16*)(address)) { 521 case 0x018A: // 8A 01 : mov al, byte ptr [ecx] 522 case 0xFF8B: // 8B FF : mov edi, edi 523 case 0xEC8B: // 8B EC : mov ebp, esp 524 case 0xc889: // 89 C8 : mov eax, ecx 525 case 0xE589: // 89 E5 : mov ebp, esp 526 case 0xC18B: // 8B C1 : mov eax, ecx 527 case 0xC033: // 33 C0 : xor eax, eax 528 case 0xC933: // 33 C9 : xor ecx, ecx 529 case 0xD233: // 33 D2 : xor edx, edx 530 return 2; 531 532 // Cannot overwrite control-instruction. Return 0 to indicate failure. 533 case 0x25FF: // FF 25 XX XX XX XX : jmp [XXXXXXXX] 534 return 0; 535 } 536 537 switch (0x00FFFFFF & *(u32*)address) { 538 case 0x24A48D: // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX] 539 return 7; 540 } 541 542 #if SANITIZER_WINDOWS64 543 switch (*(u8*)address) { 544 case 0xA1: // A1 XX XX XX XX XX XX XX XX : 545 // movabs eax, dword ptr ds:[XXXXXXXX] 546 return 9; 547 548 case 0x83: 549 const u8 next_byte = *(u8*)(address + 1); 550 const u8 mod = next_byte >> 6; 551 const u8 rm = next_byte & 7; 552 if (mod == 1 && rm == 4) 553 return 5; // 83 ModR/M SIB Disp8 Imm8 554 // add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8 555 } 556 557 switch (*(u16*)address) { 558 case 0x5040: // push rax 559 case 0x5140: // push rcx 560 case 0x5240: // push rdx 561 case 0x5340: // push rbx 562 case 0x5440: // push rsp 563 case 0x5540: // push rbp 564 case 0x5640: // push rsi 565 case 0x5740: // push rdi 566 case 0x5441: // push r12 567 case 0x5541: // push r13 568 case 0x5641: // push r14 569 case 0x5741: // push r15 570 case 0x9066: // Two-byte NOP 571 case 0xc084: // test al, al 572 case 0x018a: // mov al, byte ptr [rcx] 573 return 2; 574 575 case 0x058B: // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX] 576 if (rel_offset) 577 *rel_offset = 2; 578 return 6; 579 } 580 581 switch (0x00FFFFFF & *(u32*)address) { 582 case 0xe58948: // 48 8b c4 : mov rbp, rsp 583 case 0xc18b48: // 48 8b c1 : mov rax, rcx 584 case 0xc48b48: // 48 8b c4 : mov rax, rsp 585 case 0xd9f748: // 48 f7 d9 : neg rcx 586 case 0xd12b48: // 48 2b d1 : sub rdx, rcx 587 case 0x07c1f6: // f6 c1 07 : test cl, 0x7 588 case 0xc98548: // 48 85 C9 : test rcx, rcx 589 case 0xd28548: // 48 85 d2 : test rdx, rdx 590 case 0xc0854d: // 4d 85 c0 : test r8, r8 591 case 0xc2b60f: // 0f b6 c2 : movzx eax, dl 592 case 0xc03345: // 45 33 c0 : xor r8d, r8d 593 case 0xc93345: // 45 33 c9 : xor r9d, r9d 594 case 0xdb3345: // 45 33 DB : xor r11d, r11d 595 case 0xd98b4c: // 4c 8b d9 : mov r11, rcx 596 case 0xd28b4c: // 4c 8b d2 : mov r10, rdx 597 case 0xc98b4c: // 4C 8B C9 : mov r9, rcx 598 case 0xc18b4c: // 4C 8B C1 : mov r8, rcx 599 case 0xd2b60f: // 0f b6 d2 : movzx edx, dl 600 case 0xca2b48: // 48 2b ca : sub rcx, rdx 601 case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax] 602 case 0xc00b4d: // 3d 0b c0 : or r8, r8 603 case 0xc08b41: // 41 8b c0 : mov eax, r8d 604 case 0xd18b48: // 48 8b d1 : mov rdx, rcx 605 case 0xdc8b4c: // 4c 8b dc : mov r11, rsp 606 case 0xd18b4c: // 4c 8b d1 : mov r10, rcx 607 case 0xE0E483: // 83 E4 E0 : and esp, 0xFFFFFFE0 608 return 3; 609 610 case 0xec8348: // 48 83 ec XX : sub rsp, XX 611 case 0xf88349: // 49 83 f8 XX : cmp r8, XX 612 case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx 613 return 4; 614 615 case 0xec8148: // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX 616 return 7; 617 618 case 0x058b48: // 48 8b 05 XX XX XX XX : 619 // mov rax, QWORD PTR [rip + XXXXXXXX] 620 case 0x25ff48: // 48 ff 25 XX XX XX XX : 621 // rex.W jmp QWORD PTR [rip + XXXXXXXX] 622 623 // Instructions having offset relative to 'rip' need offset adjustment. 624 if (rel_offset) 625 *rel_offset = 3; 626 return 7; 627 628 case 0x2444c7: // C7 44 24 XX YY YY YY YY 629 // mov dword ptr [rsp + XX], YYYYYYYY 630 return 8; 631 } 632 633 switch (*(u32*)(address)) { 634 case 0x24448b48: // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX] 635 case 0x246c8948: // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp 636 case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx 637 case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi 638 case 0x247c8948: // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi 639 case 0x244C8948: // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx 640 case 0x24548948: // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx 641 case 0x244c894c: // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9 642 case 0x2444894c: // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8 643 return 5; 644 case 0x24648348: // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY 645 return 6; 646 } 647 648 #else 649 650 switch (*(u8*)address) { 651 case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX] 652 return 5; 653 } 654 switch (*(u16*)address) { 655 case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX] 656 case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX] 657 case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX] 658 case 0xEC83: // 83 EC XX : sub esp, XX 659 case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX] 660 return 3; 661 case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX 662 case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX] 663 return 6; 664 case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX 665 return 7; 666 case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY 667 return 4; 668 } 669 670 switch (0x00FFFFFF & *(u32*)address) { 671 case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX] 672 case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX] 673 case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX] 674 case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX] 675 case 0x245C8B: // 8B 5C 24 XX : mov ebx, dword ptr [esp + XX] 676 case 0x246C8B: // 8B 6C 24 XX : mov ebp, dword ptr [esp + XX] 677 case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX] 678 case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX] 679 return 4; 680 } 681 682 switch (*(u32*)address) { 683 case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX] 684 return 5; 685 } 686 #endif 687 688 // Unknown instruction! This might happen when we add a new interceptor, use 689 // a new compiler version, or if Windows changed how some functions are 690 // compiled. In either case, we print the address and 8 bytes of instructions 691 // to notify the user about the error and to help identify the unknown 692 // instruction. Don't treat this as a fatal error, though we can break the 693 // debugger if one has been attached. 694 u8 *bytes = (u8 *)address; 695 ReportError( 696 "interception_win: unhandled instruction at %p: %02x %02x %02x %02x %02x " 697 "%02x %02x %02x\n", 698 (void *)address, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], 699 bytes[5], bytes[6], bytes[7]); 700 if (::IsDebuggerPresent()) 701 __debugbreak(); 702 return 0; 703 } 704 705 // Returns 0 on error. 706 static size_t RoundUpToInstrBoundary(size_t size, uptr address) { 707 size_t cursor = 0; 708 while (cursor < size) { 709 size_t instruction_size = GetInstructionSize(address + cursor); 710 if (!instruction_size) 711 return 0; 712 cursor += instruction_size; 713 } 714 return cursor; 715 } 716 717 static bool CopyInstructions(uptr to, uptr from, size_t size) { 718 size_t cursor = 0; 719 while (cursor != size) { 720 size_t rel_offset = 0; 721 size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset); 722 if (!instruction_size) 723 return false; 724 _memcpy((void*)(to + cursor), (void*)(from + cursor), 725 (size_t)instruction_size); 726 if (rel_offset) { 727 uptr delta = to - from; 728 uptr relocated_offset = *(u32*)(to + cursor + rel_offset) - delta; 729 #if SANITIZER_WINDOWS64 730 if (relocated_offset + 0x80000000U >= 0xFFFFFFFFU) 731 return false; 732 #endif 733 *(u32*)(to + cursor + rel_offset) = relocated_offset; 734 } 735 cursor += instruction_size; 736 } 737 return true; 738 } 739 740 741 #if !SANITIZER_WINDOWS64 742 bool OverrideFunctionWithDetour( 743 uptr old_func, uptr new_func, uptr *orig_old_func) { 744 const int kDetourHeaderLen = 5; 745 const u16 kDetourInstruction = 0xFF8B; 746 747 uptr header = (uptr)old_func - kDetourHeaderLen; 748 uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength; 749 750 // Validate that the function is hookable. 751 if (*(u16*)old_func != kDetourInstruction || 752 !IsMemoryPadding(header, kDetourHeaderLen)) 753 return false; 754 755 // Change memory protection to writable. 756 DWORD protection = 0; 757 if (!ChangeMemoryProtection(header, patch_length, &protection)) 758 return false; 759 760 // Write a relative jump to the redirected function. 761 WriteJumpInstruction(header, new_func); 762 763 // Write the short jump to the function prefix. 764 WriteShortJumpInstruction(old_func, header); 765 766 // Restore previous memory protection. 767 if (!RestoreMemoryProtection(header, patch_length, protection)) 768 return false; 769 770 if (orig_old_func) 771 *orig_old_func = old_func + kShortJumpInstructionLength; 772 773 return true; 774 } 775 #endif 776 777 bool OverrideFunctionWithRedirectJump( 778 uptr old_func, uptr new_func, uptr *orig_old_func) { 779 // Check whether the first instruction is a relative jump. 780 if (*(u8*)old_func != 0xE9) 781 return false; 782 783 if (orig_old_func) { 784 sptr relative_offset = *(s32 *)(old_func + 1); 785 uptr absolute_target = old_func + relative_offset + kJumpInstructionLength; 786 *orig_old_func = absolute_target; 787 } 788 789 #if SANITIZER_WINDOWS64 790 // If needed, get memory space for a trampoline jump. 791 uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength); 792 if (!trampoline) 793 return false; 794 WriteDirectBranch(trampoline, new_func); 795 #endif 796 797 // Change memory protection to writable. 798 DWORD protection = 0; 799 if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection)) 800 return false; 801 802 // Write a relative jump to the redirected function. 803 WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline)); 804 805 // Restore previous memory protection. 806 if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection)) 807 return false; 808 809 return true; 810 } 811 812 bool OverrideFunctionWithHotPatch( 813 uptr old_func, uptr new_func, uptr *orig_old_func) { 814 const int kHotPatchHeaderLen = kBranchLength; 815 816 uptr header = (uptr)old_func - kHotPatchHeaderLen; 817 uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength; 818 819 // Validate that the function is hot patchable. 820 size_t instruction_size = GetInstructionSize(old_func); 821 if (instruction_size < kShortJumpInstructionLength || 822 !FunctionHasPadding(old_func, kHotPatchHeaderLen)) 823 return false; 824 825 if (orig_old_func) { 826 // Put the needed instructions into the trampoline bytes. 827 uptr trampoline_length = instruction_size + kDirectBranchLength; 828 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); 829 if (!trampoline) 830 return false; 831 if (!CopyInstructions(trampoline, old_func, instruction_size)) 832 return false; 833 WriteDirectBranch(trampoline + instruction_size, 834 old_func + instruction_size); 835 *orig_old_func = trampoline; 836 } 837 838 // If needed, get memory space for indirect address. 839 uptr indirect_address = 0; 840 #if SANITIZER_WINDOWS64 841 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); 842 if (!indirect_address) 843 return false; 844 #endif 845 846 // Change memory protection to writable. 847 DWORD protection = 0; 848 if (!ChangeMemoryProtection(header, patch_length, &protection)) 849 return false; 850 851 // Write jumps to the redirected function. 852 WriteBranch(header, indirect_address, new_func); 853 WriteShortJumpInstruction(old_func, header); 854 855 // Restore previous memory protection. 856 if (!RestoreMemoryProtection(header, patch_length, protection)) 857 return false; 858 859 return true; 860 } 861 862 bool OverrideFunctionWithTrampoline( 863 uptr old_func, uptr new_func, uptr *orig_old_func) { 864 865 size_t instructions_length = kBranchLength; 866 size_t padding_length = 0; 867 uptr indirect_address = 0; 868 869 if (orig_old_func) { 870 // Find out the number of bytes of the instructions we need to copy 871 // to the trampoline. 872 instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func); 873 if (!instructions_length) 874 return false; 875 876 // Put the needed instructions into the trampoline bytes. 877 uptr trampoline_length = instructions_length + kDirectBranchLength; 878 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length); 879 if (!trampoline) 880 return false; 881 if (!CopyInstructions(trampoline, old_func, instructions_length)) 882 return false; 883 WriteDirectBranch(trampoline + instructions_length, 884 old_func + instructions_length); 885 *orig_old_func = trampoline; 886 } 887 888 #if SANITIZER_WINDOWS64 889 // Check if the targeted address can be encoded in the function padding. 890 // Otherwise, allocate it in the trampoline region. 891 if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) { 892 indirect_address = old_func - kAddressLength; 893 padding_length = kAddressLength; 894 } else { 895 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength); 896 if (!indirect_address) 897 return false; 898 } 899 #endif 900 901 // Change memory protection to writable. 902 uptr patch_address = old_func - padding_length; 903 uptr patch_length = instructions_length + padding_length; 904 DWORD protection = 0; 905 if (!ChangeMemoryProtection(patch_address, patch_length, &protection)) 906 return false; 907 908 // Patch the original function. 909 WriteBranch(old_func, indirect_address, new_func); 910 911 // Restore previous memory protection. 912 if (!RestoreMemoryProtection(patch_address, patch_length, protection)) 913 return false; 914 915 return true; 916 } 917 918 bool OverrideFunction( 919 uptr old_func, uptr new_func, uptr *orig_old_func) { 920 #if !SANITIZER_WINDOWS64 921 if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func)) 922 return true; 923 #endif 924 if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func)) 925 return true; 926 if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func)) 927 return true; 928 if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func)) 929 return true; 930 return false; 931 } 932 933 static void **InterestingDLLsAvailable() { 934 static const char *InterestingDLLs[] = { 935 "kernel32.dll", 936 "msvcr100.dll", // VS2010 937 "msvcr110.dll", // VS2012 938 "msvcr120.dll", // VS2013 939 "vcruntime140.dll", // VS2015 940 "ucrtbase.dll", // Universal CRT 941 #if (defined(__MINGW32__) && defined(__i386__)) 942 "libc++.dll", // libc++ 943 "libunwind.dll", // libunwind 944 #endif 945 // NTDLL should go last as it exports some functions that we should 946 // override in the CRT [presumably only used internally]. 947 "ntdll.dll", NULL}; 948 static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 }; 949 if (!result[0]) { 950 for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) { 951 if (HMODULE h = GetModuleHandleA(InterestingDLLs[i])) 952 result[j++] = (void *)h; 953 } 954 } 955 return &result[0]; 956 } 957 958 namespace { 959 // Utility for reading loaded PE images. 960 template <typename T> class RVAPtr { 961 public: 962 RVAPtr(void *module, uptr rva) 963 : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {} 964 operator T *() { return ptr_; } 965 T *operator->() { return ptr_; } 966 T *operator++() { return ++ptr_; } 967 968 private: 969 T *ptr_; 970 }; 971 } // namespace 972 973 // Internal implementation of GetProcAddress. At least since Windows 8, 974 // GetProcAddress appears to initialize DLLs before returning function pointers 975 // into them. This is problematic for the sanitizers, because they typically 976 // want to intercept malloc *before* MSVCRT initializes. Our internal 977 // implementation walks the export list manually without doing initialization. 978 uptr InternalGetProcAddress(void *module, const char *func_name) { 979 // Check that the module header is full and present. 980 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); 981 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); 982 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" 983 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" 984 headers->FileHeader.SizeOfOptionalHeader < 985 sizeof(IMAGE_OPTIONAL_HEADER)) { 986 return 0; 987 } 988 989 IMAGE_DATA_DIRECTORY *export_directory = 990 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; 991 if (export_directory->Size == 0) 992 return 0; 993 RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module, 994 export_directory->VirtualAddress); 995 RVAPtr<DWORD> functions(module, exports->AddressOfFunctions); 996 RVAPtr<DWORD> names(module, exports->AddressOfNames); 997 RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals); 998 999 for (DWORD i = 0; i < exports->NumberOfNames; i++) { 1000 RVAPtr<char> name(module, names[i]); 1001 if (!strcmp(func_name, name)) { 1002 DWORD index = ordinals[i]; 1003 RVAPtr<char> func(module, functions[index]); 1004 1005 // Handle forwarded functions. 1006 DWORD offset = functions[index]; 1007 if (offset >= export_directory->VirtualAddress && 1008 offset < export_directory->VirtualAddress + export_directory->Size) { 1009 // An entry for a forwarded function is a string with the following 1010 // format: "<module> . <function_name>" that is stored into the 1011 // exported directory. 1012 char function_name[256]; 1013 size_t funtion_name_length = _strlen(func); 1014 if (funtion_name_length >= sizeof(function_name) - 1) 1015 InterceptionFailed(); 1016 1017 _memcpy(function_name, func, funtion_name_length); 1018 function_name[funtion_name_length] = '\0'; 1019 char* separator = _strchr(function_name, '.'); 1020 if (!separator) 1021 InterceptionFailed(); 1022 *separator = '\0'; 1023 1024 void* redirected_module = GetModuleHandleA(function_name); 1025 if (!redirected_module) 1026 InterceptionFailed(); 1027 return InternalGetProcAddress(redirected_module, separator + 1); 1028 } 1029 1030 return (uptr)(char *)func; 1031 } 1032 } 1033 1034 return 0; 1035 } 1036 1037 bool OverrideFunction( 1038 const char *func_name, uptr new_func, uptr *orig_old_func) { 1039 bool hooked = false; 1040 void **DLLs = InterestingDLLsAvailable(); 1041 for (size_t i = 0; DLLs[i]; ++i) { 1042 uptr func_addr = InternalGetProcAddress(DLLs[i], func_name); 1043 if (func_addr && 1044 OverrideFunction(func_addr, new_func, orig_old_func)) { 1045 hooked = true; 1046 } 1047 } 1048 return hooked; 1049 } 1050 1051 bool OverrideImportedFunction(const char *module_to_patch, 1052 const char *imported_module, 1053 const char *function_name, uptr new_function, 1054 uptr *orig_old_func) { 1055 HMODULE module = GetModuleHandleA(module_to_patch); 1056 if (!module) 1057 return false; 1058 1059 // Check that the module header is full and present. 1060 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0); 1061 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew); 1062 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ" 1063 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0" 1064 headers->FileHeader.SizeOfOptionalHeader < 1065 sizeof(IMAGE_OPTIONAL_HEADER)) { 1066 return false; 1067 } 1068 1069 IMAGE_DATA_DIRECTORY *import_directory = 1070 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; 1071 1072 // Iterate the list of imported DLLs. FirstThunk will be null for the last 1073 // entry. 1074 RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module, 1075 import_directory->VirtualAddress); 1076 for (; imports->FirstThunk != 0; ++imports) { 1077 RVAPtr<const char> modname(module, imports->Name); 1078 if (_stricmp(&*modname, imported_module) == 0) 1079 break; 1080 } 1081 if (imports->FirstThunk == 0) 1082 return false; 1083 1084 // We have two parallel arrays: the import address table (IAT) and the table 1085 // of names. They start out containing the same data, but the loader rewrites 1086 // the IAT to hold imported addresses and leaves the name table in 1087 // OriginalFirstThunk alone. 1088 RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk); 1089 RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk); 1090 for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) { 1091 if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) { 1092 RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name( 1093 module, name_table->u1.ForwarderString); 1094 const char *funcname = &import_by_name->Name[0]; 1095 if (strcmp(funcname, function_name) == 0) 1096 break; 1097 } 1098 } 1099 if (name_table->u1.Ordinal == 0) 1100 return false; 1101 1102 // Now we have the correct IAT entry. Do the swap. We have to make the page 1103 // read/write first. 1104 if (orig_old_func) 1105 *orig_old_func = iat->u1.AddressOfData; 1106 DWORD old_prot, unused_prot; 1107 if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE, 1108 &old_prot)) 1109 return false; 1110 iat->u1.AddressOfData = new_function; 1111 if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot)) 1112 return false; // Not clear if this failure bothers us. 1113 return true; 1114 } 1115 1116 } // namespace __interception 1117 1118 #endif // SANITIZER_APPLE 1119