xref: /freebsd/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
17 
18 #  include <dlfcn.h>
19 #  include <elf.h>
20 #  include <errno.h>
21 #  include <link.h>
22 #  include <pthread.h>
23 #  include <signal.h>
24 #  include <stdio.h>
25 #  include <stdlib.h>
26 #  include <sys/prctl.h>
27 #  include <sys/resource.h>
28 #  include <sys/time.h>
29 #  include <unistd.h>
30 #  include <unwind.h>
31 
32 #  include "hwasan.h"
33 #  include "hwasan_dynamic_shadow.h"
34 #  include "hwasan_interface_internal.h"
35 #  include "hwasan_mapping.h"
36 #  include "hwasan_report.h"
37 #  include "hwasan_thread.h"
38 #  include "hwasan_thread_list.h"
39 #  include "sanitizer_common/sanitizer_common.h"
40 #  include "sanitizer_common/sanitizer_procmaps.h"
41 #  include "sanitizer_common/sanitizer_stackdepot.h"
42 
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
44 //
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 //   Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 //   Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 //    Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 //    Tested with check-hwasan on aarch64-linux-android.
53 #  if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls;
56 #  endif
57 
58 namespace __hwasan {
59 
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart = 0;
63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
64 
65 static void ProtectGap(uptr addr, uptr size) {
66   __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67                           kZeroBaseMaxShadowStart);
68 }
69 
70 uptr kLowMemStart;
71 uptr kLowMemEnd;
72 uptr kHighMemStart;
73 uptr kHighMemEnd;
74 
75 static void PrintRange(uptr start, uptr end, const char *name) {
76   Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
77 }
78 
79 static void PrintAddressSpaceLayout() {
80   PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
81   if (kHighShadowEnd + 1 < kHighMemStart)
82     PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
83   else
84     CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
85   PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
86   if (kLowShadowEnd + 1 < kHighShadowStart)
87     PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
88   else
89     CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
90   PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
91   if (kLowMemEnd + 1 < kLowShadowStart)
92     PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
93   else
94     CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
95   PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
96   CHECK_EQ(0, kLowMemStart);
97 }
98 
99 static uptr GetHighMemEnd() {
100   // HighMem covers the upper part of the address space.
101   uptr max_address = GetMaxUserVirtualAddress();
102   // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
103   // properly aligned:
104   max_address |= (GetMmapGranularity() << kShadowScale) - 1;
105   return max_address;
106 }
107 
108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
109   if (flags()->fixed_shadow_base != (uptr)-1) {
110     __hwasan_shadow_memory_dynamic_address = flags()->fixed_shadow_base;
111   } else {
112     __hwasan_shadow_memory_dynamic_address =
113         FindDynamicShadowStart(shadow_size_bytes);
114   }
115 }
116 
117 static void MaybeDieIfNoTaggingAbi(const char *message) {
118   if (!flags()->fail_without_syscall_abi)
119     return;
120   Printf("FATAL: %s\n", message);
121   Die();
122 }
123 
124 #  define PR_SET_TAGGED_ADDR_CTRL 55
125 #  define PR_GET_TAGGED_ADDR_CTRL 56
126 #  define PR_TAGGED_ADDR_ENABLE (1UL << 0)
127 #  define ARCH_GET_UNTAG_MASK 0x4001
128 #  define ARCH_ENABLE_TAGGED_ADDR 0x4002
129 #  define ARCH_GET_MAX_TAG_BITS 0x4003
130 
131 static bool CanUseTaggingAbi() {
132 #  if defined(__x86_64__)
133   unsigned long num_bits = 0;
134   // Check for x86 LAM support. This API is based on a currently unsubmitted
135   // patch to the Linux kernel (as of August 2022) and is thus subject to
136   // change. The patch is here:
137   // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
138   //
139   // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
140   // bits the user can request, or zero if LAM is not supported by the hardware.
141   if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
142                                            reinterpret_cast<uptr>(&num_bits))))
143     return false;
144   // The platform must provide enough bits for HWASan tags.
145   if (num_bits < kTagBits)
146     return false;
147   return true;
148 #  else
149   // Check for ARM TBI support.
150   return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
151 #  endif // __x86_64__
152 }
153 
154 static bool EnableTaggingAbi() {
155 #  if defined(__x86_64__)
156   // Enable x86 LAM tagging for the process.
157   //
158   // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
159   // tag bits requested by the user does not exceed that provided by the system.
160   // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
161   // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
162   // is not supported by the hardware.
163   if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
164     return false;
165   unsigned long mask = 0;
166   // Make sure the tag bits are where we expect them to be.
167   if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
168                                            reinterpret_cast<uptr>(&mask))))
169     return false;
170   // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
171   // bits. Therefore these masks must not overlap.
172   if (mask & kAddressTagMask)
173     return false;
174   return true;
175 #  else
176   // Enable ARM TBI tagging for the process. If for some reason tagging is not
177   // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
178   // -EINVAL.
179   if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
180                                       PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
181     return false;
182   // Ensure that TBI is enabled.
183   if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
184       PR_TAGGED_ADDR_ENABLE)
185     return false;
186   return true;
187 #  endif // __x86_64__
188 }
189 
190 void InitializeOsSupport() {
191   // Check we're running on a kernel that can use the tagged address ABI.
192   bool has_abi = CanUseTaggingAbi();
193 
194   if (!has_abi) {
195 #  if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
196     // Some older Android kernels have the tagged pointer ABI on
197     // unconditionally, and hence don't have the tagged-addr prctl while still
198     // allow the ABI.
199     // If targeting Android and the prctl is not around we assume this is the
200     // case.
201     return;
202 #  else
203     MaybeDieIfNoTaggingAbi(
204         "HWAddressSanitizer requires a kernel with tagged address ABI.");
205 #  endif
206   }
207 
208   if (EnableTaggingAbi())
209     return;
210 
211 #  if SANITIZER_ANDROID
212   MaybeDieIfNoTaggingAbi(
213       "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
214       "Check the `sysctl abi.tagged_addr_disabled` configuration.");
215 #  else
216   MaybeDieIfNoTaggingAbi(
217       "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
218 #  endif
219 }
220 
221 bool InitShadow() {
222   // Define the entire memory range.
223   kHighMemEnd = GetHighMemEnd();
224 
225   // Determine shadow memory base offset.
226   InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
227 
228   // Place the low memory first.
229   kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
230   kLowMemStart = 0;
231 
232   // Define the low shadow based on the already placed low memory.
233   kLowShadowEnd = MemToShadow(kLowMemEnd);
234   kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
235 
236   // High shadow takes whatever memory is left up there (making sure it is not
237   // interfering with low memory in the fixed case).
238   kHighShadowEnd = MemToShadow(kHighMemEnd);
239   kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
240 
241   // High memory starts where allocated shadow allows.
242   kHighMemStart = ShadowToMem(kHighShadowStart);
243 
244   // Check the sanity of the defined memory ranges (there might be gaps).
245   CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
246   CHECK_GT(kHighMemStart, kHighShadowEnd);
247   CHECK_GT(kHighShadowEnd, kHighShadowStart);
248   CHECK_GT(kHighShadowStart, kLowMemEnd);
249   CHECK_GT(kLowMemEnd, kLowMemStart);
250   CHECK_GT(kLowShadowEnd, kLowShadowStart);
251   CHECK_GT(kLowShadowStart, kLowMemEnd);
252 
253   if (Verbosity())
254     PrintAddressSpaceLayout();
255 
256   // Reserve shadow memory.
257   ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
258   ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
259 
260   // Protect all the gaps.
261   ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
262   if (kLowMemEnd + 1 < kLowShadowStart)
263     ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
264   if (kLowShadowEnd + 1 < kHighShadowStart)
265     ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
266   if (kHighShadowEnd + 1 < kHighMemStart)
267     ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
268 
269   return true;
270 }
271 
272 void InitThreads() {
273   CHECK(__hwasan_shadow_memory_dynamic_address);
274   uptr guard_page_size = GetMmapGranularity();
275   uptr thread_space_start =
276       __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
277   uptr thread_space_end =
278       __hwasan_shadow_memory_dynamic_address - guard_page_size;
279   ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
280                            "hwasan threads", /*madvise_shadow*/ false);
281   ProtectGap(thread_space_end,
282              __hwasan_shadow_memory_dynamic_address - thread_space_end);
283   InitThreadList(thread_space_start, thread_space_end - thread_space_start);
284   hwasanThreadList().CreateCurrentThread();
285 }
286 
287 bool MemIsApp(uptr p) {
288 // Memory outside the alias range has non-zero tags.
289 #  if !defined(HWASAN_ALIASING_MODE)
290   CHECK_EQ(GetTagFromPointer(p), 0);
291 #  endif
292 
293   return (p >= kHighMemStart && p <= kHighMemEnd) ||
294          (p >= kLowMemStart && p <= kLowMemEnd);
295 }
296 
297 void InstallAtExitHandler() { atexit(HwasanAtExit); }
298 
299 // ---------------------- TSD ---------------- {{{1
300 
301 #  if HWASAN_WITH_INTERCEPTORS
302 static pthread_key_t tsd_key;
303 static bool tsd_key_inited = false;
304 
305 void HwasanTSDThreadInit() {
306   if (tsd_key_inited)
307     CHECK_EQ(0, pthread_setspecific(tsd_key,
308                                     (void *)GetPthreadDestructorIterations()));
309 }
310 
311 void HwasanTSDDtor(void *tsd) {
312   uptr iterations = (uptr)tsd;
313   if (iterations > 1) {
314     CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
315     return;
316   }
317   __hwasan_thread_exit();
318 }
319 
320 void HwasanTSDInit() {
321   CHECK(!tsd_key_inited);
322   tsd_key_inited = true;
323   CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
324 }
325 #  else
326 void HwasanTSDInit() {}
327 void HwasanTSDThreadInit() {}
328 #  endif
329 
330 #  if SANITIZER_ANDROID
331 uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
332 #  else
333 uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
334 #  endif
335 
336 #  if SANITIZER_ANDROID
337 void AndroidTestTlsSlot() {
338   uptr kMagicValue = 0x010203040A0B0C0D;
339   uptr *tls_ptr = GetCurrentThreadLongPtr();
340   uptr old_value = *tls_ptr;
341   *tls_ptr = kMagicValue;
342   dlerror();
343   if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
344     Printf(
345         "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
346         "for dlerror().\n");
347     Die();
348   }
349   *tls_ptr = old_value;
350 }
351 #  else
352 void AndroidTestTlsSlot() {}
353 #  endif
354 
355 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
356   // Access type is passed in a platform dependent way (see below) and encoded
357   // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
358   // recoverable. Valid values of Y are 0 to 4, which are interpreted as
359   // log2(access_size), and 0xF, which means that access size is passed via
360   // platform dependent register (see below).
361 #  if defined(__aarch64__)
362   // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
363   // access size is stored in X1 register. Access address is always in X0
364   // register.
365   uptr pc = (uptr)info->si_addr;
366   const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
367   if ((code & 0xff00) != 0x900)
368     return AccessInfo{};  // Not ours.
369 
370   const bool is_store = code & 0x10;
371   const bool recover = code & 0x20;
372   const uptr addr = uc->uc_mcontext.regs[0];
373   const unsigned size_log = code & 0xf;
374   if (size_log > 4 && size_log != 0xf)
375     return AccessInfo{};  // Not ours.
376   const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
377 
378 #  elif defined(__x86_64__)
379   // Access type is encoded in the instruction following INT3 as
380   // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
381   // RSI register. Access address is always in RDI register.
382   uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
383   uint8_t *nop = (uint8_t *)pc;
384   if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
385       *(nop + 3) < 0x40)
386     return AccessInfo{};  // Not ours.
387   const unsigned code = *(nop + 3);
388 
389   const bool is_store = code & 0x10;
390   const bool recover = code & 0x20;
391   const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
392   const unsigned size_log = code & 0xf;
393   if (size_log > 4 && size_log != 0xf)
394     return AccessInfo{};  // Not ours.
395   const uptr size =
396       size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
397 
398 #  elif SANITIZER_RISCV64
399   // Access type is encoded in the instruction following EBREAK as
400   // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
401   // X11 register. Access address is always in X10 register.
402   uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
403   uint8_t byte1 = *((u8 *)(pc + 0));
404   uint8_t byte2 = *((u8 *)(pc + 1));
405   uint8_t byte3 = *((u8 *)(pc + 2));
406   uint8_t byte4 = *((u8 *)(pc + 3));
407   uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
408   bool isFaultShort = false;
409   bool isEbreak = (ebreak == 0x100073);
410   bool isShortEbreak = false;
411 #    if defined(__riscv_compressed)
412   isFaultShort = ((ebreak & 0x3) != 0x3);
413   isShortEbreak = ((ebreak & 0xffff) == 0x9002);
414 #    endif
415   // faulted insn is not ebreak, not our case
416   if (!(isEbreak || isShortEbreak))
417     return AccessInfo{};
418   // advance pc to point after ebreak and reconstruct addi instruction
419   pc += isFaultShort ? 2 : 4;
420   byte1 = *((u8 *)(pc + 0));
421   byte2 = *((u8 *)(pc + 1));
422   byte3 = *((u8 *)(pc + 2));
423   byte4 = *((u8 *)(pc + 3));
424   // reconstruct instruction
425   uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
426   // check if this is really 32 bit instruction
427   // code is encoded in top 12 bits, since instruction is supposed to be with
428   // imm
429   const unsigned code = (instr >> 20) & 0xffff;
430   const uptr addr = uc->uc_mcontext.__gregs[10];
431   const bool is_store = code & 0x10;
432   const bool recover = code & 0x20;
433   const unsigned size_log = code & 0xf;
434   if (size_log > 4 && size_log != 0xf)
435     return AccessInfo{};  // Not our case
436   const uptr size =
437       size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
438 
439 #  else
440 #    error Unsupported architecture
441 #  endif
442 
443   return AccessInfo{addr, size, is_store, !is_store, recover};
444 }
445 
446 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
447   AccessInfo ai = GetAccessInfo(info, uc);
448   if (!ai.is_store && !ai.is_load)
449     return false;
450 
451   SignalContext sig{info, uc};
452   HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
453 
454 #  if defined(__aarch64__)
455   uc->uc_mcontext.pc += 4;
456 #  elif defined(__x86_64__)
457 #  elif SANITIZER_RISCV64
458   // pc points to EBREAK which is 2 bytes long
459   uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
460   uint8_t byte1 = (uint8_t)(*(exception_source + 0));
461   uint8_t byte2 = (uint8_t)(*(exception_source + 1));
462   uint8_t byte3 = (uint8_t)(*(exception_source + 2));
463   uint8_t byte4 = (uint8_t)(*(exception_source + 3));
464   uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
465   bool isFaultShort = false;
466 #    if defined(__riscv_compressed)
467   isFaultShort = ((faulted & 0x3) != 0x3);
468 #    endif
469   uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
470 #  else
471 #    error Unsupported architecture
472 #  endif
473   return true;
474 }
475 
476 static void OnStackUnwind(const SignalContext &sig, const void *,
477                           BufferedStackTrace *stack) {
478   stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
479                 common_flags()->fast_unwind_on_fatal);
480 }
481 
482 void HwasanOnDeadlySignal(int signo, void *info, void *context) {
483   // Probably a tag mismatch.
484   if (signo == SIGTRAP)
485     if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
486       return;
487 
488   HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
489 }
490 
491 void Thread::InitStackAndTls(const InitState *) {
492   uptr tls_size;
493   uptr stack_size;
494   GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
495                        &tls_size);
496   stack_top_ = stack_bottom_ + stack_size;
497   tls_end_ = tls_begin_ + tls_size;
498 }
499 
500 uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
501   CHECK(IsAligned(p, kShadowAlignment));
502   CHECK(IsAligned(size, kShadowAlignment));
503   uptr shadow_start = MemToShadow(p);
504   uptr shadow_size = MemToShadowSize(size);
505 
506   uptr page_size = GetPageSizeCached();
507   uptr page_start = RoundUpTo(shadow_start, page_size);
508   uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
509   uptr threshold = common_flags()->clear_shadow_mmap_threshold;
510   if (SANITIZER_LINUX &&
511       UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
512     internal_memset((void *)shadow_start, tag, page_start - shadow_start);
513     internal_memset((void *)page_end, tag,
514                     shadow_start + shadow_size - page_end);
515     // For an anonymous private mapping MADV_DONTNEED will return a zero page on
516     // Linux.
517     ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
518   } else {
519     internal_memset((void *)shadow_start, tag, shadow_size);
520   }
521   return AddTagToPointer(p, tag);
522 }
523 
524 static void BeforeFork() {
525   if (CAN_SANITIZE_LEAKS) {
526     __lsan::LockGlobal();
527   }
528   // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and lock the
529   // stuff we need.
530   __lsan::LockThreads();
531   __lsan::LockAllocator();
532   StackDepotLockBeforeFork();
533 }
534 
535 static void AfterFork(bool fork_child) {
536   StackDepotUnlockAfterFork(fork_child);
537   // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and unlock
538   // the stuff we need.
539   __lsan::UnlockAllocator();
540   __lsan::UnlockThreads();
541   if (CAN_SANITIZE_LEAKS) {
542     __lsan::UnlockGlobal();
543   }
544 }
545 
546 void HwasanInstallAtForkHandler() {
547   pthread_atfork(
548       &BeforeFork, []() { AfterFork(/* fork_child= */ false); },
549       []() { AfterFork(/* fork_child= */ true); });
550 }
551 
552 void InstallAtExitCheckLeaks() {
553   if (CAN_SANITIZE_LEAKS) {
554     if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
555       if (flags()->halt_on_error)
556         Atexit(__lsan::DoLeakCheck);
557       else
558         Atexit(__lsan::DoRecoverableLeakCheckVoid);
559     }
560   }
561 }
562 
563 }  // namespace __hwasan
564 
565 using namespace __hwasan;
566 
567 extern "C" void __hwasan_thread_enter() {
568   hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
569 }
570 
571 extern "C" void __hwasan_thread_exit() {
572   Thread *t = GetCurrentThread();
573   // Make sure that signal handler can not see a stale current thread pointer.
574   atomic_signal_fence(memory_order_seq_cst);
575   if (t) {
576     // Block async signals on the thread as the handler can be instrumented.
577     // After this point instrumented code can't access essential data from TLS
578     // and will crash.
579     // Bionic already calls __hwasan_thread_exit with blocked signals.
580     if (SANITIZER_GLIBC)
581       BlockSignals();
582     hwasanThreadList().ReleaseThread(t);
583   }
584 }
585 
586 #endif  // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
587