xref: /freebsd/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp (revision d198b8774d2cfb6f140893e1c6236af9e97d1497)
1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // HWAddressSanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
17 #include "hwasan.h"
18 #include "hwasan_allocator.h"
19 #include "hwasan_checks.h"
20 #include "hwasan_mapping.h"
21 #include "hwasan_malloc_bisect.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_report.h"
24 
25 namespace __hwasan {
26 
27 static Allocator allocator;
28 static AllocatorCache fallback_allocator_cache;
29 static SpinMutex fallback_mutex;
30 static atomic_uint8_t hwasan_allocator_tagging_enabled;
31 
32 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask;
33 static constexpr tag_t kFallbackFreeTag = 0xBC;
34 
35 enum RightAlignMode {
36   kRightAlignNever,
37   kRightAlignSometimes,
38   kRightAlignAlways
39 };
40 
41 // Initialized in HwasanAllocatorInit, an never changed.
42 static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1];
43 
44 bool HwasanChunkView::IsAllocated() const {
45   return metadata_ && metadata_->alloc_context_id &&
46          metadata_->get_requested_size();
47 }
48 
49 // Aligns the 'addr' right to the granule boundary.
50 static uptr AlignRight(uptr addr, uptr requested_size) {
51   uptr tail_size = requested_size % kShadowAlignment;
52   if (!tail_size) return addr;
53   return addr + kShadowAlignment - tail_size;
54 }
55 
56 uptr HwasanChunkView::Beg() const {
57   if (metadata_ && metadata_->right_aligned)
58     return AlignRight(block_, metadata_->get_requested_size());
59   return block_;
60 }
61 uptr HwasanChunkView::End() const {
62   return Beg() + UsedSize();
63 }
64 uptr HwasanChunkView::UsedSize() const {
65   return metadata_->get_requested_size();
66 }
67 u32 HwasanChunkView::GetAllocStackId() const {
68   return metadata_->alloc_context_id;
69 }
70 
71 uptr HwasanChunkView::ActualSize() const {
72   return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
73 }
74 
75 bool HwasanChunkView::FromSmallHeap() const {
76   return allocator.FromPrimary(reinterpret_cast<void *>(block_));
77 }
78 
79 void GetAllocatorStats(AllocatorStatCounters s) {
80   allocator.GetStats(s);
81 }
82 
83 uptr GetAliasRegionStart() {
84 #if defined(HWASAN_ALIASING_MODE)
85   constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1);
86   uptr AliasRegionStart =
87       __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset;
88 
89   CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift,
90            __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
91   CHECK_EQ(
92       (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift,
93       __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
94   return AliasRegionStart;
95 #else
96   return 0;
97 #endif
98 }
99 
100 void HwasanAllocatorInit() {
101   atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
102                        !flags()->disable_allocator_tagging);
103   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
104   allocator.Init(common_flags()->allocator_release_to_os_interval_ms,
105                  GetAliasRegionStart());
106   for (uptr i = 0; i < sizeof(tail_magic); i++)
107     tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
108 }
109 
110 void HwasanAllocatorLock() { allocator.ForceLock(); }
111 
112 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); }
113 
114 void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
115   allocator.SwallowCache(cache);
116 }
117 
118 static uptr TaggedSize(uptr size) {
119   if (!size) size = 1;
120   uptr new_size = RoundUpTo(size, kShadowAlignment);
121   CHECK_GE(new_size, size);
122   return new_size;
123 }
124 
125 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
126                             bool zeroise) {
127   if (orig_size > kMaxAllowedMallocSize) {
128     if (AllocatorMayReturnNull()) {
129       Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
130              orig_size);
131       return nullptr;
132     }
133     ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack);
134   }
135   if (UNLIKELY(IsRssLimitExceeded())) {
136     if (AllocatorMayReturnNull())
137       return nullptr;
138     ReportRssLimitExceeded(stack);
139   }
140 
141   alignment = Max(alignment, kShadowAlignment);
142   uptr size = TaggedSize(orig_size);
143   Thread *t = GetCurrentThread();
144   void *allocated;
145   if (t) {
146     allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
147   } else {
148     SpinMutexLock l(&fallback_mutex);
149     AllocatorCache *cache = &fallback_allocator_cache;
150     allocated = allocator.Allocate(cache, size, alignment);
151   }
152   if (UNLIKELY(!allocated)) {
153     SetAllocatorOutOfMemory();
154     if (AllocatorMayReturnNull())
155       return nullptr;
156     ReportOutOfMemory(size, stack);
157   }
158   Metadata *meta =
159       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
160   meta->set_requested_size(orig_size);
161   meta->alloc_context_id = StackDepotPut(*stack);
162   meta->right_aligned = false;
163   if (zeroise) {
164     internal_memset(allocated, 0, size);
165   } else if (flags()->max_malloc_fill_size > 0) {
166     uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
167     internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
168   }
169   if (size != orig_size) {
170     u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size;
171     uptr tail_length = size - orig_size;
172     internal_memcpy(tail, tail_magic, tail_length - 1);
173     // Short granule is excluded from magic tail, so we explicitly untag.
174     tail[tail_length - 1] = 0;
175   }
176 
177   void *user_ptr = allocated;
178   // Tagging can only be skipped when both tag_in_malloc and tag_in_free are
179   // false. When tag_in_malloc = false and tag_in_free = true malloc needs to
180   // retag to 0.
181   if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) &&
182       (flags()->tag_in_malloc || flags()->tag_in_free) &&
183       atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
184     if (flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
185       tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
186       uptr tag_size = orig_size ? orig_size : 1;
187       uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
188       user_ptr =
189           (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
190       if (full_granule_size != tag_size) {
191         u8 *short_granule =
192             reinterpret_cast<u8 *>(allocated) + full_granule_size;
193         TagMemoryAligned((uptr)short_granule, kShadowAlignment,
194                          tag_size % kShadowAlignment);
195         short_granule[kShadowAlignment - 1] = tag;
196       }
197     } else {
198       user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
199     }
200   }
201 
202   RunMallocHooks(user_ptr, size);
203   return user_ptr;
204 }
205 
206 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
207   CHECK(tagged_ptr);
208   uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
209   if (!InTaggableRegion(tagged_uptr))
210     return true;
211   tag_t mem_tag = *reinterpret_cast<tag_t *>(
212       MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
213   return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
214 }
215 
216 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr,
217                              void *tagged_ptr) {
218   // This function can return true if halt_on_error is false.
219   if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) ||
220       !PointerAndMemoryTagsMatch(tagged_ptr)) {
221     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
222     return true;
223   }
224   return false;
225 }
226 
227 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
228   CHECK(tagged_ptr);
229   RunFreeHooks(tagged_ptr);
230 
231   bool in_taggable_region =
232       InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr));
233   void *untagged_ptr = in_taggable_region ? UntagPtr(tagged_ptr) : tagged_ptr;
234 
235   if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr))
236     return;
237 
238   void *aligned_ptr = reinterpret_cast<void *>(
239       RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
240   tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
241   Metadata *meta =
242       reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
243   if (!meta) {
244     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
245     return;
246   }
247   uptr orig_size = meta->get_requested_size();
248   u32 free_context_id = StackDepotPut(*stack);
249   u32 alloc_context_id = meta->alloc_context_id;
250 
251   // Check tail magic.
252   uptr tagged_size = TaggedSize(orig_size);
253   if (flags()->free_checks_tail_magic && orig_size &&
254       tagged_size != orig_size) {
255     uptr tail_size = tagged_size - orig_size - 1;
256     CHECK_LT(tail_size, kShadowAlignment);
257     void *tail_beg = reinterpret_cast<void *>(
258         reinterpret_cast<uptr>(aligned_ptr) + orig_size);
259     tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>(
260         reinterpret_cast<uptr>(tail_beg) + tail_size));
261     if (tail_size &&
262         (internal_memcmp(tail_beg, tail_magic, tail_size) ||
263          (in_taggable_region && pointer_tag != short_granule_memtag)))
264       ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
265                             orig_size, tail_magic);
266   }
267 
268   meta->set_requested_size(0);
269   meta->alloc_context_id = 0;
270   // This memory will not be reused by anyone else, so we are free to keep it
271   // poisoned.
272   Thread *t = GetCurrentThread();
273   if (flags()->max_free_fill_size > 0) {
274     uptr fill_size =
275         Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
276     internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
277   }
278   if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) &&
279       atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
280     // Always store full 8-bit tags on free to maximize UAF detection.
281     tag_t tag;
282     if (t) {
283       // Make sure we are not using a short granule tag as a poison tag. This
284       // would make us attempt to read the memory on a UaF.
285       // The tag can be zero if tagging is disabled on this thread.
286       do {
287         tag = t->GenerateRandomTag(/*num_bits=*/8);
288       } while (
289           UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0));
290     } else {
291       static_assert(kFallbackFreeTag >= kShadowAlignment,
292                     "fallback tag must not be a short granule tag.");
293       tag = kFallbackFreeTag;
294     }
295     TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
296                      tag);
297   }
298   if (t) {
299     allocator.Deallocate(t->allocator_cache(), aligned_ptr);
300     if (auto *ha = t->heap_allocations())
301       ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id,
302                 free_context_id, static_cast<u32>(orig_size)});
303   } else {
304     SpinMutexLock l(&fallback_mutex);
305     AllocatorCache *cache = &fallback_allocator_cache;
306     allocator.Deallocate(cache, aligned_ptr);
307   }
308 }
309 
310 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
311                               uptr new_size, uptr alignment) {
312   void *untagged_ptr_old =
313       InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr_old))
314           ? UntagPtr(tagged_ptr_old)
315           : tagged_ptr_old;
316   if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old))
317     return nullptr;
318   void *tagged_ptr_new =
319       HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
320   if (tagged_ptr_old && tagged_ptr_new) {
321     Metadata *meta =
322         reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
323     internal_memcpy(
324         UntagPtr(tagged_ptr_new), untagged_ptr_old,
325         Min(new_size, static_cast<uptr>(meta->get_requested_size())));
326     HwasanDeallocate(stack, tagged_ptr_old);
327   }
328   return tagged_ptr_new;
329 }
330 
331 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
332   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
333     if (AllocatorMayReturnNull())
334       return nullptr;
335     ReportCallocOverflow(nmemb, size, stack);
336   }
337   return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
338 }
339 
340 HwasanChunkView FindHeapChunkByAddress(uptr address) {
341   if (!allocator.PointerIsMine(reinterpret_cast<void *>(address)))
342     return HwasanChunkView();
343   void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
344   if (!block)
345     return HwasanChunkView();
346   Metadata *metadata =
347       reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
348   return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
349 }
350 
351 static uptr AllocationSize(const void *tagged_ptr) {
352   const void *untagged_ptr = UntagPtr(tagged_ptr);
353   if (!untagged_ptr) return 0;
354   const void *beg = allocator.GetBlockBegin(untagged_ptr);
355   Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
356   if (b->right_aligned) {
357     if (beg != reinterpret_cast<void *>(RoundDownTo(
358                    reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)))
359       return 0;
360   } else {
361     if (beg != untagged_ptr) return 0;
362   }
363   return b->get_requested_size();
364 }
365 
366 void *hwasan_malloc(uptr size, StackTrace *stack) {
367   return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
368 }
369 
370 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
371   return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
372 }
373 
374 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
375   if (!ptr)
376     return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
377   if (size == 0) {
378     HwasanDeallocate(stack, ptr);
379     return nullptr;
380   }
381   return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
382 }
383 
384 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
385   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
386     errno = errno_ENOMEM;
387     if (AllocatorMayReturnNull())
388       return nullptr;
389     ReportReallocArrayOverflow(nmemb, size, stack);
390   }
391   return hwasan_realloc(ptr, nmemb * size, stack);
392 }
393 
394 void *hwasan_valloc(uptr size, StackTrace *stack) {
395   return SetErrnoOnNull(
396       HwasanAllocate(stack, size, GetPageSizeCached(), false));
397 }
398 
399 void *hwasan_pvalloc(uptr size, StackTrace *stack) {
400   uptr PageSize = GetPageSizeCached();
401   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
402     errno = errno_ENOMEM;
403     if (AllocatorMayReturnNull())
404       return nullptr;
405     ReportPvallocOverflow(size, stack);
406   }
407   // pvalloc(0) should allocate one page.
408   size = size ? RoundUpTo(size, PageSize) : PageSize;
409   return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
410 }
411 
412 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
413   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
414     errno = errno_EINVAL;
415     if (AllocatorMayReturnNull())
416       return nullptr;
417     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
418   }
419   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
420 }
421 
422 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
423   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
424     errno = errno_EINVAL;
425     if (AllocatorMayReturnNull())
426       return nullptr;
427     ReportInvalidAllocationAlignment(alignment, stack);
428   }
429   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
430 }
431 
432 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
433                         StackTrace *stack) {
434   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
435     if (AllocatorMayReturnNull())
436       return errno_EINVAL;
437     ReportInvalidPosixMemalignAlignment(alignment, stack);
438   }
439   void *ptr = HwasanAllocate(stack, size, alignment, false);
440   if (UNLIKELY(!ptr))
441     // OOM error is already taken care of by HwasanAllocate.
442     return errno_ENOMEM;
443   CHECK(IsAligned((uptr)ptr, alignment));
444   *memptr = ptr;
445   return 0;
446 }
447 
448 void hwasan_free(void *ptr, StackTrace *stack) {
449   return HwasanDeallocate(stack, ptr);
450 }
451 
452 }  // namespace __hwasan
453 
454 using namespace __hwasan;
455 
456 void __hwasan_enable_allocator_tagging() {
457   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
458 }
459 
460 void __hwasan_disable_allocator_tagging() {
461   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
462 }
463 
464 uptr __sanitizer_get_current_allocated_bytes() {
465   uptr stats[AllocatorStatCount];
466   allocator.GetStats(stats);
467   return stats[AllocatorStatAllocated];
468 }
469 
470 uptr __sanitizer_get_heap_size() {
471   uptr stats[AllocatorStatCount];
472   allocator.GetStats(stats);
473   return stats[AllocatorStatMapped];
474 }
475 
476 uptr __sanitizer_get_free_bytes() { return 1; }
477 
478 uptr __sanitizer_get_unmapped_bytes() { return 1; }
479 
480 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
481 
482 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
483 
484 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
485