1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of HWAddressSanitizer. 10 // 11 // HWAddressSanitizer allocator. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_common/sanitizer_atomic.h" 15 #include "sanitizer_common/sanitizer_errno.h" 16 #include "sanitizer_common/sanitizer_stackdepot.h" 17 #include "hwasan.h" 18 #include "hwasan_allocator.h" 19 #include "hwasan_checks.h" 20 #include "hwasan_mapping.h" 21 #include "hwasan_malloc_bisect.h" 22 #include "hwasan_thread.h" 23 #include "hwasan_report.h" 24 #include "lsan/lsan_common.h" 25 26 namespace __hwasan { 27 28 static Allocator allocator; 29 static AllocatorCache fallback_allocator_cache; 30 static SpinMutex fallback_mutex; 31 static atomic_uint8_t hwasan_allocator_tagging_enabled; 32 33 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask; 34 static constexpr tag_t kFallbackFreeTag = 0xBC; 35 36 enum { 37 // Either just allocated by underlying allocator, but AsanChunk is not yet 38 // ready, or almost returned to undelying allocator and AsanChunk is already 39 // meaningless. 40 CHUNK_INVALID = 0, 41 // The chunk is allocated and not yet freed. 42 CHUNK_ALLOCATED = 1, 43 }; 44 45 46 // Initialized in HwasanAllocatorInit, an never changed. 47 alignas(16) static u8 tail_magic[kShadowAlignment - 1]; 48 static uptr max_malloc_size; 49 50 bool HwasanChunkView::IsAllocated() const { 51 return metadata_ && metadata_->IsAllocated(); 52 } 53 54 uptr HwasanChunkView::Beg() const { 55 return block_; 56 } 57 uptr HwasanChunkView::End() const { 58 return Beg() + UsedSize(); 59 } 60 uptr HwasanChunkView::UsedSize() const { 61 return metadata_->GetRequestedSize(); 62 } 63 u32 HwasanChunkView::GetAllocStackId() const { 64 return metadata_->GetAllocStackId(); 65 } 66 67 u32 HwasanChunkView::GetAllocThreadId() const { 68 return metadata_->GetAllocThreadId(); 69 } 70 71 uptr HwasanChunkView::ActualSize() const { 72 return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_)); 73 } 74 75 bool HwasanChunkView::FromSmallHeap() const { 76 return allocator.FromPrimary(reinterpret_cast<void *>(block_)); 77 } 78 79 bool HwasanChunkView::AddrIsInside(uptr addr) const { 80 return (addr >= Beg()) && (addr < Beg() + UsedSize()); 81 } 82 83 inline void Metadata::SetAllocated(u32 stack, u64 size) { 84 Thread *t = GetCurrentThread(); 85 u64 context = t ? t->unique_id() : kMainTid; 86 context <<= 32; 87 context += stack; 88 requested_size_low = size & ((1ul << 32) - 1); 89 requested_size_high = size >> 32; 90 atomic_store(&alloc_context_id, context, memory_order_relaxed); 91 atomic_store(&chunk_state, CHUNK_ALLOCATED, memory_order_release); 92 } 93 94 inline void Metadata::SetUnallocated() { 95 atomic_store(&chunk_state, CHUNK_INVALID, memory_order_release); 96 requested_size_low = 0; 97 requested_size_high = 0; 98 atomic_store(&alloc_context_id, 0, memory_order_relaxed); 99 } 100 101 inline bool Metadata::IsAllocated() const { 102 return atomic_load(&chunk_state, memory_order_relaxed) == CHUNK_ALLOCATED; 103 } 104 105 inline u64 Metadata::GetRequestedSize() const { 106 return (static_cast<u64>(requested_size_high) << 32) + requested_size_low; 107 } 108 109 inline u32 Metadata::GetAllocStackId() const { 110 return atomic_load(&alloc_context_id, memory_order_relaxed); 111 } 112 113 inline u32 Metadata::GetAllocThreadId() const { 114 u64 context = atomic_load(&alloc_context_id, memory_order_relaxed); 115 u32 tid = context >> 32; 116 return tid; 117 } 118 119 void GetAllocatorStats(AllocatorStatCounters s) { 120 allocator.GetStats(s); 121 } 122 123 inline void Metadata::SetLsanTag(__lsan::ChunkTag tag) { 124 lsan_tag = tag; 125 } 126 127 inline __lsan::ChunkTag Metadata::GetLsanTag() const { 128 return static_cast<__lsan::ChunkTag>(lsan_tag); 129 } 130 131 uptr GetAliasRegionStart() { 132 #if defined(HWASAN_ALIASING_MODE) 133 constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1); 134 uptr AliasRegionStart = 135 __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset; 136 137 CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift, 138 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift); 139 CHECK_EQ( 140 (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift, 141 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift); 142 return AliasRegionStart; 143 #else 144 return 0; 145 #endif 146 } 147 148 void HwasanAllocatorInit() { 149 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 150 !flags()->disable_allocator_tagging); 151 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 152 allocator.InitLinkerInitialized( 153 common_flags()->allocator_release_to_os_interval_ms, 154 GetAliasRegionStart()); 155 for (uptr i = 0; i < sizeof(tail_magic); i++) 156 tail_magic[i] = GetCurrentThread()->GenerateRandomTag(); 157 if (common_flags()->max_allocation_size_mb) { 158 max_malloc_size = common_flags()->max_allocation_size_mb << 20; 159 max_malloc_size = Min(max_malloc_size, kMaxAllowedMallocSize); 160 } else { 161 max_malloc_size = kMaxAllowedMallocSize; 162 } 163 } 164 165 void HwasanAllocatorLock() { allocator.ForceLock(); } 166 167 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); } 168 169 void AllocatorThreadStart(AllocatorCache *cache) { allocator.InitCache(cache); } 170 171 void AllocatorThreadFinish(AllocatorCache *cache) { 172 allocator.SwallowCache(cache); 173 allocator.DestroyCache(cache); 174 } 175 176 static uptr TaggedSize(uptr size) { 177 if (!size) size = 1; 178 uptr new_size = RoundUpTo(size, kShadowAlignment); 179 CHECK_GE(new_size, size); 180 return new_size; 181 } 182 183 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment, 184 bool zeroise) { 185 // Keep this consistent with LSAN and ASAN behavior. 186 if (UNLIKELY(orig_size == 0)) 187 orig_size = 1; 188 if (UNLIKELY(orig_size > max_malloc_size)) { 189 if (AllocatorMayReturnNull()) { 190 Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n", 191 orig_size); 192 return nullptr; 193 } 194 ReportAllocationSizeTooBig(orig_size, max_malloc_size, stack); 195 } 196 if (UNLIKELY(IsRssLimitExceeded())) { 197 if (AllocatorMayReturnNull()) 198 return nullptr; 199 ReportRssLimitExceeded(stack); 200 } 201 202 alignment = Max(alignment, kShadowAlignment); 203 uptr size = TaggedSize(orig_size); 204 Thread *t = GetCurrentThread(); 205 void *allocated; 206 if (t) { 207 allocated = allocator.Allocate(t->allocator_cache(), size, alignment); 208 } else { 209 SpinMutexLock l(&fallback_mutex); 210 AllocatorCache *cache = &fallback_allocator_cache; 211 allocated = allocator.Allocate(cache, size, alignment); 212 } 213 if (UNLIKELY(!allocated)) { 214 SetAllocatorOutOfMemory(); 215 if (AllocatorMayReturnNull()) 216 return nullptr; 217 ReportOutOfMemory(size, stack); 218 } 219 if (zeroise) { 220 // The secondary allocator mmaps memory, which should be zero-inited so we 221 // don't need to explicitly clear it. 222 if (allocator.FromPrimary(allocated)) 223 internal_memset(allocated, 0, size); 224 } else if (flags()->max_malloc_fill_size > 0) { 225 uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size); 226 internal_memset(allocated, flags()->malloc_fill_byte, fill_size); 227 } 228 if (size != orig_size) { 229 u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size; 230 uptr tail_length = size - orig_size; 231 internal_memcpy(tail, tail_magic, tail_length - 1); 232 // Short granule is excluded from magic tail, so we explicitly untag. 233 tail[tail_length - 1] = 0; 234 } 235 236 void *user_ptr = allocated; 237 if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) && 238 atomic_load_relaxed(&hwasan_allocator_tagging_enabled) && 239 flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) { 240 tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag; 241 uptr tag_size = orig_size ? orig_size : 1; 242 uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment); 243 user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag); 244 if (full_granule_size != tag_size) { 245 u8 *short_granule = reinterpret_cast<u8 *>(allocated) + full_granule_size; 246 TagMemoryAligned((uptr)short_granule, kShadowAlignment, 247 tag_size % kShadowAlignment); 248 short_granule[kShadowAlignment - 1] = tag; 249 } 250 } else { 251 // Tagging can not be completely skipped. If it's disabled, we need to tag 252 // with zeros. 253 user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0); 254 } 255 256 Metadata *meta = 257 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated)); 258 #if CAN_SANITIZE_LEAKS 259 meta->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored 260 : __lsan::kDirectlyLeaked); 261 #endif 262 meta->SetAllocated(StackDepotPut(*stack), orig_size); 263 RunMallocHooks(user_ptr, orig_size); 264 return user_ptr; 265 } 266 267 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) { 268 CHECK(tagged_ptr); 269 uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr); 270 if (!InTaggableRegion(tagged_uptr)) 271 return true; 272 tag_t mem_tag = *reinterpret_cast<tag_t *>( 273 MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr)))); 274 return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1); 275 } 276 277 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr, 278 void *tagged_ptr) { 279 // This function can return true if halt_on_error is false. 280 if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) || 281 !PointerAndMemoryTagsMatch(tagged_ptr)) { 282 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr)); 283 return true; 284 } 285 return false; 286 } 287 288 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) { 289 CHECK(tagged_ptr); 290 void *untagged_ptr = UntagPtr(tagged_ptr); 291 292 if (RunFreeHooks(tagged_ptr)) 293 return; 294 295 if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr)) 296 return; 297 298 void *aligned_ptr = reinterpret_cast<void *>( 299 RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)); 300 tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr)); 301 Metadata *meta = 302 reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr)); 303 if (!meta) { 304 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr)); 305 return; 306 } 307 308 uptr orig_size = meta->GetRequestedSize(); 309 u32 free_context_id = StackDepotPut(*stack); 310 u32 alloc_context_id = meta->GetAllocStackId(); 311 u32 alloc_thread_id = meta->GetAllocThreadId(); 312 313 bool in_taggable_region = 314 InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr)); 315 316 // Check tail magic. 317 uptr tagged_size = TaggedSize(orig_size); 318 if (flags()->free_checks_tail_magic && orig_size && 319 tagged_size != orig_size) { 320 uptr tail_size = tagged_size - orig_size - 1; 321 CHECK_LT(tail_size, kShadowAlignment); 322 void *tail_beg = reinterpret_cast<void *>( 323 reinterpret_cast<uptr>(aligned_ptr) + orig_size); 324 tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>( 325 reinterpret_cast<uptr>(tail_beg) + tail_size)); 326 if (tail_size && 327 (internal_memcmp(tail_beg, tail_magic, tail_size) || 328 (in_taggable_region && pointer_tag != short_granule_memtag))) 329 ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr), 330 orig_size, tail_magic); 331 } 332 333 // TODO(kstoimenov): consider meta->SetUnallocated(free_context_id). 334 meta->SetUnallocated(); 335 // This memory will not be reused by anyone else, so we are free to keep it 336 // poisoned. 337 Thread *t = GetCurrentThread(); 338 if (flags()->max_free_fill_size > 0) { 339 uptr fill_size = 340 Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size); 341 internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size); 342 } 343 if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) && 344 atomic_load_relaxed(&hwasan_allocator_tagging_enabled) && 345 allocator.FromPrimary(untagged_ptr) /* Secondary 0-tag and unmap.*/) { 346 // Always store full 8-bit tags on free to maximize UAF detection. 347 tag_t tag; 348 if (t) { 349 // Make sure we are not using a short granule tag as a poison tag. This 350 // would make us attempt to read the memory on a UaF. 351 // The tag can be zero if tagging is disabled on this thread. 352 do { 353 tag = t->GenerateRandomTag(/*num_bits=*/8); 354 } while ( 355 UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0)); 356 } else { 357 static_assert(kFallbackFreeTag >= kShadowAlignment, 358 "fallback tag must not be a short granule tag."); 359 tag = kFallbackFreeTag; 360 } 361 TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size), 362 tag); 363 } 364 if (t) { 365 allocator.Deallocate(t->allocator_cache(), aligned_ptr); 366 if (auto *ha = t->heap_allocations()) 367 ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_thread_id, 368 alloc_context_id, free_context_id, 369 static_cast<u32>(orig_size)}); 370 } else { 371 SpinMutexLock l(&fallback_mutex); 372 AllocatorCache *cache = &fallback_allocator_cache; 373 allocator.Deallocate(cache, aligned_ptr); 374 } 375 } 376 377 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old, 378 uptr new_size, uptr alignment) { 379 void *untagged_ptr_old = UntagPtr(tagged_ptr_old); 380 if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old)) 381 return nullptr; 382 void *tagged_ptr_new = 383 HwasanAllocate(stack, new_size, alignment, false /*zeroise*/); 384 if (tagged_ptr_old && tagged_ptr_new) { 385 Metadata *meta = 386 reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old)); 387 void *untagged_ptr_new = UntagPtr(tagged_ptr_new); 388 internal_memcpy(untagged_ptr_new, untagged_ptr_old, 389 Min(new_size, static_cast<uptr>(meta->GetRequestedSize()))); 390 HwasanDeallocate(stack, tagged_ptr_old); 391 } 392 return tagged_ptr_new; 393 } 394 395 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) { 396 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 397 if (AllocatorMayReturnNull()) 398 return nullptr; 399 ReportCallocOverflow(nmemb, size, stack); 400 } 401 return HwasanAllocate(stack, nmemb * size, sizeof(u64), true); 402 } 403 404 HwasanChunkView FindHeapChunkByAddress(uptr address) { 405 if (!allocator.PointerIsMine(reinterpret_cast<void *>(address))) 406 return HwasanChunkView(); 407 void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address)); 408 if (!block) 409 return HwasanChunkView(); 410 Metadata *metadata = 411 reinterpret_cast<Metadata*>(allocator.GetMetaData(block)); 412 return HwasanChunkView(reinterpret_cast<uptr>(block), metadata); 413 } 414 415 static const void *AllocationBegin(const void *p) { 416 const void *untagged_ptr = UntagPtr(p); 417 if (!untagged_ptr) 418 return nullptr; 419 420 const void *beg = allocator.GetBlockBegin(untagged_ptr); 421 if (!beg) 422 return nullptr; 423 424 Metadata *b = (Metadata *)allocator.GetMetaData(beg); 425 if (b->GetRequestedSize() == 0) 426 return nullptr; 427 428 tag_t tag = GetTagFromPointer((uptr)p); 429 return (const void *)AddTagToPointer((uptr)beg, tag); 430 } 431 432 static uptr AllocationSize(const void *p) { 433 const void *untagged_ptr = UntagPtr(p); 434 if (!untagged_ptr) return 0; 435 const void *beg = allocator.GetBlockBegin(untagged_ptr); 436 if (!beg) 437 return 0; 438 Metadata *b = (Metadata *)allocator.GetMetaData(beg); 439 return b->GetRequestedSize(); 440 } 441 442 static uptr AllocationSizeFast(const void *p) { 443 const void *untagged_ptr = UntagPtr(p); 444 void *aligned_ptr = reinterpret_cast<void *>( 445 RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)); 446 Metadata *meta = 447 reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr)); 448 return meta->GetRequestedSize(); 449 } 450 451 void *hwasan_malloc(uptr size, StackTrace *stack) { 452 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false)); 453 } 454 455 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) { 456 return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size)); 457 } 458 459 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) { 460 if (!ptr) 461 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false)); 462 if (size == 0) { 463 HwasanDeallocate(stack, ptr); 464 return nullptr; 465 } 466 return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64))); 467 } 468 469 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) { 470 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 471 errno = errno_ENOMEM; 472 if (AllocatorMayReturnNull()) 473 return nullptr; 474 ReportReallocArrayOverflow(nmemb, size, stack); 475 } 476 return hwasan_realloc(ptr, nmemb * size, stack); 477 } 478 479 void *hwasan_valloc(uptr size, StackTrace *stack) { 480 return SetErrnoOnNull( 481 HwasanAllocate(stack, size, GetPageSizeCached(), false)); 482 } 483 484 void *hwasan_pvalloc(uptr size, StackTrace *stack) { 485 uptr PageSize = GetPageSizeCached(); 486 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 487 errno = errno_ENOMEM; 488 if (AllocatorMayReturnNull()) 489 return nullptr; 490 ReportPvallocOverflow(size, stack); 491 } 492 // pvalloc(0) should allocate one page. 493 size = size ? RoundUpTo(size, PageSize) : PageSize; 494 return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false)); 495 } 496 497 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) { 498 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 499 errno = errno_EINVAL; 500 if (AllocatorMayReturnNull()) 501 return nullptr; 502 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 503 } 504 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false)); 505 } 506 507 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) { 508 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 509 errno = errno_EINVAL; 510 if (AllocatorMayReturnNull()) 511 return nullptr; 512 ReportInvalidAllocationAlignment(alignment, stack); 513 } 514 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false)); 515 } 516 517 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size, 518 StackTrace *stack) { 519 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 520 if (AllocatorMayReturnNull()) 521 return errno_EINVAL; 522 ReportInvalidPosixMemalignAlignment(alignment, stack); 523 } 524 void *ptr = HwasanAllocate(stack, size, alignment, false); 525 if (UNLIKELY(!ptr)) 526 // OOM error is already taken care of by HwasanAllocate. 527 return errno_ENOMEM; 528 CHECK(IsAligned((uptr)ptr, alignment)); 529 *memptr = ptr; 530 return 0; 531 } 532 533 void hwasan_free(void *ptr, StackTrace *stack) { 534 return HwasanDeallocate(stack, ptr); 535 } 536 537 } // namespace __hwasan 538 539 // --- Implementation of LSan-specific functions --- {{{1 540 namespace __lsan { 541 542 void LockAllocator() { 543 __hwasan::HwasanAllocatorLock(); 544 } 545 546 void UnlockAllocator() { 547 __hwasan::HwasanAllocatorUnlock(); 548 } 549 550 void GetAllocatorGlobalRange(uptr *begin, uptr *end) { 551 *begin = (uptr)&__hwasan::allocator; 552 *end = *begin + sizeof(__hwasan::allocator); 553 } 554 555 uptr PointsIntoChunk(void *p) { 556 p = UntagPtr(p); 557 uptr addr = reinterpret_cast<uptr>(p); 558 uptr chunk = 559 reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p)); 560 if (!chunk) 561 return 0; 562 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 563 __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))); 564 if (!metadata || !metadata->IsAllocated()) 565 return 0; 566 if (addr < chunk + metadata->GetRequestedSize()) 567 return chunk; 568 if (IsSpecialCaseOfOperatorNew0(chunk, metadata->GetRequestedSize(), addr)) 569 return chunk; 570 return 0; 571 } 572 573 uptr GetUserBegin(uptr chunk) { 574 CHECK_EQ(UntagAddr(chunk), chunk); 575 void *block = __hwasan::allocator.GetBlockBeginFastLocked( 576 reinterpret_cast<void *>(chunk)); 577 if (!block) 578 return 0; 579 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 580 __hwasan::allocator.GetMetaData(block)); 581 if (!metadata || !metadata->IsAllocated()) 582 return 0; 583 584 return reinterpret_cast<uptr>(block); 585 } 586 587 uptr GetUserAddr(uptr chunk) { 588 if (!InTaggableRegion(chunk)) 589 return chunk; 590 tag_t mem_tag = *(tag_t *)__hwasan::MemToShadow(chunk); 591 return AddTagToPointer(chunk, mem_tag); 592 } 593 594 LsanMetadata::LsanMetadata(uptr chunk) { 595 CHECK_EQ(UntagAddr(chunk), chunk); 596 metadata_ = 597 chunk ? __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)) 598 : nullptr; 599 } 600 601 bool LsanMetadata::allocated() const { 602 if (!metadata_) 603 return false; 604 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 605 return m->IsAllocated(); 606 } 607 608 ChunkTag LsanMetadata::tag() const { 609 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 610 return m->GetLsanTag(); 611 } 612 613 void LsanMetadata::set_tag(ChunkTag value) { 614 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 615 m->SetLsanTag(value); 616 } 617 618 uptr LsanMetadata::requested_size() const { 619 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 620 return m->GetRequestedSize(); 621 } 622 623 u32 LsanMetadata::stack_trace_id() const { 624 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 625 return m->GetAllocStackId(); 626 } 627 628 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 629 __hwasan::allocator.ForEachChunk(callback, arg); 630 } 631 632 IgnoreObjectResult IgnoreObject(const void *p) { 633 p = UntagPtr(p); 634 uptr addr = reinterpret_cast<uptr>(p); 635 uptr chunk = reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBegin(p)); 636 if (!chunk) 637 return kIgnoreObjectInvalid; 638 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 639 __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))); 640 if (!metadata || !metadata->IsAllocated()) 641 return kIgnoreObjectInvalid; 642 if (addr >= chunk + metadata->GetRequestedSize()) 643 return kIgnoreObjectInvalid; 644 if (metadata->GetLsanTag() == kIgnored) 645 return kIgnoreObjectAlreadyIgnored; 646 647 metadata->SetLsanTag(kIgnored); 648 return kIgnoreObjectSuccess; 649 } 650 651 } // namespace __lsan 652 653 using namespace __hwasan; 654 655 void __hwasan_enable_allocator_tagging() { 656 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1); 657 } 658 659 void __hwasan_disable_allocator_tagging() { 660 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0); 661 } 662 663 uptr __sanitizer_get_current_allocated_bytes() { 664 uptr stats[AllocatorStatCount]; 665 allocator.GetStats(stats); 666 return stats[AllocatorStatAllocated]; 667 } 668 669 uptr __sanitizer_get_heap_size() { 670 uptr stats[AllocatorStatCount]; 671 allocator.GetStats(stats); 672 return stats[AllocatorStatMapped]; 673 } 674 675 uptr __sanitizer_get_free_bytes() { return 1; } 676 677 uptr __sanitizer_get_unmapped_bytes() { return 1; } 678 679 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 680 681 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } 682 683 const void *__sanitizer_get_allocated_begin(const void *p) { 684 return AllocationBegin(p); 685 } 686 687 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } 688 689 uptr __sanitizer_get_allocated_size_fast(const void *p) { 690 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 691 uptr ret = AllocationSizeFast(p); 692 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 693 return ret; 694 } 695 696 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); } 697