1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and 11 /// FreeBSD-specific code. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "sanitizer_common/sanitizer_platform.h" 16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD 17 18 # include <dlfcn.h> 19 # include <elf.h> 20 # include <errno.h> 21 # include <link.h> 22 # include <pthread.h> 23 # include <signal.h> 24 # include <stdio.h> 25 # include <stdlib.h> 26 # include <sys/prctl.h> 27 # include <sys/resource.h> 28 # include <sys/time.h> 29 # include <unistd.h> 30 # include <unwind.h> 31 32 # include "hwasan.h" 33 # include "hwasan_dynamic_shadow.h" 34 # include "hwasan_interface_internal.h" 35 # include "hwasan_mapping.h" 36 # include "hwasan_report.h" 37 # include "hwasan_thread.h" 38 # include "hwasan_thread_list.h" 39 # include "sanitizer_common/sanitizer_common.h" 40 # include "sanitizer_common/sanitizer_procmaps.h" 41 # include "sanitizer_common/sanitizer_stackdepot.h" 42 43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID. 44 // 45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF 46 // Not currently tested. 47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON 48 // Integration tests downstream exist. 49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF 50 // Tested with check-hwasan on x86_64-linux. 51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON 52 // Tested with check-hwasan on aarch64-linux-android. 53 # if !SANITIZER_ANDROID 54 SANITIZER_INTERFACE_ATTRIBUTE 55 THREADLOCAL uptr __hwasan_tls; 56 # endif 57 58 namespace __hwasan { 59 60 // With the zero shadow base we can not actually map pages starting from 0. 61 // This constant is somewhat arbitrary. 62 constexpr uptr kZeroBaseShadowStart = 0; 63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18; 64 65 static void ProtectGap(uptr addr, uptr size) { 66 __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart, 67 kZeroBaseMaxShadowStart); 68 } 69 70 uptr kLowMemStart; 71 uptr kLowMemEnd; 72 uptr kHighMemStart; 73 uptr kHighMemEnd; 74 75 static void PrintRange(uptr start, uptr end, const char *name) { 76 Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name); 77 } 78 79 static void PrintAddressSpaceLayout() { 80 PrintRange(kHighMemStart, kHighMemEnd, "HighMem"); 81 if (kHighShadowEnd + 1 < kHighMemStart) 82 PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap"); 83 else 84 CHECK_EQ(kHighShadowEnd + 1, kHighMemStart); 85 PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow"); 86 if (kLowShadowEnd + 1 < kHighShadowStart) 87 PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap"); 88 else 89 CHECK_EQ(kLowMemEnd + 1, kHighShadowStart); 90 PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow"); 91 if (kLowMemEnd + 1 < kLowShadowStart) 92 PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap"); 93 else 94 CHECK_EQ(kLowMemEnd + 1, kLowShadowStart); 95 PrintRange(kLowMemStart, kLowMemEnd, "LowMem"); 96 CHECK_EQ(0, kLowMemStart); 97 } 98 99 static uptr GetHighMemEnd() { 100 // HighMem covers the upper part of the address space. 101 uptr max_address = GetMaxUserVirtualAddress(); 102 // Adjust max address to make sure that kHighMemEnd and kHighMemStart are 103 // properly aligned: 104 max_address |= (GetMmapGranularity() << kShadowScale) - 1; 105 return max_address; 106 } 107 108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) { 109 if (flags()->fixed_shadow_base != (uptr)-1) { 110 __hwasan_shadow_memory_dynamic_address = flags()->fixed_shadow_base; 111 } else { 112 __hwasan_shadow_memory_dynamic_address = 113 FindDynamicShadowStart(shadow_size_bytes); 114 } 115 } 116 117 static void MaybeDieIfNoTaggingAbi(const char *message) { 118 if (!flags()->fail_without_syscall_abi) 119 return; 120 Printf("FATAL: %s\n", message); 121 Die(); 122 } 123 124 # define PR_SET_TAGGED_ADDR_CTRL 55 125 # define PR_GET_TAGGED_ADDR_CTRL 56 126 # define PR_TAGGED_ADDR_ENABLE (1UL << 0) 127 # define ARCH_GET_UNTAG_MASK 0x4001 128 # define ARCH_ENABLE_TAGGED_ADDR 0x4002 129 # define ARCH_GET_MAX_TAG_BITS 0x4003 130 131 static bool CanUseTaggingAbi() { 132 # if defined(__x86_64__) 133 unsigned long num_bits = 0; 134 // Check for x86 LAM support. This API is based on a currently unsubmitted 135 // patch to the Linux kernel (as of August 2022) and is thus subject to 136 // change. The patch is here: 137 // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/ 138 // 139 // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag 140 // bits the user can request, or zero if LAM is not supported by the hardware. 141 if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS, 142 reinterpret_cast<uptr>(&num_bits)))) 143 return false; 144 // The platform must provide enough bits for HWASan tags. 145 if (num_bits < kTagBits) 146 return false; 147 return true; 148 # else 149 // Check for ARM TBI support. 150 return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0)); 151 # endif // __x86_64__ 152 } 153 154 static bool EnableTaggingAbi() { 155 # if defined(__x86_64__) 156 // Enable x86 LAM tagging for the process. 157 // 158 // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of 159 // tag bits requested by the user does not exceed that provided by the system. 160 // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant 161 // address bits. It is ~0ULL if either LAM is disabled for the process or LAM 162 // is not supported by the hardware. 163 if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits))) 164 return false; 165 unsigned long mask = 0; 166 // Make sure the tag bits are where we expect them to be. 167 if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK, 168 reinterpret_cast<uptr>(&mask)))) 169 return false; 170 // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag 171 // bits. Therefore these masks must not overlap. 172 if (mask & kAddressTagMask) 173 return false; 174 return true; 175 # else 176 // Enable ARM TBI tagging for the process. If for some reason tagging is not 177 // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns 178 // -EINVAL. 179 if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL, 180 PR_TAGGED_ADDR_ENABLE, 0, 0, 0))) 181 return false; 182 // Ensure that TBI is enabled. 183 if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) != 184 PR_TAGGED_ADDR_ENABLE) 185 return false; 186 return true; 187 # endif // __x86_64__ 188 } 189 190 void InitializeOsSupport() { 191 // Check we're running on a kernel that can use the tagged address ABI. 192 bool has_abi = CanUseTaggingAbi(); 193 194 if (!has_abi) { 195 # if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE) 196 // Some older Android kernels have the tagged pointer ABI on 197 // unconditionally, and hence don't have the tagged-addr prctl while still 198 // allow the ABI. 199 // If targeting Android and the prctl is not around we assume this is the 200 // case. 201 return; 202 # else 203 MaybeDieIfNoTaggingAbi( 204 "HWAddressSanitizer requires a kernel with tagged address ABI."); 205 # endif 206 } 207 208 if (EnableTaggingAbi()) 209 return; 210 211 # if SANITIZER_ANDROID 212 MaybeDieIfNoTaggingAbi( 213 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n" 214 "Check the `sysctl abi.tagged_addr_disabled` configuration."); 215 # else 216 MaybeDieIfNoTaggingAbi( 217 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"); 218 # endif 219 } 220 221 bool InitShadow() { 222 // Define the entire memory range. 223 kHighMemEnd = GetHighMemEnd(); 224 225 // Determine shadow memory base offset. 226 InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd)); 227 228 // Place the low memory first. 229 kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1; 230 kLowMemStart = 0; 231 232 // Define the low shadow based on the already placed low memory. 233 kLowShadowEnd = MemToShadow(kLowMemEnd); 234 kLowShadowStart = __hwasan_shadow_memory_dynamic_address; 235 236 // High shadow takes whatever memory is left up there (making sure it is not 237 // interfering with low memory in the fixed case). 238 kHighShadowEnd = MemToShadow(kHighMemEnd); 239 kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1; 240 241 // High memory starts where allocated shadow allows. 242 kHighMemStart = ShadowToMem(kHighShadowStart); 243 244 // Check the sanity of the defined memory ranges (there might be gaps). 245 CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0); 246 CHECK_GT(kHighMemStart, kHighShadowEnd); 247 CHECK_GT(kHighShadowEnd, kHighShadowStart); 248 CHECK_GT(kHighShadowStart, kLowMemEnd); 249 CHECK_GT(kLowMemEnd, kLowMemStart); 250 CHECK_GT(kLowShadowEnd, kLowShadowStart); 251 CHECK_GT(kLowShadowStart, kLowMemEnd); 252 253 if (Verbosity()) 254 PrintAddressSpaceLayout(); 255 256 // Reserve shadow memory. 257 ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow"); 258 ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow"); 259 260 // Protect all the gaps. 261 ProtectGap(0, Min(kLowMemStart, kLowShadowStart)); 262 if (kLowMemEnd + 1 < kLowShadowStart) 263 ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1); 264 if (kLowShadowEnd + 1 < kHighShadowStart) 265 ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1); 266 if (kHighShadowEnd + 1 < kHighMemStart) 267 ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1); 268 269 return true; 270 } 271 272 void InitThreads() { 273 CHECK(__hwasan_shadow_memory_dynamic_address); 274 uptr guard_page_size = GetMmapGranularity(); 275 uptr thread_space_start = 276 __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment); 277 uptr thread_space_end = 278 __hwasan_shadow_memory_dynamic_address - guard_page_size; 279 ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1, 280 "hwasan threads", /*madvise_shadow*/ false); 281 ProtectGap(thread_space_end, 282 __hwasan_shadow_memory_dynamic_address - thread_space_end); 283 InitThreadList(thread_space_start, thread_space_end - thread_space_start); 284 hwasanThreadList().CreateCurrentThread(); 285 } 286 287 bool MemIsApp(uptr p) { 288 // Memory outside the alias range has non-zero tags. 289 # if !defined(HWASAN_ALIASING_MODE) 290 CHECK_EQ(GetTagFromPointer(p), 0); 291 # endif 292 293 return (p >= kHighMemStart && p <= kHighMemEnd) || 294 (p >= kLowMemStart && p <= kLowMemEnd); 295 } 296 297 void InstallAtExitHandler() { atexit(HwasanAtExit); } 298 299 // ---------------------- TSD ---------------- {{{1 300 301 # if HWASAN_WITH_INTERCEPTORS 302 static pthread_key_t tsd_key; 303 static bool tsd_key_inited = false; 304 305 void HwasanTSDThreadInit() { 306 if (tsd_key_inited) 307 CHECK_EQ(0, pthread_setspecific(tsd_key, 308 (void *)GetPthreadDestructorIterations())); 309 } 310 311 void HwasanTSDDtor(void *tsd) { 312 uptr iterations = (uptr)tsd; 313 if (iterations > 1) { 314 CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1))); 315 return; 316 } 317 __hwasan_thread_exit(); 318 } 319 320 void HwasanTSDInit() { 321 CHECK(!tsd_key_inited); 322 tsd_key_inited = true; 323 CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor)); 324 } 325 # else 326 void HwasanTSDInit() {} 327 void HwasanTSDThreadInit() {} 328 # endif 329 330 # if SANITIZER_ANDROID 331 uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); } 332 # else 333 uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; } 334 # endif 335 336 # if SANITIZER_ANDROID 337 void AndroidTestTlsSlot() { 338 uptr kMagicValue = 0x010203040A0B0C0D; 339 uptr *tls_ptr = GetCurrentThreadLongPtr(); 340 uptr old_value = *tls_ptr; 341 *tls_ptr = kMagicValue; 342 dlerror(); 343 if (*(uptr *)get_android_tls_ptr() != kMagicValue) { 344 Printf( 345 "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used " 346 "for dlerror().\n"); 347 Die(); 348 } 349 *tls_ptr = old_value; 350 } 351 # else 352 void AndroidTestTlsSlot() {} 353 # endif 354 355 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) { 356 // Access type is passed in a platform dependent way (see below) and encoded 357 // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is 358 // recoverable. Valid values of Y are 0 to 4, which are interpreted as 359 // log2(access_size), and 0xF, which means that access size is passed via 360 // platform dependent register (see below). 361 # if defined(__aarch64__) 362 // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF, 363 // access size is stored in X1 register. Access address is always in X0 364 // register. 365 uptr pc = (uptr)info->si_addr; 366 const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff; 367 if ((code & 0xff00) != 0x900) 368 return AccessInfo{}; // Not ours. 369 370 const bool is_store = code & 0x10; 371 const bool recover = code & 0x20; 372 const uptr addr = uc->uc_mcontext.regs[0]; 373 const unsigned size_log = code & 0xf; 374 if (size_log > 4 && size_log != 0xf) 375 return AccessInfo{}; // Not ours. 376 const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log; 377 378 # elif defined(__x86_64__) 379 // Access type is encoded in the instruction following INT3 as 380 // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in 381 // RSI register. Access address is always in RDI register. 382 uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP]; 383 uint8_t *nop = (uint8_t *)pc; 384 if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 || 385 *(nop + 3) < 0x40) 386 return AccessInfo{}; // Not ours. 387 const unsigned code = *(nop + 3); 388 389 const bool is_store = code & 0x10; 390 const bool recover = code & 0x20; 391 const uptr addr = uc->uc_mcontext.gregs[REG_RDI]; 392 const unsigned size_log = code & 0xf; 393 if (size_log > 4 && size_log != 0xf) 394 return AccessInfo{}; // Not ours. 395 const uptr size = 396 size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log; 397 398 # elif SANITIZER_RISCV64 399 // Access type is encoded in the instruction following EBREAK as 400 // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in 401 // X11 register. Access address is always in X10 register. 402 uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC]; 403 uint8_t byte1 = *((u8 *)(pc + 0)); 404 uint8_t byte2 = *((u8 *)(pc + 1)); 405 uint8_t byte3 = *((u8 *)(pc + 2)); 406 uint8_t byte4 = *((u8 *)(pc + 3)); 407 uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24)); 408 bool isFaultShort = false; 409 bool isEbreak = (ebreak == 0x100073); 410 bool isShortEbreak = false; 411 # if defined(__riscv_compressed) 412 isFaultShort = ((ebreak & 0x3) != 0x3); 413 isShortEbreak = ((ebreak & 0xffff) == 0x9002); 414 # endif 415 // faulted insn is not ebreak, not our case 416 if (!(isEbreak || isShortEbreak)) 417 return AccessInfo{}; 418 // advance pc to point after ebreak and reconstruct addi instruction 419 pc += isFaultShort ? 2 : 4; 420 byte1 = *((u8 *)(pc + 0)); 421 byte2 = *((u8 *)(pc + 1)); 422 byte3 = *((u8 *)(pc + 2)); 423 byte4 = *((u8 *)(pc + 3)); 424 // reconstruct instruction 425 uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24)); 426 // check if this is really 32 bit instruction 427 // code is encoded in top 12 bits, since instruction is supposed to be with 428 // imm 429 const unsigned code = (instr >> 20) & 0xffff; 430 const uptr addr = uc->uc_mcontext.__gregs[10]; 431 const bool is_store = code & 0x10; 432 const bool recover = code & 0x20; 433 const unsigned size_log = code & 0xf; 434 if (size_log > 4 && size_log != 0xf) 435 return AccessInfo{}; // Not our case 436 const uptr size = 437 size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log; 438 439 # else 440 # error Unsupported architecture 441 # endif 442 443 return AccessInfo{addr, size, is_store, !is_store, recover}; 444 } 445 446 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) { 447 AccessInfo ai = GetAccessInfo(info, uc); 448 if (!ai.is_store && !ai.is_load) 449 return false; 450 451 SignalContext sig{info, uc}; 452 HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc); 453 454 # if defined(__aarch64__) 455 uc->uc_mcontext.pc += 4; 456 # elif defined(__x86_64__) 457 # elif SANITIZER_RISCV64 458 // pc points to EBREAK which is 2 bytes long 459 uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]); 460 uint8_t byte1 = (uint8_t)(*(exception_source + 0)); 461 uint8_t byte2 = (uint8_t)(*(exception_source + 1)); 462 uint8_t byte3 = (uint8_t)(*(exception_source + 2)); 463 uint8_t byte4 = (uint8_t)(*(exception_source + 3)); 464 uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24)); 465 bool isFaultShort = false; 466 # if defined(__riscv_compressed) 467 isFaultShort = ((faulted & 0x3) != 0x3); 468 # endif 469 uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4; 470 # else 471 # error Unsupported architecture 472 # endif 473 return true; 474 } 475 476 static void OnStackUnwind(const SignalContext &sig, const void *, 477 BufferedStackTrace *stack) { 478 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, 479 common_flags()->fast_unwind_on_fatal); 480 } 481 482 void HwasanOnDeadlySignal(int signo, void *info, void *context) { 483 // Probably a tag mismatch. 484 if (signo == SIGTRAP) 485 if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context)) 486 return; 487 488 HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr); 489 } 490 491 void Thread::InitStackAndTls(const InitState *) { 492 uptr tls_size; 493 uptr stack_size; 494 GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_, 495 &tls_size); 496 stack_top_ = stack_bottom_ + stack_size; 497 tls_end_ = tls_begin_ + tls_size; 498 } 499 500 uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) { 501 CHECK(IsAligned(p, kShadowAlignment)); 502 CHECK(IsAligned(size, kShadowAlignment)); 503 uptr shadow_start = MemToShadow(p); 504 uptr shadow_size = MemToShadowSize(size); 505 506 uptr page_size = GetPageSizeCached(); 507 uptr page_start = RoundUpTo(shadow_start, page_size); 508 uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size); 509 uptr threshold = common_flags()->clear_shadow_mmap_threshold; 510 if (SANITIZER_LINUX && 511 UNLIKELY(page_end >= page_start + threshold && tag == 0)) { 512 internal_memset((void *)shadow_start, tag, page_start - shadow_start); 513 internal_memset((void *)page_end, tag, 514 shadow_start + shadow_size - page_end); 515 // For an anonymous private mapping MADV_DONTNEED will return a zero page on 516 // Linux. 517 ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end); 518 } else { 519 internal_memset((void *)shadow_start, tag, shadow_size); 520 } 521 return AddTagToPointer(p, tag); 522 } 523 524 static void BeforeFork() { 525 if (CAN_SANITIZE_LEAKS) { 526 __lsan::LockGlobal(); 527 } 528 // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and lock the 529 // stuff we need. 530 __lsan::LockThreads(); 531 __lsan::LockAllocator(); 532 StackDepotLockBeforeFork(); 533 } 534 535 static void AfterFork(bool fork_child) { 536 StackDepotUnlockAfterFork(fork_child); 537 // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and unlock 538 // the stuff we need. 539 __lsan::UnlockAllocator(); 540 __lsan::UnlockThreads(); 541 if (CAN_SANITIZE_LEAKS) { 542 __lsan::UnlockGlobal(); 543 } 544 } 545 546 void HwasanInstallAtForkHandler() { 547 pthread_atfork( 548 &BeforeFork, []() { AfterFork(/* fork_child= */ false); }, 549 []() { AfterFork(/* fork_child= */ true); }); 550 } 551 552 void InstallAtExitCheckLeaks() { 553 if (CAN_SANITIZE_LEAKS) { 554 if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) { 555 if (flags()->halt_on_error) 556 Atexit(__lsan::DoLeakCheck); 557 else 558 Atexit(__lsan::DoRecoverableLeakCheckVoid); 559 } 560 } 561 } 562 563 } // namespace __hwasan 564 565 using namespace __hwasan; 566 567 extern "C" void __hwasan_thread_enter() { 568 hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited(); 569 } 570 571 extern "C" void __hwasan_thread_exit() { 572 Thread *t = GetCurrentThread(); 573 // Make sure that signal handler can not see a stale current thread pointer. 574 atomic_signal_fence(memory_order_seq_cst); 575 if (t) { 576 // Block async signals on the thread as the handler can be instrumented. 577 // After this point instrumented code can't access essential data from TLS 578 // and will crash. 579 // Bionic already calls __hwasan_thread_exit with blocked signals. 580 if (SANITIZER_GLIBC) 581 BlockSignals(); 582 hwasanThreadList().ReleaseThread(t); 583 } 584 } 585 586 #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD 587