xref: /freebsd/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
17 
18 #  include <dlfcn.h>
19 #  include <elf.h>
20 #  include <errno.h>
21 #  include <link.h>
22 #  include <pthread.h>
23 #  include <signal.h>
24 #  include <stdio.h>
25 #  include <stdlib.h>
26 #  include <sys/prctl.h>
27 #  include <sys/resource.h>
28 #  include <sys/time.h>
29 #  include <unistd.h>
30 #  include <unwind.h>
31 
32 #  include "hwasan.h"
33 #  include "hwasan_dynamic_shadow.h"
34 #  include "hwasan_interface_internal.h"
35 #  include "hwasan_mapping.h"
36 #  include "hwasan_report.h"
37 #  include "hwasan_thread.h"
38 #  include "hwasan_thread_list.h"
39 #  include "sanitizer_common/sanitizer_common.h"
40 #  include "sanitizer_common/sanitizer_procmaps.h"
41 #  include "sanitizer_common/sanitizer_stackdepot.h"
42 
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
44 //
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 //   Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 //   Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 //    Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 //    Tested with check-hwasan on aarch64-linux-android.
53 #  if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls;
56 #  endif
57 
58 namespace __hwasan {
59 
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart = 0;
63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
64 
65 static void ProtectGap(uptr addr, uptr size) {
66   __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67                           kZeroBaseMaxShadowStart);
68 }
69 
70 uptr kLowMemStart;
71 uptr kLowMemEnd;
72 uptr kHighMemStart;
73 uptr kHighMemEnd;
74 
75 static void PrintRange(uptr start, uptr end, const char *name) {
76   Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
77 }
78 
79 static void PrintAddressSpaceLayout() {
80   PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
81   if (kHighShadowEnd + 1 < kHighMemStart)
82     PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
83   else
84     CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
85   PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
86   if (kLowShadowEnd + 1 < kHighShadowStart)
87     PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
88   else
89     CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
90   PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
91   if (kLowMemEnd + 1 < kLowShadowStart)
92     PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
93   else
94     CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
95   PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
96   CHECK_EQ(0, kLowMemStart);
97 }
98 
99 static uptr GetHighMemEnd() {
100   // HighMem covers the upper part of the address space.
101   uptr max_address = GetMaxUserVirtualAddress();
102   // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
103   // properly aligned:
104   max_address |= (GetMmapGranularity() << kShadowScale) - 1;
105   return max_address;
106 }
107 
108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
109   __hwasan_shadow_memory_dynamic_address =
110       FindDynamicShadowStart(shadow_size_bytes);
111 }
112 
113 static void MaybeDieIfNoTaggingAbi(const char *message) {
114   if (!flags()->fail_without_syscall_abi)
115     return;
116   Printf("FATAL: %s\n", message);
117   Die();
118 }
119 
120 #  define PR_SET_TAGGED_ADDR_CTRL 55
121 #  define PR_GET_TAGGED_ADDR_CTRL 56
122 #  define PR_TAGGED_ADDR_ENABLE (1UL << 0)
123 #  define ARCH_GET_UNTAG_MASK 0x4001
124 #  define ARCH_ENABLE_TAGGED_ADDR 0x4002
125 #  define ARCH_GET_MAX_TAG_BITS 0x4003
126 
127 static bool CanUseTaggingAbi() {
128 #  if defined(__x86_64__)
129   unsigned long num_bits = 0;
130   // Check for x86 LAM support. This API is based on a currently unsubmitted
131   // patch to the Linux kernel (as of August 2022) and is thus subject to
132   // change. The patch is here:
133   // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
134   //
135   // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
136   // bits the user can request, or zero if LAM is not supported by the hardware.
137   if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
138                                            reinterpret_cast<uptr>(&num_bits))))
139     return false;
140   // The platform must provide enough bits for HWASan tags.
141   if (num_bits < kTagBits)
142     return false;
143   return true;
144 #  else
145   // Check for ARM TBI support.
146   return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
147 #  endif // __x86_64__
148 }
149 
150 static bool EnableTaggingAbi() {
151 #  if defined(__x86_64__)
152   // Enable x86 LAM tagging for the process.
153   //
154   // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
155   // tag bits requested by the user does not exceed that provided by the system.
156   // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
157   // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
158   // is not supported by the hardware.
159   if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
160     return false;
161   unsigned long mask = 0;
162   // Make sure the tag bits are where we expect them to be.
163   if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
164                                            reinterpret_cast<uptr>(&mask))))
165     return false;
166   // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
167   // bits. Therefore these masks must not overlap.
168   if (mask & kAddressTagMask)
169     return false;
170   return true;
171 #  else
172   // Enable ARM TBI tagging for the process. If for some reason tagging is not
173   // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
174   // -EINVAL.
175   if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
176                                       PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
177     return false;
178   // Ensure that TBI is enabled.
179   if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
180       PR_TAGGED_ADDR_ENABLE)
181     return false;
182   return true;
183 #  endif // __x86_64__
184 }
185 
186 void InitializeOsSupport() {
187   // Check we're running on a kernel that can use the tagged address ABI.
188   bool has_abi = CanUseTaggingAbi();
189 
190   if (!has_abi) {
191 #  if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
192     // Some older Android kernels have the tagged pointer ABI on
193     // unconditionally, and hence don't have the tagged-addr prctl while still
194     // allow the ABI.
195     // If targeting Android and the prctl is not around we assume this is the
196     // case.
197     return;
198 #  else
199     MaybeDieIfNoTaggingAbi(
200         "HWAddressSanitizer requires a kernel with tagged address ABI.");
201 #  endif
202   }
203 
204   if (EnableTaggingAbi())
205     return;
206 
207 #  if SANITIZER_ANDROID
208   MaybeDieIfNoTaggingAbi(
209       "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
210       "Check the `sysctl abi.tagged_addr_disabled` configuration.");
211 #  else
212   MaybeDieIfNoTaggingAbi(
213       "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
214 #  endif
215 }
216 
217 bool InitShadow() {
218   // Define the entire memory range.
219   kHighMemEnd = GetHighMemEnd();
220 
221   // Determine shadow memory base offset.
222   InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
223 
224   // Place the low memory first.
225   kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
226   kLowMemStart = 0;
227 
228   // Define the low shadow based on the already placed low memory.
229   kLowShadowEnd = MemToShadow(kLowMemEnd);
230   kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
231 
232   // High shadow takes whatever memory is left up there (making sure it is not
233   // interfering with low memory in the fixed case).
234   kHighShadowEnd = MemToShadow(kHighMemEnd);
235   kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
236 
237   // High memory starts where allocated shadow allows.
238   kHighMemStart = ShadowToMem(kHighShadowStart);
239 
240   // Check the sanity of the defined memory ranges (there might be gaps).
241   CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
242   CHECK_GT(kHighMemStart, kHighShadowEnd);
243   CHECK_GT(kHighShadowEnd, kHighShadowStart);
244   CHECK_GT(kHighShadowStart, kLowMemEnd);
245   CHECK_GT(kLowMemEnd, kLowMemStart);
246   CHECK_GT(kLowShadowEnd, kLowShadowStart);
247   CHECK_GT(kLowShadowStart, kLowMemEnd);
248 
249   if (Verbosity())
250     PrintAddressSpaceLayout();
251 
252   // Reserve shadow memory.
253   ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
254   ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
255 
256   // Protect all the gaps.
257   ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
258   if (kLowMemEnd + 1 < kLowShadowStart)
259     ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
260   if (kLowShadowEnd + 1 < kHighShadowStart)
261     ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
262   if (kHighShadowEnd + 1 < kHighMemStart)
263     ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
264 
265   return true;
266 }
267 
268 void InitThreads() {
269   CHECK(__hwasan_shadow_memory_dynamic_address);
270   uptr guard_page_size = GetMmapGranularity();
271   uptr thread_space_start =
272       __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
273   uptr thread_space_end =
274       __hwasan_shadow_memory_dynamic_address - guard_page_size;
275   ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
276                            "hwasan threads", /*madvise_shadow*/ false);
277   ProtectGap(thread_space_end,
278              __hwasan_shadow_memory_dynamic_address - thread_space_end);
279   InitThreadList(thread_space_start, thread_space_end - thread_space_start);
280   hwasanThreadList().CreateCurrentThread();
281 }
282 
283 bool MemIsApp(uptr p) {
284 // Memory outside the alias range has non-zero tags.
285 #  if !defined(HWASAN_ALIASING_MODE)
286   CHECK(GetTagFromPointer(p) == 0);
287 #  endif
288 
289   return (p >= kHighMemStart && p <= kHighMemEnd) ||
290          (p >= kLowMemStart && p <= kLowMemEnd);
291 }
292 
293 void InstallAtExitHandler() { atexit(HwasanAtExit); }
294 
295 // ---------------------- TSD ---------------- {{{1
296 
297 extern "C" void __hwasan_thread_enter() {
298   hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
299 }
300 
301 extern "C" void __hwasan_thread_exit() {
302   Thread *t = GetCurrentThread();
303   // Make sure that signal handler can not see a stale current thread pointer.
304   atomic_signal_fence(memory_order_seq_cst);
305   if (t)
306     hwasanThreadList().ReleaseThread(t);
307 }
308 
309 #  if HWASAN_WITH_INTERCEPTORS
310 static pthread_key_t tsd_key;
311 static bool tsd_key_inited = false;
312 
313 void HwasanTSDThreadInit() {
314   if (tsd_key_inited)
315     CHECK_EQ(0, pthread_setspecific(tsd_key,
316                                     (void *)GetPthreadDestructorIterations()));
317 }
318 
319 void HwasanTSDDtor(void *tsd) {
320   uptr iterations = (uptr)tsd;
321   if (iterations > 1) {
322     CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
323     return;
324   }
325   __hwasan_thread_exit();
326 }
327 
328 void HwasanTSDInit() {
329   CHECK(!tsd_key_inited);
330   tsd_key_inited = true;
331   CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
332 }
333 #  else
334 void HwasanTSDInit() {}
335 void HwasanTSDThreadInit() {}
336 #  endif
337 
338 #  if SANITIZER_ANDROID
339 uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
340 #  else
341 uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
342 #  endif
343 
344 #  if SANITIZER_ANDROID
345 void AndroidTestTlsSlot() {
346   uptr kMagicValue = 0x010203040A0B0C0D;
347   uptr *tls_ptr = GetCurrentThreadLongPtr();
348   uptr old_value = *tls_ptr;
349   *tls_ptr = kMagicValue;
350   dlerror();
351   if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
352     Printf(
353         "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
354         "for dlerror().\n");
355     Die();
356   }
357   *tls_ptr = old_value;
358 }
359 #  else
360 void AndroidTestTlsSlot() {}
361 #  endif
362 
363 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
364   // Access type is passed in a platform dependent way (see below) and encoded
365   // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
366   // recoverable. Valid values of Y are 0 to 4, which are interpreted as
367   // log2(access_size), and 0xF, which means that access size is passed via
368   // platform dependent register (see below).
369 #  if defined(__aarch64__)
370   // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
371   // access size is stored in X1 register. Access address is always in X0
372   // register.
373   uptr pc = (uptr)info->si_addr;
374   const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
375   if ((code & 0xff00) != 0x900)
376     return AccessInfo{};  // Not ours.
377 
378   const bool is_store = code & 0x10;
379   const bool recover = code & 0x20;
380   const uptr addr = uc->uc_mcontext.regs[0];
381   const unsigned size_log = code & 0xf;
382   if (size_log > 4 && size_log != 0xf)
383     return AccessInfo{};  // Not ours.
384   const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
385 
386 #  elif defined(__x86_64__)
387   // Access type is encoded in the instruction following INT3 as
388   // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
389   // RSI register. Access address is always in RDI register.
390   uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
391   uint8_t *nop = (uint8_t *)pc;
392   if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
393       *(nop + 3) < 0x40)
394     return AccessInfo{};  // Not ours.
395   const unsigned code = *(nop + 3);
396 
397   const bool is_store = code & 0x10;
398   const bool recover = code & 0x20;
399   const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
400   const unsigned size_log = code & 0xf;
401   if (size_log > 4 && size_log != 0xf)
402     return AccessInfo{};  // Not ours.
403   const uptr size =
404       size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
405 
406 #  elif SANITIZER_RISCV64
407   // Access type is encoded in the instruction following EBREAK as
408   // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
409   // X11 register. Access address is always in X10 register.
410   uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
411   uint8_t byte1 = *((u8 *)(pc + 0));
412   uint8_t byte2 = *((u8 *)(pc + 1));
413   uint8_t byte3 = *((u8 *)(pc + 2));
414   uint8_t byte4 = *((u8 *)(pc + 3));
415   uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
416   bool isFaultShort = false;
417   bool isEbreak = (ebreak == 0x100073);
418   bool isShortEbreak = false;
419 #    if defined(__riscv_compressed)
420   isFaultShort = ((ebreak & 0x3) != 0x3);
421   isShortEbreak = ((ebreak & 0xffff) == 0x9002);
422 #    endif
423   // faulted insn is not ebreak, not our case
424   if (!(isEbreak || isShortEbreak))
425     return AccessInfo{};
426   // advance pc to point after ebreak and reconstruct addi instruction
427   pc += isFaultShort ? 2 : 4;
428   byte1 = *((u8 *)(pc + 0));
429   byte2 = *((u8 *)(pc + 1));
430   byte3 = *((u8 *)(pc + 2));
431   byte4 = *((u8 *)(pc + 3));
432   // reconstruct instruction
433   uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
434   // check if this is really 32 bit instruction
435   // code is encoded in top 12 bits, since instruction is supposed to be with
436   // imm
437   const unsigned code = (instr >> 20) & 0xffff;
438   const uptr addr = uc->uc_mcontext.__gregs[10];
439   const bool is_store = code & 0x10;
440   const bool recover = code & 0x20;
441   const unsigned size_log = code & 0xf;
442   if (size_log > 4 && size_log != 0xf)
443     return AccessInfo{};  // Not our case
444   const uptr size =
445       size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
446 
447 #  else
448 #    error Unsupported architecture
449 #  endif
450 
451   return AccessInfo{addr, size, is_store, !is_store, recover};
452 }
453 
454 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
455   AccessInfo ai = GetAccessInfo(info, uc);
456   if (!ai.is_store && !ai.is_load)
457     return false;
458 
459   SignalContext sig{info, uc};
460   HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
461 
462 #  if defined(__aarch64__)
463   uc->uc_mcontext.pc += 4;
464 #  elif defined(__x86_64__)
465 #  elif SANITIZER_RISCV64
466   // pc points to EBREAK which is 2 bytes long
467   uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
468   uint8_t byte1 = (uint8_t)(*(exception_source + 0));
469   uint8_t byte2 = (uint8_t)(*(exception_source + 1));
470   uint8_t byte3 = (uint8_t)(*(exception_source + 2));
471   uint8_t byte4 = (uint8_t)(*(exception_source + 3));
472   uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
473   bool isFaultShort = false;
474 #    if defined(__riscv_compressed)
475   isFaultShort = ((faulted & 0x3) != 0x3);
476 #    endif
477   uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
478 #  else
479 #    error Unsupported architecture
480 #  endif
481   return true;
482 }
483 
484 static void OnStackUnwind(const SignalContext &sig, const void *,
485                           BufferedStackTrace *stack) {
486   stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
487                 common_flags()->fast_unwind_on_fatal);
488 }
489 
490 void HwasanOnDeadlySignal(int signo, void *info, void *context) {
491   // Probably a tag mismatch.
492   if (signo == SIGTRAP)
493     if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
494       return;
495 
496   HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
497 }
498 
499 void Thread::InitStackAndTls(const InitState *) {
500   uptr tls_size;
501   uptr stack_size;
502   GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
503                        &tls_size);
504   stack_top_ = stack_bottom_ + stack_size;
505   tls_end_ = tls_begin_ + tls_size;
506 }
507 
508 uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
509   CHECK(IsAligned(p, kShadowAlignment));
510   CHECK(IsAligned(size, kShadowAlignment));
511   uptr shadow_start = MemToShadow(p);
512   uptr shadow_size = MemToShadowSize(size);
513 
514   uptr page_size = GetPageSizeCached();
515   uptr page_start = RoundUpTo(shadow_start, page_size);
516   uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
517   uptr threshold = common_flags()->clear_shadow_mmap_threshold;
518   if (SANITIZER_LINUX &&
519       UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
520     internal_memset((void *)shadow_start, tag, page_start - shadow_start);
521     internal_memset((void *)page_end, tag,
522                     shadow_start + shadow_size - page_end);
523     // For an anonymous private mapping MADV_DONTNEED will return a zero page on
524     // Linux.
525     ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
526   } else {
527     internal_memset((void *)shadow_start, tag, shadow_size);
528   }
529   return AddTagToPointer(p, tag);
530 }
531 
532 void HwasanInstallAtForkHandler() {
533   auto before = []() {
534     HwasanAllocatorLock();
535     StackDepotLockAll();
536   };
537   auto after = []() {
538     StackDepotUnlockAll();
539     HwasanAllocatorUnlock();
540   };
541   pthread_atfork(before, after, after);
542 }
543 
544 void InstallAtExitCheckLeaks() {
545   if (CAN_SANITIZE_LEAKS) {
546     if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
547       if (flags()->halt_on_error)
548         Atexit(__lsan::DoLeakCheck);
549       else
550         Atexit(__lsan::DoRecoverableLeakCheckVoid);
551     }
552   }
553 }
554 
555 }  // namespace __hwasan
556 
557 #endif  // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
558