xref: /freebsd/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // HWAddressSanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
17 #include "hwasan.h"
18 #include "hwasan_allocator.h"
19 #include "hwasan_checks.h"
20 #include "hwasan_mapping.h"
21 #include "hwasan_malloc_bisect.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_report.h"
24 #include "lsan/lsan_common.h"
25 
26 namespace __hwasan {
27 
28 static Allocator allocator;
29 static AllocatorCache fallback_allocator_cache;
30 static SpinMutex fallback_mutex;
31 static atomic_uint8_t hwasan_allocator_tagging_enabled;
32 
33 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask;
34 static constexpr tag_t kFallbackFreeTag = 0xBC;
35 
36 enum {
37   // Either just allocated by underlying allocator, but AsanChunk is not yet
38   // ready, or almost returned to undelying allocator and AsanChunk is already
39   // meaningless.
40   CHUNK_INVALID = 0,
41   // The chunk is allocated and not yet freed.
42   CHUNK_ALLOCATED = 1,
43 };
44 
45 
46 // Initialized in HwasanAllocatorInit, an never changed.
47 alignas(16) static u8 tail_magic[kShadowAlignment - 1];
48 static uptr max_malloc_size;
49 
50 bool HwasanChunkView::IsAllocated() const {
51   return metadata_ && metadata_->IsAllocated();
52 }
53 
54 uptr HwasanChunkView::Beg() const {
55   return block_;
56 }
57 uptr HwasanChunkView::End() const {
58   return Beg() + UsedSize();
59 }
60 uptr HwasanChunkView::UsedSize() const {
61   return metadata_->GetRequestedSize();
62 }
63 u32 HwasanChunkView::GetAllocStackId() const {
64   return metadata_->GetAllocStackId();
65 }
66 
67 u32 HwasanChunkView::GetAllocThreadId() const {
68   return metadata_->GetAllocThreadId();
69 }
70 
71 uptr HwasanChunkView::ActualSize() const {
72   return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
73 }
74 
75 bool HwasanChunkView::FromSmallHeap() const {
76   return allocator.FromPrimary(reinterpret_cast<void *>(block_));
77 }
78 
79 bool HwasanChunkView::AddrIsInside(uptr addr) const {
80   return (addr >= Beg()) && (addr < Beg() + UsedSize());
81 }
82 
83 inline void Metadata::SetAllocated(u32 stack, u64 size) {
84   Thread *t = GetCurrentThread();
85   u64 context = t ? t->unique_id() : kMainTid;
86   context <<= 32;
87   context += stack;
88   requested_size_low = size & ((1ul << 32) - 1);
89   requested_size_high = size >> 32;
90   atomic_store(&alloc_context_id, context, memory_order_relaxed);
91   atomic_store(&chunk_state, CHUNK_ALLOCATED, memory_order_release);
92 }
93 
94 inline void Metadata::SetUnallocated() {
95   atomic_store(&chunk_state, CHUNK_INVALID, memory_order_release);
96   requested_size_low = 0;
97   requested_size_high = 0;
98   atomic_store(&alloc_context_id, 0, memory_order_relaxed);
99 }
100 
101 inline bool Metadata::IsAllocated() const {
102   return atomic_load(&chunk_state, memory_order_relaxed) == CHUNK_ALLOCATED;
103 }
104 
105 inline u64 Metadata::GetRequestedSize() const {
106   return (static_cast<u64>(requested_size_high) << 32) + requested_size_low;
107 }
108 
109 inline u32 Metadata::GetAllocStackId() const {
110   return atomic_load(&alloc_context_id, memory_order_relaxed);
111 }
112 
113 inline u32 Metadata::GetAllocThreadId() const {
114   u64 context = atomic_load(&alloc_context_id, memory_order_relaxed);
115   u32 tid = context >> 32;
116   return tid;
117 }
118 
119 void GetAllocatorStats(AllocatorStatCounters s) {
120   allocator.GetStats(s);
121 }
122 
123 inline void Metadata::SetLsanTag(__lsan::ChunkTag tag) {
124   lsan_tag = tag;
125 }
126 
127 inline __lsan::ChunkTag Metadata::GetLsanTag() const {
128   return static_cast<__lsan::ChunkTag>(lsan_tag);
129 }
130 
131 uptr GetAliasRegionStart() {
132 #if defined(HWASAN_ALIASING_MODE)
133   constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1);
134   uptr AliasRegionStart =
135       __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset;
136 
137   CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift,
138            __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
139   CHECK_EQ(
140       (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift,
141       __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
142   return AliasRegionStart;
143 #else
144   return 0;
145 #endif
146 }
147 
148 void HwasanAllocatorInit() {
149   atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
150                        !flags()->disable_allocator_tagging);
151   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
152   allocator.InitLinkerInitialized(
153       common_flags()->allocator_release_to_os_interval_ms,
154       GetAliasRegionStart());
155   for (uptr i = 0; i < sizeof(tail_magic); i++)
156     tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
157   if (common_flags()->max_allocation_size_mb) {
158     max_malloc_size = common_flags()->max_allocation_size_mb << 20;
159     max_malloc_size = Min(max_malloc_size, kMaxAllowedMallocSize);
160   } else {
161     max_malloc_size = kMaxAllowedMallocSize;
162   }
163 }
164 
165 void HwasanAllocatorLock() { allocator.ForceLock(); }
166 
167 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); }
168 
169 void AllocatorThreadStart(AllocatorCache *cache) { allocator.InitCache(cache); }
170 
171 void AllocatorThreadFinish(AllocatorCache *cache) {
172   allocator.SwallowCache(cache);
173   allocator.DestroyCache(cache);
174 }
175 
176 static uptr TaggedSize(uptr size) {
177   if (!size) size = 1;
178   uptr new_size = RoundUpTo(size, kShadowAlignment);
179   CHECK_GE(new_size, size);
180   return new_size;
181 }
182 
183 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
184                             bool zeroise) {
185   // Keep this consistent with LSAN and ASAN behavior.
186   if (UNLIKELY(orig_size == 0))
187     orig_size = 1;
188   if (UNLIKELY(orig_size > max_malloc_size)) {
189     if (AllocatorMayReturnNull()) {
190       Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
191              orig_size);
192       return nullptr;
193     }
194     ReportAllocationSizeTooBig(orig_size, max_malloc_size, stack);
195   }
196   if (UNLIKELY(IsRssLimitExceeded())) {
197     if (AllocatorMayReturnNull())
198       return nullptr;
199     ReportRssLimitExceeded(stack);
200   }
201 
202   alignment = Max(alignment, kShadowAlignment);
203   uptr size = TaggedSize(orig_size);
204   Thread *t = GetCurrentThread();
205   void *allocated;
206   if (t) {
207     allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
208   } else {
209     SpinMutexLock l(&fallback_mutex);
210     AllocatorCache *cache = &fallback_allocator_cache;
211     allocated = allocator.Allocate(cache, size, alignment);
212   }
213   if (UNLIKELY(!allocated)) {
214     SetAllocatorOutOfMemory();
215     if (AllocatorMayReturnNull())
216       return nullptr;
217     ReportOutOfMemory(size, stack);
218   }
219   if (zeroise) {
220     // The secondary allocator mmaps memory, which should be zero-inited so we
221     // don't need to explicitly clear it.
222     if (allocator.FromPrimary(allocated))
223       internal_memset(allocated, 0, size);
224   } else if (flags()->max_malloc_fill_size > 0) {
225     uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
226     internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
227   }
228   if (size != orig_size) {
229     u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size;
230     uptr tail_length = size - orig_size;
231     internal_memcpy(tail, tail_magic, tail_length - 1);
232     // Short granule is excluded from magic tail, so we explicitly untag.
233     tail[tail_length - 1] = 0;
234   }
235 
236   void *user_ptr = allocated;
237   if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) &&
238       atomic_load_relaxed(&hwasan_allocator_tagging_enabled) &&
239       flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
240     tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
241     uptr tag_size = orig_size ? orig_size : 1;
242     uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
243     user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
244     if (full_granule_size != tag_size) {
245       u8 *short_granule = reinterpret_cast<u8 *>(allocated) + full_granule_size;
246       TagMemoryAligned((uptr)short_granule, kShadowAlignment,
247                        tag_size % kShadowAlignment);
248       short_granule[kShadowAlignment - 1] = tag;
249     }
250   } else {
251     // Tagging can not be completely skipped. If it's disabled, we need to tag
252     // with zeros.
253     user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
254   }
255 
256   Metadata *meta =
257       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
258 #if CAN_SANITIZE_LEAKS
259   meta->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored
260                                                   : __lsan::kDirectlyLeaked);
261 #endif
262   meta->SetAllocated(StackDepotPut(*stack), orig_size);
263   RunMallocHooks(user_ptr, orig_size);
264   return user_ptr;
265 }
266 
267 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
268   CHECK(tagged_ptr);
269   uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
270   if (!InTaggableRegion(tagged_uptr))
271     return true;
272   tag_t mem_tag = *reinterpret_cast<tag_t *>(
273       MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
274   return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
275 }
276 
277 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr,
278                              void *tagged_ptr) {
279   // This function can return true if halt_on_error is false.
280   if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) ||
281       !PointerAndMemoryTagsMatch(tagged_ptr)) {
282     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
283     return true;
284   }
285   return false;
286 }
287 
288 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
289   CHECK(tagged_ptr);
290   void *untagged_ptr = UntagPtr(tagged_ptr);
291 
292   if (RunFreeHooks(tagged_ptr))
293     return;
294 
295   if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr))
296     return;
297 
298   void *aligned_ptr = reinterpret_cast<void *>(
299       RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
300   tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
301   Metadata *meta =
302       reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
303   if (!meta) {
304     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
305     return;
306   }
307 
308   uptr orig_size = meta->GetRequestedSize();
309   u32 free_context_id = StackDepotPut(*stack);
310   u32 alloc_context_id = meta->GetAllocStackId();
311   u32 alloc_thread_id = meta->GetAllocThreadId();
312 
313   bool in_taggable_region =
314       InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr));
315 
316   // Check tail magic.
317   uptr tagged_size = TaggedSize(orig_size);
318   if (flags()->free_checks_tail_magic && orig_size &&
319       tagged_size != orig_size) {
320     uptr tail_size = tagged_size - orig_size - 1;
321     CHECK_LT(tail_size, kShadowAlignment);
322     void *tail_beg = reinterpret_cast<void *>(
323         reinterpret_cast<uptr>(aligned_ptr) + orig_size);
324     tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>(
325         reinterpret_cast<uptr>(tail_beg) + tail_size));
326     if (tail_size &&
327         (internal_memcmp(tail_beg, tail_magic, tail_size) ||
328          (in_taggable_region && pointer_tag != short_granule_memtag)))
329       ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
330                             orig_size, tail_magic);
331   }
332 
333   // TODO(kstoimenov): consider meta->SetUnallocated(free_context_id).
334   meta->SetUnallocated();
335   // This memory will not be reused by anyone else, so we are free to keep it
336   // poisoned.
337   Thread *t = GetCurrentThread();
338   if (flags()->max_free_fill_size > 0) {
339     uptr fill_size =
340         Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
341     internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
342   }
343   if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) &&
344       atomic_load_relaxed(&hwasan_allocator_tagging_enabled) &&
345       allocator.FromPrimary(untagged_ptr) /* Secondary 0-tag and unmap.*/) {
346     // Always store full 8-bit tags on free to maximize UAF detection.
347     tag_t tag;
348     if (t) {
349       // Make sure we are not using a short granule tag as a poison tag. This
350       // would make us attempt to read the memory on a UaF.
351       // The tag can be zero if tagging is disabled on this thread.
352       do {
353         tag = t->GenerateRandomTag(/*num_bits=*/8);
354       } while (
355           UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0));
356     } else {
357       static_assert(kFallbackFreeTag >= kShadowAlignment,
358                     "fallback tag must not be a short granule tag.");
359       tag = kFallbackFreeTag;
360     }
361     TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
362                      tag);
363   }
364   if (t) {
365     allocator.Deallocate(t->allocator_cache(), aligned_ptr);
366     if (auto *ha = t->heap_allocations())
367       ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_thread_id,
368                 alloc_context_id, free_context_id,
369                 static_cast<u32>(orig_size)});
370   } else {
371     SpinMutexLock l(&fallback_mutex);
372     AllocatorCache *cache = &fallback_allocator_cache;
373     allocator.Deallocate(cache, aligned_ptr);
374   }
375 }
376 
377 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
378                               uptr new_size, uptr alignment) {
379   void *untagged_ptr_old = UntagPtr(tagged_ptr_old);
380   if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old))
381     return nullptr;
382   void *tagged_ptr_new =
383       HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
384   if (tagged_ptr_old && tagged_ptr_new) {
385     Metadata *meta =
386         reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
387     void *untagged_ptr_new = UntagPtr(tagged_ptr_new);
388     internal_memcpy(untagged_ptr_new, untagged_ptr_old,
389                     Min(new_size, static_cast<uptr>(meta->GetRequestedSize())));
390     HwasanDeallocate(stack, tagged_ptr_old);
391   }
392   return tagged_ptr_new;
393 }
394 
395 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
396   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
397     if (AllocatorMayReturnNull())
398       return nullptr;
399     ReportCallocOverflow(nmemb, size, stack);
400   }
401   return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
402 }
403 
404 HwasanChunkView FindHeapChunkByAddress(uptr address) {
405   if (!allocator.PointerIsMine(reinterpret_cast<void *>(address)))
406     return HwasanChunkView();
407   void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
408   if (!block)
409     return HwasanChunkView();
410   Metadata *metadata =
411       reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
412   return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
413 }
414 
415 static const void *AllocationBegin(const void *p) {
416   const void *untagged_ptr = UntagPtr(p);
417   if (!untagged_ptr)
418     return nullptr;
419 
420   const void *beg = allocator.GetBlockBegin(untagged_ptr);
421   if (!beg)
422     return nullptr;
423 
424   Metadata *b = (Metadata *)allocator.GetMetaData(beg);
425   if (b->GetRequestedSize() == 0)
426     return nullptr;
427 
428   tag_t tag = GetTagFromPointer((uptr)p);
429   return (const void *)AddTagToPointer((uptr)beg, tag);
430 }
431 
432 static uptr AllocationSize(const void *p) {
433   const void *untagged_ptr = UntagPtr(p);
434   if (!untagged_ptr) return 0;
435   const void *beg = allocator.GetBlockBegin(untagged_ptr);
436   if (!beg)
437     return 0;
438   Metadata *b = (Metadata *)allocator.GetMetaData(beg);
439   return b->GetRequestedSize();
440 }
441 
442 static uptr AllocationSizeFast(const void *p) {
443   const void *untagged_ptr = UntagPtr(p);
444   void *aligned_ptr = reinterpret_cast<void *>(
445       RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
446   Metadata *meta =
447       reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
448   return meta->GetRequestedSize();
449 }
450 
451 void *hwasan_malloc(uptr size, StackTrace *stack) {
452   return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
453 }
454 
455 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
456   return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
457 }
458 
459 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
460   if (!ptr)
461     return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
462   if (size == 0) {
463     HwasanDeallocate(stack, ptr);
464     return nullptr;
465   }
466   return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
467 }
468 
469 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
470   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
471     errno = errno_ENOMEM;
472     if (AllocatorMayReturnNull())
473       return nullptr;
474     ReportReallocArrayOverflow(nmemb, size, stack);
475   }
476   return hwasan_realloc(ptr, nmemb * size, stack);
477 }
478 
479 void *hwasan_valloc(uptr size, StackTrace *stack) {
480   return SetErrnoOnNull(
481       HwasanAllocate(stack, size, GetPageSizeCached(), false));
482 }
483 
484 void *hwasan_pvalloc(uptr size, StackTrace *stack) {
485   uptr PageSize = GetPageSizeCached();
486   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
487     errno = errno_ENOMEM;
488     if (AllocatorMayReturnNull())
489       return nullptr;
490     ReportPvallocOverflow(size, stack);
491   }
492   // pvalloc(0) should allocate one page.
493   size = size ? RoundUpTo(size, PageSize) : PageSize;
494   return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
495 }
496 
497 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
498   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
499     errno = errno_EINVAL;
500     if (AllocatorMayReturnNull())
501       return nullptr;
502     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
503   }
504   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
505 }
506 
507 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
508   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
509     errno = errno_EINVAL;
510     if (AllocatorMayReturnNull())
511       return nullptr;
512     ReportInvalidAllocationAlignment(alignment, stack);
513   }
514   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
515 }
516 
517 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
518                         StackTrace *stack) {
519   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
520     if (AllocatorMayReturnNull())
521       return errno_EINVAL;
522     ReportInvalidPosixMemalignAlignment(alignment, stack);
523   }
524   void *ptr = HwasanAllocate(stack, size, alignment, false);
525   if (UNLIKELY(!ptr))
526     // OOM error is already taken care of by HwasanAllocate.
527     return errno_ENOMEM;
528   CHECK(IsAligned((uptr)ptr, alignment));
529   *memptr = ptr;
530   return 0;
531 }
532 
533 void hwasan_free(void *ptr, StackTrace *stack) {
534   return HwasanDeallocate(stack, ptr);
535 }
536 
537 }  // namespace __hwasan
538 
539 // --- Implementation of LSan-specific functions --- {{{1
540 namespace __lsan {
541 
542 void LockAllocator() {
543   __hwasan::HwasanAllocatorLock();
544 }
545 
546 void UnlockAllocator() {
547   __hwasan::HwasanAllocatorUnlock();
548 }
549 
550 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
551   *begin = (uptr)&__hwasan::allocator;
552   *end = *begin + sizeof(__hwasan::allocator);
553 }
554 
555 uptr PointsIntoChunk(void *p) {
556   p = UntagPtr(p);
557   uptr addr = reinterpret_cast<uptr>(p);
558   uptr chunk =
559       reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p));
560   if (!chunk)
561     return 0;
562   __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
563       __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
564   if (!metadata || !metadata->IsAllocated())
565     return 0;
566   if (addr < chunk + metadata->GetRequestedSize())
567     return chunk;
568   if (IsSpecialCaseOfOperatorNew0(chunk, metadata->GetRequestedSize(), addr))
569     return chunk;
570   return 0;
571 }
572 
573 uptr GetUserBegin(uptr chunk) {
574   CHECK_EQ(UntagAddr(chunk), chunk);
575   void *block = __hwasan::allocator.GetBlockBeginFastLocked(
576       reinterpret_cast<void *>(chunk));
577   if (!block)
578     return 0;
579   __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
580       __hwasan::allocator.GetMetaData(block));
581   if (!metadata || !metadata->IsAllocated())
582     return 0;
583 
584   return reinterpret_cast<uptr>(block);
585 }
586 
587 uptr GetUserAddr(uptr chunk) {
588   if (!InTaggableRegion(chunk))
589     return chunk;
590   tag_t mem_tag = *(tag_t *)__hwasan::MemToShadow(chunk);
591   return AddTagToPointer(chunk, mem_tag);
592 }
593 
594 LsanMetadata::LsanMetadata(uptr chunk) {
595   CHECK_EQ(UntagAddr(chunk), chunk);
596   metadata_ =
597       chunk ? __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))
598             : nullptr;
599 }
600 
601 bool LsanMetadata::allocated() const {
602   if (!metadata_)
603     return false;
604   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
605   return m->IsAllocated();
606 }
607 
608 ChunkTag LsanMetadata::tag() const {
609   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
610   return m->GetLsanTag();
611 }
612 
613 void LsanMetadata::set_tag(ChunkTag value) {
614   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
615   m->SetLsanTag(value);
616 }
617 
618 uptr LsanMetadata::requested_size() const {
619   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
620   return m->GetRequestedSize();
621 }
622 
623 u32 LsanMetadata::stack_trace_id() const {
624   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
625   return m->GetAllocStackId();
626 }
627 
628 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
629   __hwasan::allocator.ForEachChunk(callback, arg);
630 }
631 
632 IgnoreObjectResult IgnoreObject(const void *p) {
633   p = UntagPtr(p);
634   uptr addr = reinterpret_cast<uptr>(p);
635   uptr chunk = reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBegin(p));
636   if (!chunk)
637     return kIgnoreObjectInvalid;
638   __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
639       __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
640   if (!metadata || !metadata->IsAllocated())
641     return kIgnoreObjectInvalid;
642   if (addr >= chunk + metadata->GetRequestedSize())
643     return kIgnoreObjectInvalid;
644   if (metadata->GetLsanTag() == kIgnored)
645     return kIgnoreObjectAlreadyIgnored;
646 
647   metadata->SetLsanTag(kIgnored);
648   return kIgnoreObjectSuccess;
649 }
650 
651 }  // namespace __lsan
652 
653 using namespace __hwasan;
654 
655 void __hwasan_enable_allocator_tagging() {
656   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
657 }
658 
659 void __hwasan_disable_allocator_tagging() {
660   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
661 }
662 
663 uptr __sanitizer_get_current_allocated_bytes() {
664   uptr stats[AllocatorStatCount];
665   allocator.GetStats(stats);
666   return stats[AllocatorStatAllocated];
667 }
668 
669 uptr __sanitizer_get_heap_size() {
670   uptr stats[AllocatorStatCount];
671   allocator.GetStats(stats);
672   return stats[AllocatorStatMapped];
673 }
674 
675 uptr __sanitizer_get_free_bytes() { return 1; }
676 
677 uptr __sanitizer_get_unmapped_bytes() { return 1; }
678 
679 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
680 
681 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
682 
683 const void *__sanitizer_get_allocated_begin(const void *p) {
684   return AllocationBegin(p);
685 }
686 
687 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
688 
689 uptr __sanitizer_get_allocated_size_fast(const void *p) {
690   DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
691   uptr ret = AllocationSizeFast(p);
692   DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
693   return ret;
694 }
695 
696 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
697