xref: /freebsd/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_report.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===-- hwasan_report.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // Error reporting.
12 //===----------------------------------------------------------------------===//
13 
14 #include "hwasan.h"
15 #include "hwasan_allocator.h"
16 #include "hwasan_mapping.h"
17 #include "hwasan_report.h"
18 #include "hwasan_thread.h"
19 #include "hwasan_thread_list.h"
20 #include "sanitizer_common/sanitizer_allocator_internal.h"
21 #include "sanitizer_common/sanitizer_common.h"
22 #include "sanitizer_common/sanitizer_flags.h"
23 #include "sanitizer_common/sanitizer_mutex.h"
24 #include "sanitizer_common/sanitizer_report_decorator.h"
25 #include "sanitizer_common/sanitizer_stackdepot.h"
26 #include "sanitizer_common/sanitizer_stacktrace_printer.h"
27 #include "sanitizer_common/sanitizer_symbolizer.h"
28 
29 using namespace __sanitizer;
30 
31 namespace __hwasan {
32 
33 class ScopedReport {
34  public:
35   ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
36     BlockingMutexLock lock(&error_message_lock_);
37     error_message_ptr_ = fatal ? &error_message_ : nullptr;
38     ++hwasan_report_count;
39   }
40 
41   ~ScopedReport() {
42     {
43       BlockingMutexLock lock(&error_message_lock_);
44       if (fatal)
45         SetAbortMessage(error_message_.data());
46       error_message_ptr_ = nullptr;
47     }
48     if (common_flags()->print_module_map >= 2 ||
49         (fatal && common_flags()->print_module_map))
50       DumpProcessMap();
51     if (fatal)
52       Die();
53   }
54 
55   static void MaybeAppendToErrorMessage(const char *msg) {
56     BlockingMutexLock lock(&error_message_lock_);
57     if (!error_message_ptr_)
58       return;
59     uptr len = internal_strlen(msg);
60     uptr old_size = error_message_ptr_->size();
61     error_message_ptr_->resize(old_size + len);
62     // overwrite old trailing '\0', keep new trailing '\0' untouched.
63     internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
64   }
65  private:
66   ScopedErrorReportLock error_report_lock_;
67   InternalMmapVector<char> error_message_;
68   bool fatal;
69 
70   static InternalMmapVector<char> *error_message_ptr_;
71   static BlockingMutex error_message_lock_;
72 };
73 
74 InternalMmapVector<char> *ScopedReport::error_message_ptr_;
75 BlockingMutex ScopedReport::error_message_lock_;
76 
77 // If there is an active ScopedReport, append to its error message.
78 void AppendToErrorMessageBuffer(const char *buffer) {
79   ScopedReport::MaybeAppendToErrorMessage(buffer);
80 }
81 
82 static StackTrace GetStackTraceFromId(u32 id) {
83   CHECK(id);
84   StackTrace res = StackDepotGet(id);
85   CHECK(res.trace);
86   return res;
87 }
88 
89 // A RAII object that holds a copy of the current thread stack ring buffer.
90 // The actual stack buffer may change while we are iterating over it (for
91 // example, Printf may call syslog() which can itself be built with hwasan).
92 class SavedStackAllocations {
93  public:
94   SavedStackAllocations(StackAllocationsRingBuffer *rb) {
95     uptr size = rb->size() * sizeof(uptr);
96     void *storage =
97         MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
98     new (&rb_) StackAllocationsRingBuffer(*rb, storage);
99   }
100 
101   ~SavedStackAllocations() {
102     StackAllocationsRingBuffer *rb = get();
103     UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
104   }
105 
106   StackAllocationsRingBuffer *get() {
107     return (StackAllocationsRingBuffer *)&rb_;
108   }
109 
110  private:
111   uptr rb_;
112 };
113 
114 class Decorator: public __sanitizer::SanitizerCommonDecorator {
115  public:
116   Decorator() : SanitizerCommonDecorator() { }
117   const char *Access() { return Blue(); }
118   const char *Allocation() const { return Magenta(); }
119   const char *Origin() const { return Magenta(); }
120   const char *Name() const { return Green(); }
121   const char *Location() { return Green(); }
122   const char *Thread() { return Green(); }
123 };
124 
125 // Returns the index of the rb element that matches tagged_addr (plus one),
126 // or zero if found nothing.
127 uptr FindHeapAllocation(HeapAllocationsRingBuffer *rb,
128                         uptr tagged_addr,
129                         HeapAllocationRecord *har) {
130   if (!rb) return 0;
131   for (uptr i = 0, size = rb->size(); i < size; i++) {
132     auto h = (*rb)[i];
133     if (h.tagged_addr <= tagged_addr &&
134         h.tagged_addr + h.requested_size > tagged_addr) {
135       *har = h;
136       return i + 1;
137     }
138   }
139   return 0;
140 }
141 
142 static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
143                                   tag_t addr_tag, uptr untagged_addr) {
144   uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
145   bool found_local = false;
146   for (uptr i = 0; i < frames; i++) {
147     const uptr *record_addr = &(*sa)[i];
148     uptr record = *record_addr;
149     if (!record)
150       break;
151     tag_t base_tag =
152         reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
153     uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
154     uptr pc_mask = (1ULL << kRecordFPShift) - 1;
155     uptr pc = record & pc_mask;
156     FrameInfo frame;
157     if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
158       for (LocalInfo &local : frame.locals) {
159         if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
160           continue;
161         tag_t obj_tag = base_tag ^ local.tag_offset;
162         if (obj_tag != addr_tag)
163           continue;
164         // Calculate the offset from the object address to the faulting
165         // address. Because we only store bits 4-19 of FP (bits 0-3 are
166         // guaranteed to be zero), the calculation is performed mod 2^20 and may
167         // harmlessly underflow if the address mod 2^20 is below the object
168         // address.
169         uptr obj_offset =
170             (untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
171         if (obj_offset >= local.size)
172           continue;
173         if (!found_local) {
174           Printf("Potentially referenced stack objects:\n");
175           found_local = true;
176         }
177         Printf("  %s in %s %s:%d\n", local.name, local.function_name,
178                local.decl_file, local.decl_line);
179       }
180       frame.Clear();
181     }
182   }
183 
184   if (found_local)
185     return;
186 
187   // We didn't find any locals. Most likely we don't have symbols, so dump
188   // the information that we have for offline analysis.
189   InternalScopedString frame_desc(GetPageSizeCached() * 2);
190   Printf("Previously allocated frames:\n");
191   for (uptr i = 0; i < frames; i++) {
192     const uptr *record_addr = &(*sa)[i];
193     uptr record = *record_addr;
194     if (!record)
195       break;
196     uptr pc_mask = (1ULL << 48) - 1;
197     uptr pc = record & pc_mask;
198     frame_desc.append("  record_addr:0x%zx record:0x%zx",
199                       reinterpret_cast<uptr>(record_addr), record);
200     if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
201       RenderFrame(&frame_desc, " %F %L\n", 0, frame->info,
202                   common_flags()->symbolize_vs_style,
203                   common_flags()->strip_path_prefix);
204       frame->ClearAll();
205     }
206     Printf("%s", frame_desc.data());
207     frame_desc.clear();
208   }
209 }
210 
211 // Returns true if tag == *tag_ptr, reading tags from short granules if
212 // necessary. This may return a false positive if tags 1-15 are used as a
213 // regular tag rather than a short granule marker.
214 static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
215   if (tag == *tag_ptr)
216     return true;
217   if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
218     return false;
219   uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
220   tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
221   return tag == inline_tag;
222 }
223 
224 void PrintAddressDescription(
225     uptr tagged_addr, uptr access_size,
226     StackAllocationsRingBuffer *current_stack_allocations) {
227   Decorator d;
228   int num_descriptions_printed = 0;
229   uptr untagged_addr = UntagAddr(tagged_addr);
230 
231   // Print some very basic information about the address, if it's a heap.
232   HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
233   if (uptr beg = chunk.Beg()) {
234     uptr size = chunk.ActualSize();
235     Printf("%s[%p,%p) is a %s %s heap chunk; "
236            "size: %zd offset: %zd\n%s",
237            d.Location(),
238            beg, beg + size,
239            chunk.FromSmallHeap() ? "small" : "large",
240            chunk.IsAllocated() ? "allocated" : "unallocated",
241            size, untagged_addr - beg,
242            d.Default());
243   }
244 
245   // Check if this looks like a heap buffer overflow by scanning
246   // the shadow left and right and looking for the first adjacent
247   // object with a different memory tag. If that tag matches addr_tag,
248   // check the allocator if it has a live chunk there.
249   tag_t addr_tag = GetTagFromPointer(tagged_addr);
250   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
251   tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
252   for (int i = 0; i < 1000; i++) {
253     if (TagsEqual(addr_tag, left)) {
254       candidate = left;
255       break;
256     }
257     --left;
258     if (TagsEqual(addr_tag, right)) {
259       candidate = right;
260       break;
261     }
262     ++right;
263   }
264 
265   if (candidate) {
266     uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
267     HwasanChunkView chunk = FindHeapChunkByAddress(mem);
268     if (chunk.IsAllocated()) {
269       Printf("%s", d.Location());
270       Printf("%p is located %zd bytes to the %s of %zd-byte region [%p,%p)\n",
271              untagged_addr,
272              candidate == left ? untagged_addr - chunk.End()
273                                : chunk.Beg() - untagged_addr,
274              candidate == left ? "right" : "left", chunk.UsedSize(),
275              chunk.Beg(), chunk.End());
276       Printf("%s", d.Allocation());
277       Printf("allocated here:\n");
278       Printf("%s", d.Default());
279       GetStackTraceFromId(chunk.GetAllocStackId()).Print();
280       num_descriptions_printed++;
281     }
282   }
283 
284   hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
285     // Scan all threads' ring buffers to find if it's a heap-use-after-free.
286     HeapAllocationRecord har;
287     if (uptr D = FindHeapAllocation(t->heap_allocations(), tagged_addr, &har)) {
288       Printf("%s", d.Location());
289       Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
290              untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
291              har.requested_size, UntagAddr(har.tagged_addr),
292              UntagAddr(har.tagged_addr) + har.requested_size);
293       Printf("%s", d.Allocation());
294       Printf("freed by thread T%zd here:\n", t->unique_id());
295       Printf("%s", d.Default());
296       GetStackTraceFromId(har.free_context_id).Print();
297 
298       Printf("%s", d.Allocation());
299       Printf("previously allocated here:\n", t);
300       Printf("%s", d.Default());
301       GetStackTraceFromId(har.alloc_context_id).Print();
302 
303       // Print a developer note: the index of this heap object
304       // in the thread's deallocation ring buffer.
305       Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", D,
306              flags()->heap_history_size);
307 
308       t->Announce();
309       num_descriptions_printed++;
310     }
311 
312     // Very basic check for stack memory.
313     if (t->AddrIsInStack(untagged_addr)) {
314       Printf("%s", d.Location());
315       Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
316              t->unique_id());
317       Printf("%s", d.Default());
318       t->Announce();
319 
320       auto *sa = (t == GetCurrentThread() && current_stack_allocations)
321                      ? current_stack_allocations
322                      : t->stack_allocations();
323       PrintStackAllocations(sa, addr_tag, untagged_addr);
324       num_descriptions_printed++;
325     }
326   });
327 
328   // Print the remaining threads, as an extra information, 1 line per thread.
329   hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });
330 
331   if (!num_descriptions_printed)
332     // We exhausted our possibilities. Bail out.
333     Printf("HWAddressSanitizer can not describe address in more detail.\n");
334 }
335 
336 void ReportStats() {}
337 
338 static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
339                                    void (*print_tag)(InternalScopedString &s,
340                                                      tag_t *tag)) {
341   const uptr row_len = 16;  // better be power of two.
342   tag_t *center_row_beg = reinterpret_cast<tag_t *>(
343       RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
344   tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
345   tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
346   InternalScopedString s(GetPageSizeCached() * 8);
347   for (tag_t *row = beg_row; row < end_row; row += row_len) {
348     s.append("%s", row == center_row_beg ? "=>" : "  ");
349     for (uptr i = 0; i < row_len; i++) {
350       s.append("%s", row + i == tag_ptr ? "[" : " ");
351       print_tag(s, &row[i]);
352       s.append("%s", row + i == tag_ptr ? "]" : " ");
353     }
354     s.append("%s\n", row == center_row_beg ? "<=" : "  ");
355   }
356   Printf("%s", s.data());
357 }
358 
359 static void PrintTagsAroundAddr(tag_t *tag_ptr) {
360   Printf(
361       "Memory tags around the buggy address (one tag corresponds to %zd "
362       "bytes):\n", kShadowAlignment);
363   PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
364     s.append("%02x", *tag);
365   });
366 
367   Printf(
368       "Tags for short granules around the buggy address (one tag corresponds "
369       "to %zd bytes):\n",
370       kShadowAlignment);
371   PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
372     if (*tag >= 1 && *tag <= kShadowAlignment) {
373       uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
374       s.append("%02x",
375                *reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
376     } else {
377       s.append("..");
378     }
379   });
380   Printf(
381       "See "
382       "https://clang.llvm.org/docs/"
383       "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
384       "description of short granule tags\n");
385 }
386 
387 void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
388   ScopedReport R(flags()->halt_on_error);
389 
390   uptr untagged_addr = UntagAddr(tagged_addr);
391   tag_t ptr_tag = GetTagFromPointer(tagged_addr);
392   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
393   tag_t mem_tag = *tag_ptr;
394   Decorator d;
395   Printf("%s", d.Error());
396   uptr pc = stack->size ? stack->trace[0] : 0;
397   const char *bug_type = "invalid-free";
398   Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
399          untagged_addr, pc);
400   Printf("%s", d.Access());
401   Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
402   Printf("%s", d.Default());
403 
404   stack->Print();
405 
406   PrintAddressDescription(tagged_addr, 0, nullptr);
407 
408   PrintTagsAroundAddr(tag_ptr);
409 
410   ReportErrorSummary(bug_type, stack);
411 }
412 
413 void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
414                            const u8 *expected) {
415   uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
416   ScopedReport R(flags()->halt_on_error);
417   Decorator d;
418   uptr untagged_addr = UntagAddr(tagged_addr);
419   Printf("%s", d.Error());
420   const char *bug_type = "alocation-tail-overwritten";
421   Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
422          bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
423   Printf("\n%s", d.Default());
424   stack->Print();
425   HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
426   if (chunk.Beg()) {
427     Printf("%s", d.Allocation());
428     Printf("allocated here:\n");
429     Printf("%s", d.Default());
430     GetStackTraceFromId(chunk.GetAllocStackId()).Print();
431   }
432 
433   InternalScopedString s(GetPageSizeCached() * 8);
434   CHECK_GT(tail_size, 0U);
435   CHECK_LT(tail_size, kShadowAlignment);
436   u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
437   s.append("Tail contains: ");
438   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
439     s.append(".. ");
440   for (uptr i = 0; i < tail_size; i++)
441     s.append("%02x ", tail[i]);
442   s.append("\n");
443   s.append("Expected:      ");
444   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
445     s.append(".. ");
446   for (uptr i = 0; i < tail_size; i++)
447     s.append("%02x ", expected[i]);
448   s.append("\n");
449   s.append("               ");
450   for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
451     s.append("   ");
452   for (uptr i = 0; i < tail_size; i++)
453     s.append("%s ", expected[i] != tail[i] ? "^^" : "  ");
454 
455   s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
456     "to the right of a heap object, but within the %zd-byte granule, e.g.\n"
457     "   char *x = new char[20];\n"
458     "   x[25] = 42;\n"
459     "%s does not detect such bugs in uninstrumented code at the time of write,"
460     "\nbut can detect them at the time of free/delete.\n"
461     "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
462     kShadowAlignment, SanitizerToolName);
463   Printf("%s", s.data());
464   GetCurrentThread()->Announce();
465 
466   tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
467   PrintTagsAroundAddr(tag_ptr);
468 
469   ReportErrorSummary(bug_type, stack);
470 }
471 
472 void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
473                        bool is_store, bool fatal, uptr *registers_frame) {
474   ScopedReport R(fatal);
475   SavedStackAllocations current_stack_allocations(
476       GetCurrentThread()->stack_allocations());
477 
478   Decorator d;
479   Printf("%s", d.Error());
480   uptr untagged_addr = UntagAddr(tagged_addr);
481   // TODO: when possible, try to print heap-use-after-free, etc.
482   const char *bug_type = "tag-mismatch";
483   uptr pc = stack->size ? stack->trace[0] : 0;
484   Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
485          untagged_addr, pc);
486 
487   Thread *t = GetCurrentThread();
488 
489   sptr offset =
490       __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
491   CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
492   tag_t ptr_tag = GetTagFromPointer(tagged_addr);
493   tag_t *tag_ptr =
494       reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
495   tag_t mem_tag = *tag_ptr;
496 
497   Printf("%s", d.Access());
498   Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
499          is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
500          mem_tag, t->unique_id());
501   if (offset != 0)
502     Printf("Invalid access starting at offset [%zu, %zu)\n", offset,
503            Min(access_size, static_cast<uptr>(offset) + (1 << kShadowScale)));
504   Printf("%s", d.Default());
505 
506   stack->Print();
507 
508   PrintAddressDescription(tagged_addr, access_size,
509                           current_stack_allocations.get());
510   t->Announce();
511 
512   PrintTagsAroundAddr(tag_ptr);
513 
514   if (registers_frame)
515     ReportRegisters(registers_frame, pc);
516 
517   ReportErrorSummary(bug_type, stack);
518 }
519 
520 // See the frame breakdown defined in __hwasan_tag_mismatch (from
521 // hwasan_tag_mismatch_aarch64.S).
522 void ReportRegisters(uptr *frame, uptr pc) {
523   Printf("Registers where the failure occurred (pc %p):\n", pc);
524 
525   // We explicitly print a single line (4 registers/line) each iteration to
526   // reduce the amount of logcat error messages printed. Each Printf() will
527   // result in a new logcat line, irrespective of whether a newline is present,
528   // and so we wish to reduce the number of Printf() calls we have to make.
529   Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
530        frame[0], frame[1], frame[2], frame[3]);
531   Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
532        frame[4], frame[5], frame[6], frame[7]);
533   Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
534        frame[8], frame[9], frame[10], frame[11]);
535   Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
536        frame[12], frame[13], frame[14], frame[15]);
537   Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
538        frame[16], frame[17], frame[18], frame[19]);
539   Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
540        frame[20], frame[21], frame[22], frame[23]);
541   Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
542        frame[24], frame[25], frame[26], frame[27]);
543   Printf("    x28 %016llx  x29 %016llx  x30 %016llx\n",
544        frame[28], frame[29], frame[30]);
545 }
546 
547 }  // namespace __hwasan
548