xref: /freebsd/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_report.cpp (revision c66a499e037efd268a744e487e7d0c45a4944a9b)
1 //===-- hwasan_report.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // Error reporting.
12 //===----------------------------------------------------------------------===//
13 
14 #include "hwasan_report.h"
15 
16 #include <dlfcn.h>
17 
18 #include "hwasan.h"
19 #include "hwasan_allocator.h"
20 #include "hwasan_globals.h"
21 #include "hwasan_mapping.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_thread_list.h"
24 #include "sanitizer_common/sanitizer_allocator_internal.h"
25 #include "sanitizer_common/sanitizer_common.h"
26 #include "sanitizer_common/sanitizer_flags.h"
27 #include "sanitizer_common/sanitizer_mutex.h"
28 #include "sanitizer_common/sanitizer_report_decorator.h"
29 #include "sanitizer_common/sanitizer_stackdepot.h"
30 #include "sanitizer_common/sanitizer_stacktrace_printer.h"
31 #include "sanitizer_common/sanitizer_symbolizer.h"
32 
33 using namespace __sanitizer;
34 
35 namespace __hwasan {
36 
37 class ScopedReport {
38  public:
39   ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
40     Lock lock(&error_message_lock_);
41     error_message_ptr_ = fatal ? &error_message_ : nullptr;
42     ++hwasan_report_count;
43   }
44 
45   ~ScopedReport() {
46     void (*report_cb)(const char *);
47     {
48       Lock lock(&error_message_lock_);
49       report_cb = error_report_callback_;
50       error_message_ptr_ = nullptr;
51     }
52     if (report_cb)
53       report_cb(error_message_.data());
54     if (fatal)
55       SetAbortMessage(error_message_.data());
56     if (common_flags()->print_module_map >= 2 ||
57         (fatal && common_flags()->print_module_map))
58       DumpProcessMap();
59     if (fatal)
60       Die();
61   }
62 
63   static void MaybeAppendToErrorMessage(const char *msg) {
64     Lock lock(&error_message_lock_);
65     if (!error_message_ptr_)
66       return;
67     uptr len = internal_strlen(msg);
68     uptr old_size = error_message_ptr_->size();
69     error_message_ptr_->resize(old_size + len);
70     // overwrite old trailing '\0', keep new trailing '\0' untouched.
71     internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
72   }
73 
74   static void SetErrorReportCallback(void (*callback)(const char *)) {
75     Lock lock(&error_message_lock_);
76     error_report_callback_ = callback;
77   }
78 
79  private:
80   ScopedErrorReportLock error_report_lock_;
81   InternalMmapVector<char> error_message_;
82   bool fatal;
83 
84   static InternalMmapVector<char> *error_message_ptr_;
85   static Mutex error_message_lock_;
86   static void (*error_report_callback_)(const char *);
87 };
88 
89 InternalMmapVector<char> *ScopedReport::error_message_ptr_;
90 Mutex ScopedReport::error_message_lock_;
91 void (*ScopedReport::error_report_callback_)(const char *);
92 
93 // If there is an active ScopedReport, append to its error message.
94 void AppendToErrorMessageBuffer(const char *buffer) {
95   ScopedReport::MaybeAppendToErrorMessage(buffer);
96 }
97 
98 static StackTrace GetStackTraceFromId(u32 id) {
99   CHECK(id);
100   StackTrace res = StackDepotGet(id);
101   CHECK(res.trace);
102   return res;
103 }
104 
105 static void MaybePrintAndroidHelpUrl() {
106 #if SANITIZER_ANDROID
107   Printf(
108       "Learn more about HWASan reports: "
109       "https://source.android.com/docs/security/test/memory-safety/"
110       "hwasan-reports\n");
111 #endif
112 }
113 
114 // A RAII object that holds a copy of the current thread stack ring buffer.
115 // The actual stack buffer may change while we are iterating over it (for
116 // example, Printf may call syslog() which can itself be built with hwasan).
117 class SavedStackAllocations {
118  public:
119   SavedStackAllocations(StackAllocationsRingBuffer *rb) {
120     uptr size = rb->size() * sizeof(uptr);
121     void *storage =
122         MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
123     new (&rb_) StackAllocationsRingBuffer(*rb, storage);
124   }
125 
126   ~SavedStackAllocations() {
127     StackAllocationsRingBuffer *rb = get();
128     UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
129   }
130 
131   StackAllocationsRingBuffer *get() {
132     return (StackAllocationsRingBuffer *)&rb_;
133   }
134 
135  private:
136   uptr rb_;
137 };
138 
139 class Decorator: public __sanitizer::SanitizerCommonDecorator {
140  public:
141   Decorator() : SanitizerCommonDecorator() { }
142   const char *Access() { return Blue(); }
143   const char *Allocation() const { return Magenta(); }
144   const char *Origin() const { return Magenta(); }
145   const char *Name() const { return Green(); }
146   const char *Location() { return Green(); }
147   const char *Thread() { return Green(); }
148 };
149 
150 static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
151                                HeapAllocationRecord *har, uptr *ring_index,
152                                uptr *num_matching_addrs,
153                                uptr *num_matching_addrs_4b) {
154   if (!rb) return false;
155 
156   *num_matching_addrs = 0;
157   *num_matching_addrs_4b = 0;
158   for (uptr i = 0, size = rb->size(); i < size; i++) {
159     auto h = (*rb)[i];
160     if (h.tagged_addr <= tagged_addr &&
161         h.tagged_addr + h.requested_size > tagged_addr) {
162       *har = h;
163       *ring_index = i;
164       return true;
165     }
166 
167     // Measure the number of heap ring buffer entries that would have matched
168     // if we had only one entry per address (e.g. if the ring buffer data was
169     // stored at the address itself). This will help us tune the allocator
170     // implementation for MTE.
171     if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
172         UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
173       ++*num_matching_addrs;
174     }
175 
176     // Measure the number of heap ring buffer entries that would have matched
177     // if we only had 4 tag bits, which is the case for MTE.
178     auto untag_4b = [](uptr p) {
179       return p & ((1ULL << 60) - 1);
180     };
181     if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
182         untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
183       ++*num_matching_addrs_4b;
184     }
185   }
186   return false;
187 }
188 
189 static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
190                                   tag_t addr_tag, uptr untagged_addr) {
191   uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
192   bool found_local = false;
193   for (uptr i = 0; i < frames; i++) {
194     const uptr *record_addr = &(*sa)[i];
195     uptr record = *record_addr;
196     if (!record)
197       break;
198     tag_t base_tag =
199         reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
200     uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
201     uptr pc_mask = (1ULL << kRecordFPShift) - 1;
202     uptr pc = record & pc_mask;
203     FrameInfo frame;
204     if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
205       for (LocalInfo &local : frame.locals) {
206         if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
207           continue;
208         tag_t obj_tag = base_tag ^ local.tag_offset;
209         if (obj_tag != addr_tag)
210           continue;
211         // Calculate the offset from the object address to the faulting
212         // address. Because we only store bits 4-19 of FP (bits 0-3 are
213         // guaranteed to be zero), the calculation is performed mod 2^20 and may
214         // harmlessly underflow if the address mod 2^20 is below the object
215         // address.
216         uptr obj_offset =
217             (untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
218         if (obj_offset >= local.size)
219           continue;
220         if (!found_local) {
221           Printf("Potentially referenced stack objects:\n");
222           found_local = true;
223         }
224         Printf("  %s in %s %s:%d\n", local.name, local.function_name,
225                local.decl_file, local.decl_line);
226       }
227       frame.Clear();
228     }
229   }
230 
231   if (found_local)
232     return;
233 
234   // We didn't find any locals. Most likely we don't have symbols, so dump
235   // the information that we have for offline analysis.
236   InternalScopedString frame_desc;
237   Printf("Previously allocated frames:\n");
238   for (uptr i = 0; i < frames; i++) {
239     const uptr *record_addr = &(*sa)[i];
240     uptr record = *record_addr;
241     if (!record)
242       break;
243     uptr pc_mask = (1ULL << 48) - 1;
244     uptr pc = record & pc_mask;
245     frame_desc.append("  record_addr:0x%zx record:0x%zx",
246                       reinterpret_cast<uptr>(record_addr), record);
247     if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
248       RenderFrame(&frame_desc, " %F %L", 0, frame->info.address, &frame->info,
249                   common_flags()->symbolize_vs_style,
250                   common_flags()->strip_path_prefix);
251       frame->ClearAll();
252     }
253     Printf("%s\n", frame_desc.data());
254     frame_desc.clear();
255   }
256 }
257 
258 // Returns true if tag == *tag_ptr, reading tags from short granules if
259 // necessary. This may return a false positive if tags 1-15 are used as a
260 // regular tag rather than a short granule marker.
261 static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
262   if (tag == *tag_ptr)
263     return true;
264   if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
265     return false;
266   uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
267   tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
268   return tag == inline_tag;
269 }
270 
271 // HWASan globals store the size of the global in the descriptor. In cases where
272 // we don't have a binary with symbols, we can't grab the size of the global
273 // from the debug info - but we might be able to retrieve it from the
274 // descriptor. Returns zero if the lookup failed.
275 static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
276   // Find the ELF object that this global resides in.
277   Dl_info info;
278   if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
279     return 0;
280   auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
281   auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
282       reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);
283 
284   // Get the load bias. This is normally the same as the dli_fbase address on
285   // position-independent code, but can be different on non-PIE executables,
286   // binaries using LLD's partitioning feature, or binaries compiled with a
287   // linker script.
288   ElfW(Addr) load_bias = 0;
289   for (const auto &phdr :
290        ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
291     if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
292       continue;
293     load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
294     break;
295   }
296 
297   // Walk all globals in this ELF object, looking for the one we're interested
298   // in. Once we find it, we can stop iterating and return the size of the
299   // global we're interested in.
300   for (const hwasan_global &global :
301        HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
302     if (global.addr() <= ptr && ptr < global.addr() + global.size())
303       return global.size();
304 
305   return 0;
306 }
307 
308 static void ShowHeapOrGlobalCandidate(uptr untagged_addr, tag_t *candidate,
309                                       tag_t *left, tag_t *right) {
310   Decorator d;
311   uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
312   HwasanChunkView chunk = FindHeapChunkByAddress(mem);
313   if (chunk.IsAllocated()) {
314     uptr offset;
315     const char *whence;
316     if (untagged_addr < chunk.End() && untagged_addr >= chunk.Beg()) {
317       offset = untagged_addr - chunk.Beg();
318       whence = "inside";
319     } else if (candidate == left) {
320       offset = untagged_addr - chunk.End();
321       whence = "after";
322     } else {
323       offset = chunk.Beg() - untagged_addr;
324       whence = "before";
325     }
326     Printf("%s", d.Error());
327     Printf("\nCause: heap-buffer-overflow\n");
328     Printf("%s", d.Default());
329     Printf("%s", d.Location());
330     Printf("%p is located %zd bytes %s a %zd-byte region [%p,%p)\n",
331            untagged_addr, offset, whence, chunk.UsedSize(), chunk.Beg(),
332            chunk.End());
333     Printf("%s", d.Allocation());
334     Printf("allocated here:\n");
335     Printf("%s", d.Default());
336     GetStackTraceFromId(chunk.GetAllocStackId()).Print();
337     return;
338   }
339   // Check whether the address points into a loaded library. If so, this is
340   // most likely a global variable.
341   const char *module_name;
342   uptr module_address;
343   Symbolizer *sym = Symbolizer::GetOrInit();
344   if (sym->GetModuleNameAndOffsetForPC(mem, &module_name, &module_address)) {
345     Printf("%s", d.Error());
346     Printf("\nCause: global-overflow\n");
347     Printf("%s", d.Default());
348     DataInfo info;
349     Printf("%s", d.Location());
350     if (sym->SymbolizeData(mem, &info) && info.start) {
351       Printf(
352           "%p is located %zd bytes %s a %zd-byte global variable "
353           "%s [%p,%p) in %s\n",
354           untagged_addr,
355           candidate == left ? untagged_addr - (info.start + info.size)
356                             : info.start - untagged_addr,
357           candidate == left ? "after" : "before", info.size, info.name,
358           info.start, info.start + info.size, module_name);
359     } else {
360       uptr size = GetGlobalSizeFromDescriptor(mem);
361       if (size == 0)
362         // We couldn't find the size of the global from the descriptors.
363         Printf(
364             "%p is located %s a global variable in "
365             "\n    #0 0x%x (%s+0x%x)\n",
366             untagged_addr, candidate == left ? "after" : "before", mem,
367             module_name, module_address);
368       else
369         Printf(
370             "%p is located %s a %zd-byte global variable in "
371             "\n    #0 0x%x (%s+0x%x)\n",
372             untagged_addr, candidate == left ? "after" : "before", size, mem,
373             module_name, module_address);
374     }
375     Printf("%s", d.Default());
376   }
377 }
378 
379 void PrintAddressDescription(
380     uptr tagged_addr, uptr access_size,
381     StackAllocationsRingBuffer *current_stack_allocations) {
382   Decorator d;
383   int num_descriptions_printed = 0;
384   uptr untagged_addr = UntagAddr(tagged_addr);
385 
386   if (MemIsShadow(untagged_addr)) {
387     Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
388            d.Default());
389     return;
390   }
391 
392   // Print some very basic information about the address, if it's a heap.
393   HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
394   if (uptr beg = chunk.Beg()) {
395     uptr size = chunk.ActualSize();
396     Printf("%s[%p,%p) is a %s %s heap chunk; "
397            "size: %zd offset: %zd\n%s",
398            d.Location(),
399            beg, beg + size,
400            chunk.FromSmallHeap() ? "small" : "large",
401            chunk.IsAllocated() ? "allocated" : "unallocated",
402            size, untagged_addr - beg,
403            d.Default());
404   }
405 
406   tag_t addr_tag = GetTagFromPointer(tagged_addr);
407 
408   bool on_stack = false;
409   // Check stack first. If the address is on the stack of a live thread, we
410   // know it cannot be a heap / global overflow.
411   hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
412     if (t->AddrIsInStack(untagged_addr)) {
413       on_stack = true;
414       // TODO(fmayer): figure out how to distinguish use-after-return and
415       // stack-buffer-overflow.
416       Printf("%s", d.Error());
417       Printf("\nCause: stack tag-mismatch\n");
418       Printf("%s", d.Location());
419       Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
420              t->unique_id());
421       Printf("%s", d.Default());
422       t->Announce();
423 
424       auto *sa = (t == GetCurrentThread() && current_stack_allocations)
425                      ? current_stack_allocations
426                      : t->stack_allocations();
427       PrintStackAllocations(sa, addr_tag, untagged_addr);
428       num_descriptions_printed++;
429     }
430   });
431 
432   // Check if this looks like a heap buffer overflow by scanning
433   // the shadow left and right and looking for the first adjacent
434   // object with a different memory tag. If that tag matches addr_tag,
435   // check the allocator if it has a live chunk there.
436   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
437   tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
438   uptr candidate_distance = 0;
439   for (; candidate_distance < 1000; candidate_distance++) {
440     if (MemIsShadow(reinterpret_cast<uptr>(left)) &&
441         TagsEqual(addr_tag, left)) {
442       candidate = left;
443       break;
444     }
445     --left;
446     if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
447         TagsEqual(addr_tag, right)) {
448       candidate = right;
449       break;
450     }
451     ++right;
452   }
453 
454   constexpr auto kCloseCandidateDistance = 1;
455 
456   if (!on_stack && candidate && candidate_distance <= kCloseCandidateDistance) {
457     ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
458     num_descriptions_printed++;
459   }
460 
461   hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
462     // Scan all threads' ring buffers to find if it's a heap-use-after-free.
463     HeapAllocationRecord har;
464     uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
465     if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
466                            &ring_index, &num_matching_addrs,
467                            &num_matching_addrs_4b)) {
468       Printf("%s", d.Error());
469       Printf("\nCause: use-after-free\n");
470       Printf("%s", d.Location());
471       Printf("%p is located %zd bytes inside a %zd-byte region [%p,%p)\n",
472              untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
473              har.requested_size, UntagAddr(har.tagged_addr),
474              UntagAddr(har.tagged_addr) + har.requested_size);
475       Printf("%s", d.Allocation());
476       Printf("freed by thread T%zd here:\n", t->unique_id());
477       Printf("%s", d.Default());
478       GetStackTraceFromId(har.free_context_id).Print();
479 
480       Printf("%s", d.Allocation());
481       Printf("previously allocated here:\n", t);
482       Printf("%s", d.Default());
483       GetStackTraceFromId(har.alloc_context_id).Print();
484 
485       // Print a developer note: the index of this heap object
486       // in the thread's deallocation ring buffer.
487       Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ring_index + 1,
488              flags()->heap_history_size);
489       Printf("hwasan_dev_note_num_matching_addrs: %zd\n", num_matching_addrs);
490       Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
491              num_matching_addrs_4b);
492 
493       t->Announce();
494       num_descriptions_printed++;
495     }
496   });
497 
498   if (candidate && num_descriptions_printed == 0) {
499     ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
500     num_descriptions_printed++;
501   }
502 
503   // Print the remaining threads, as an extra information, 1 line per thread.
504   hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
505 
506   if (!num_descriptions_printed)
507     // We exhausted our possibilities. Bail out.
508     Printf("HWAddressSanitizer can not describe address in more detail.\n");
509   if (num_descriptions_printed > 1) {
510     Printf(
511         "There are %d potential causes, printed above in order "
512         "of likeliness.\n",
513         num_descriptions_printed);
514   }
515 }
516 
517 void ReportStats() {}
518 
519 static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
520                                    void (*print_tag)(InternalScopedString &s,
521                                                      tag_t *tag)) {
522   const uptr row_len = 16;  // better be power of two.
523   tag_t *center_row_beg = reinterpret_cast<tag_t *>(
524       RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
525   tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
526   tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
527   InternalScopedString s;
528   for (tag_t *row = beg_row; row < end_row; row += row_len) {
529     s.append("%s", row == center_row_beg ? "=>" : "  ");
530     s.append("%p:", (void *)ShadowToMem(reinterpret_cast<uptr>(row)));
531     for (uptr i = 0; i < row_len; i++) {
532       s.append("%s", row + i == tag_ptr ? "[" : " ");
533       print_tag(s, &row[i]);
534       s.append("%s", row + i == tag_ptr ? "]" : " ");
535     }
536     s.append("\n");
537   }
538   Printf("%s", s.data());
539 }
540 
541 static void PrintTagsAroundAddr(tag_t *tag_ptr) {
542   Printf(
543       "Memory tags around the buggy address (one tag corresponds to %zd "
544       "bytes):\n", kShadowAlignment);
545   PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
546     s.append("%02x", *tag);
547   });
548 
549   Printf(
550       "Tags for short granules around the buggy address (one tag corresponds "
551       "to %zd bytes):\n",
552       kShadowAlignment);
553   PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
554     if (*tag >= 1 && *tag <= kShadowAlignment) {
555       uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
556       s.append("%02x",
557                *reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
558     } else {
559       s.append("..");
560     }
561   });
562   Printf(
563       "See "
564       "https://clang.llvm.org/docs/"
565       "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
566       "description of short granule tags\n");
567 }
568 
569 uptr GetTopPc(StackTrace *stack) {
570   return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
571                      : 0;
572 }
573 
574 void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
575   ScopedReport R(flags()->halt_on_error);
576 
577   uptr untagged_addr = UntagAddr(tagged_addr);
578   tag_t ptr_tag = GetTagFromPointer(tagged_addr);
579   tag_t *tag_ptr = nullptr;
580   tag_t mem_tag = 0;
581   if (MemIsApp(untagged_addr)) {
582     tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
583     if (MemIsShadow(reinterpret_cast<uptr>(tag_ptr)))
584       mem_tag = *tag_ptr;
585     else
586       tag_ptr = nullptr;
587   }
588   Decorator d;
589   Printf("%s", d.Error());
590   uptr pc = GetTopPc(stack);
591   const char *bug_type = "invalid-free";
592   const Thread *thread = GetCurrentThread();
593   if (thread) {
594     Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
595            SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
596   } else {
597     Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
598            SanitizerToolName, bug_type, untagged_addr, pc);
599   }
600   Printf("%s", d.Access());
601   if (tag_ptr)
602     Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
603   Printf("%s", d.Default());
604 
605   stack->Print();
606 
607   PrintAddressDescription(tagged_addr, 0, nullptr);
608 
609   if (tag_ptr)
610     PrintTagsAroundAddr(tag_ptr);
611 
612   MaybePrintAndroidHelpUrl();
613   ReportErrorSummary(bug_type, stack);
614 }
615 
616 void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
617                            const u8 *expected) {
618   uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
619   u8 actual_expected[kShadowAlignment];
620   internal_memcpy(actual_expected, expected, tail_size);
621   tag_t ptr_tag = GetTagFromPointer(tagged_addr);
622   // Short granule is stashed in the last byte of the magic string. To avoid
623   // confusion, make the expected magic string contain the short granule tag.
624   if (orig_size % kShadowAlignment != 0) {
625     actual_expected[tail_size - 1] = ptr_tag;
626   }
627 
628   ScopedReport R(flags()->halt_on_error);
629   Decorator d;
630   uptr untagged_addr = UntagAddr(tagged_addr);
631   Printf("%s", d.Error());
632   const char *bug_type = "allocation-tail-overwritten";
633   Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
634          bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
635   Printf("\n%s", d.Default());
636   Printf(
637       "Stack of invalid access unknown. Issue detected at deallocation "
638       "time.\n");
639   Printf("%s", d.Allocation());
640   Printf("deallocated here:\n");
641   Printf("%s", d.Default());
642   stack->Print();
643   HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
644   if (chunk.Beg()) {
645     Printf("%s", d.Allocation());
646     Printf("allocated here:\n");
647     Printf("%s", d.Default());
648     GetStackTraceFromId(chunk.GetAllocStackId()).Print();
649   }
650 
651   InternalScopedString s;
652   CHECK_GT(tail_size, 0U);
653   CHECK_LT(tail_size, kShadowAlignment);
654   u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
655   s.append("Tail contains: ");
656   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
657     s.append(".. ");
658   for (uptr i = 0; i < tail_size; i++)
659     s.append("%02x ", tail[i]);
660   s.append("\n");
661   s.append("Expected:      ");
662   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
663     s.append(".. ");
664   for (uptr i = 0; i < tail_size; i++) s.append("%02x ", actual_expected[i]);
665   s.append("\n");
666   s.append("               ");
667   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
668     s.append("   ");
669   for (uptr i = 0; i < tail_size; i++)
670     s.append("%s ", actual_expected[i] != tail[i] ? "^^" : "  ");
671 
672   s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
673     "after a heap object, but within the %zd-byte granule, e.g.\n"
674     "   char *x = new char[20];\n"
675     "   x[25] = 42;\n"
676     "%s does not detect such bugs in uninstrumented code at the time of write,"
677     "\nbut can detect them at the time of free/delete.\n"
678     "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
679     kShadowAlignment, SanitizerToolName);
680   Printf("%s", s.data());
681   GetCurrentThread()->Announce();
682 
683   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
684   PrintTagsAroundAddr(tag_ptr);
685 
686   MaybePrintAndroidHelpUrl();
687   ReportErrorSummary(bug_type, stack);
688 }
689 
690 void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
691                        bool is_store, bool fatal, uptr *registers_frame) {
692   ScopedReport R(fatal);
693   SavedStackAllocations current_stack_allocations(
694       GetCurrentThread()->stack_allocations());
695 
696   Decorator d;
697   uptr untagged_addr = UntagAddr(tagged_addr);
698   // TODO: when possible, try to print heap-use-after-free, etc.
699   const char *bug_type = "tag-mismatch";
700   uptr pc = GetTopPc(stack);
701   Printf("%s", d.Error());
702   Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
703          untagged_addr, pc);
704 
705   Thread *t = GetCurrentThread();
706 
707   sptr offset =
708       __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
709   CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
710   tag_t ptr_tag = GetTagFromPointer(tagged_addr);
711   tag_t *tag_ptr =
712       reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
713   tag_t mem_tag = *tag_ptr;
714 
715   Printf("%s", d.Access());
716   if (mem_tag && mem_tag < kShadowAlignment) {
717     tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
718                                                    ~(kShadowAlignment - 1));
719     // If offset is 0, (untagged_addr + offset) is not aligned to granules.
720     // This is the offset of the leftmost accessed byte within the bad granule.
721     u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
722     tag_t short_tag = granule_ptr[kShadowAlignment - 1];
723     // The first mismatch was a short granule that matched the ptr_tag.
724     if (short_tag == ptr_tag) {
725       // If the access starts after the end of the short granule, then the first
726       // bad byte is the first byte of the access; otherwise it is the first
727       // byte past the end of the short granule
728       if (mem_tag > in_granule_offset) {
729         offset += mem_tag - in_granule_offset;
730       }
731     }
732     Printf(
733         "%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
734         is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
735         mem_tag, short_tag, t->unique_id());
736   } else {
737     Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
738            is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
739            mem_tag, t->unique_id());
740   }
741   if (offset != 0)
742     Printf("Invalid access starting at offset %zu\n", offset);
743   Printf("%s", d.Default());
744 
745   stack->Print();
746 
747   PrintAddressDescription(tagged_addr, access_size,
748                           current_stack_allocations.get());
749   t->Announce();
750 
751   PrintTagsAroundAddr(tag_ptr);
752 
753   if (registers_frame)
754     ReportRegisters(registers_frame, pc);
755 
756   MaybePrintAndroidHelpUrl();
757   ReportErrorSummary(bug_type, stack);
758 }
759 
760 // See the frame breakdown defined in __hwasan_tag_mismatch (from
761 // hwasan_tag_mismatch_{aarch64,riscv64}.S).
762 void ReportRegisters(uptr *frame, uptr pc) {
763   Printf("Registers where the failure occurred (pc %p):\n", pc);
764 
765   // We explicitly print a single line (4 registers/line) each iteration to
766   // reduce the amount of logcat error messages printed. Each Printf() will
767   // result in a new logcat line, irrespective of whether a newline is present,
768   // and so we wish to reduce the number of Printf() calls we have to make.
769 #if defined(__aarch64__)
770   Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
771        frame[0], frame[1], frame[2], frame[3]);
772 #elif SANITIZER_RISCV64
773   Printf("    sp  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
774          reinterpret_cast<u8 *>(frame) + 256, frame[1], frame[2], frame[3]);
775 #endif
776   Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
777        frame[4], frame[5], frame[6], frame[7]);
778   Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
779        frame[8], frame[9], frame[10], frame[11]);
780   Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
781        frame[12], frame[13], frame[14], frame[15]);
782   Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
783        frame[16], frame[17], frame[18], frame[19]);
784   Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
785        frame[20], frame[21], frame[22], frame[23]);
786   Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
787        frame[24], frame[25], frame[26], frame[27]);
788   // hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
789   // passes it to this function.
790 #if defined(__aarch64__)
791   Printf("    x28 %016llx  x29 %016llx  x30 %016llx   sp %016llx\n", frame[28],
792          frame[29], frame[30], reinterpret_cast<u8 *>(frame) + 256);
793 #elif SANITIZER_RISCV64
794   Printf("    x28 %016llx  x29 %016llx  x30 %016llx  x31 %016llx\n", frame[28],
795          frame[29], frame[30], frame[31]);
796 #else
797 #endif
798 }
799 
800 }  // namespace __hwasan
801 
802 void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
803   __hwasan::ScopedReport::SetErrorReportCallback(callback);
804 }
805