xref: /freebsd/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp (revision a8089ea5aee578e08acab2438e82fc9a9ae50ed8)
1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // HWAddressSanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
17 #include "hwasan.h"
18 #include "hwasan_allocator.h"
19 #include "hwasan_checks.h"
20 #include "hwasan_mapping.h"
21 #include "hwasan_malloc_bisect.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_report.h"
24 #include "lsan/lsan_common.h"
25 
26 namespace __hwasan {
27 
28 static Allocator allocator;
29 static AllocatorCache fallback_allocator_cache;
30 static SpinMutex fallback_mutex;
31 static atomic_uint8_t hwasan_allocator_tagging_enabled;
32 
33 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask;
34 static constexpr tag_t kFallbackFreeTag = 0xBC;
35 
36 enum {
37   // Either just allocated by underlying allocator, but AsanChunk is not yet
38   // ready, or almost returned to undelying allocator and AsanChunk is already
39   // meaningless.
40   CHUNK_INVALID = 0,
41   // The chunk is allocated and not yet freed.
42   CHUNK_ALLOCATED = 1,
43 };
44 
45 
46 // Initialized in HwasanAllocatorInit, an never changed.
47 static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1];
48 static uptr max_malloc_size;
49 
50 bool HwasanChunkView::IsAllocated() const {
51   return metadata_ && metadata_->IsAllocated();
52 }
53 
54 uptr HwasanChunkView::Beg() const {
55   return block_;
56 }
57 uptr HwasanChunkView::End() const {
58   return Beg() + UsedSize();
59 }
60 uptr HwasanChunkView::UsedSize() const {
61   return metadata_->GetRequestedSize();
62 }
63 u32 HwasanChunkView::GetAllocStackId() const {
64   return metadata_->GetAllocStackId();
65 }
66 
67 u32 HwasanChunkView::GetAllocThreadId() const {
68   return metadata_->GetAllocThreadId();
69 }
70 
71 uptr HwasanChunkView::ActualSize() const {
72   return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
73 }
74 
75 bool HwasanChunkView::FromSmallHeap() const {
76   return allocator.FromPrimary(reinterpret_cast<void *>(block_));
77 }
78 
79 bool HwasanChunkView::AddrIsInside(uptr addr) const {
80   return (addr >= Beg()) && (addr < Beg() + UsedSize());
81 }
82 
83 inline void Metadata::SetAllocated(u32 stack, u64 size) {
84   Thread *t = GetCurrentThread();
85   u64 context = t ? t->unique_id() : kMainTid;
86   context <<= 32;
87   context += stack;
88   requested_size_low = size & ((1ul << 32) - 1);
89   requested_size_high = size >> 32;
90   atomic_store(&alloc_context_id, context, memory_order_relaxed);
91   atomic_store(&chunk_state, CHUNK_ALLOCATED, memory_order_release);
92 }
93 
94 inline void Metadata::SetUnallocated() {
95   atomic_store(&chunk_state, CHUNK_INVALID, memory_order_release);
96   requested_size_low = 0;
97   requested_size_high = 0;
98   atomic_store(&alloc_context_id, 0, memory_order_relaxed);
99 }
100 
101 inline bool Metadata::IsAllocated() const {
102   return atomic_load(&chunk_state, memory_order_relaxed) == CHUNK_ALLOCATED;
103 }
104 
105 inline u64 Metadata::GetRequestedSize() const {
106   return (static_cast<u64>(requested_size_high) << 32) + requested_size_low;
107 }
108 
109 inline u32 Metadata::GetAllocStackId() const {
110   return atomic_load(&alloc_context_id, memory_order_relaxed);
111 }
112 
113 inline u32 Metadata::GetAllocThreadId() const {
114   u64 context = atomic_load(&alloc_context_id, memory_order_relaxed);
115   u32 tid = context >> 32;
116   return tid;
117 }
118 
119 void GetAllocatorStats(AllocatorStatCounters s) {
120   allocator.GetStats(s);
121 }
122 
123 inline void Metadata::SetLsanTag(__lsan::ChunkTag tag) {
124   lsan_tag = tag;
125 }
126 
127 inline __lsan::ChunkTag Metadata::GetLsanTag() const {
128   return static_cast<__lsan::ChunkTag>(lsan_tag);
129 }
130 
131 uptr GetAliasRegionStart() {
132 #if defined(HWASAN_ALIASING_MODE)
133   constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1);
134   uptr AliasRegionStart =
135       __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset;
136 
137   CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift,
138            __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
139   CHECK_EQ(
140       (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift,
141       __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
142   return AliasRegionStart;
143 #else
144   return 0;
145 #endif
146 }
147 
148 void HwasanAllocatorInit() {
149   atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
150                        !flags()->disable_allocator_tagging);
151   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
152   allocator.InitLinkerInitialized(
153       common_flags()->allocator_release_to_os_interval_ms,
154       GetAliasRegionStart());
155   for (uptr i = 0; i < sizeof(tail_magic); i++)
156     tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
157   if (common_flags()->max_allocation_size_mb) {
158     max_malloc_size = common_flags()->max_allocation_size_mb << 20;
159     max_malloc_size = Min(max_malloc_size, kMaxAllowedMallocSize);
160   } else {
161     max_malloc_size = kMaxAllowedMallocSize;
162   }
163 }
164 
165 void HwasanAllocatorLock() { allocator.ForceLock(); }
166 
167 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); }
168 
169 void AllocatorThreadStart(AllocatorCache *cache) { allocator.InitCache(cache); }
170 
171 void AllocatorThreadFinish(AllocatorCache *cache) {
172   allocator.SwallowCache(cache);
173   allocator.DestroyCache(cache);
174 }
175 
176 static uptr TaggedSize(uptr size) {
177   if (!size) size = 1;
178   uptr new_size = RoundUpTo(size, kShadowAlignment);
179   CHECK_GE(new_size, size);
180   return new_size;
181 }
182 
183 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
184                             bool zeroise) {
185   // Keep this consistent with LSAN and ASAN behavior.
186   if (UNLIKELY(orig_size == 0))
187     orig_size = 1;
188   if (UNLIKELY(orig_size > max_malloc_size)) {
189     if (AllocatorMayReturnNull()) {
190       Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
191              orig_size);
192       return nullptr;
193     }
194     ReportAllocationSizeTooBig(orig_size, max_malloc_size, stack);
195   }
196   if (UNLIKELY(IsRssLimitExceeded())) {
197     if (AllocatorMayReturnNull())
198       return nullptr;
199     ReportRssLimitExceeded(stack);
200   }
201 
202   alignment = Max(alignment, kShadowAlignment);
203   uptr size = TaggedSize(orig_size);
204   Thread *t = GetCurrentThread();
205   void *allocated;
206   if (t) {
207     allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
208   } else {
209     SpinMutexLock l(&fallback_mutex);
210     AllocatorCache *cache = &fallback_allocator_cache;
211     allocated = allocator.Allocate(cache, size, alignment);
212   }
213   if (UNLIKELY(!allocated)) {
214     SetAllocatorOutOfMemory();
215     if (AllocatorMayReturnNull())
216       return nullptr;
217     ReportOutOfMemory(size, stack);
218   }
219   if (zeroise) {
220     // The secondary allocator mmaps memory, which should be zero-inited so we
221     // don't need to explicitly clear it.
222     if (allocator.FromPrimary(allocated))
223       internal_memset(allocated, 0, size);
224   } else if (flags()->max_malloc_fill_size > 0) {
225     uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
226     internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
227   }
228   if (size != orig_size) {
229     u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size;
230     uptr tail_length = size - orig_size;
231     internal_memcpy(tail, tail_magic, tail_length - 1);
232     // Short granule is excluded from magic tail, so we explicitly untag.
233     tail[tail_length - 1] = 0;
234   }
235 
236   void *user_ptr = allocated;
237   if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) &&
238       atomic_load_relaxed(&hwasan_allocator_tagging_enabled) &&
239       flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
240     tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
241     uptr tag_size = orig_size ? orig_size : 1;
242     uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
243     user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
244     if (full_granule_size != tag_size) {
245       u8 *short_granule = reinterpret_cast<u8 *>(allocated) + full_granule_size;
246       TagMemoryAligned((uptr)short_granule, kShadowAlignment,
247                        tag_size % kShadowAlignment);
248       short_granule[kShadowAlignment - 1] = tag;
249     }
250   } else {
251     // Tagging can not be completely skipped. If it's disabled, we need to tag
252     // with zeros.
253     user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
254   }
255 
256   Metadata *meta =
257       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
258 #if CAN_SANITIZE_LEAKS
259   meta->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored
260                                                   : __lsan::kDirectlyLeaked);
261 #endif
262   meta->SetAllocated(StackDepotPut(*stack), orig_size);
263   RunMallocHooks(user_ptr, orig_size);
264   return user_ptr;
265 }
266 
267 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
268   CHECK(tagged_ptr);
269   uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
270   if (!InTaggableRegion(tagged_uptr))
271     return true;
272   tag_t mem_tag = *reinterpret_cast<tag_t *>(
273       MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
274   return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
275 }
276 
277 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr,
278                              void *tagged_ptr) {
279   // This function can return true if halt_on_error is false.
280   if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) ||
281       !PointerAndMemoryTagsMatch(tagged_ptr)) {
282     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
283     return true;
284   }
285   return false;
286 }
287 
288 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
289   CHECK(tagged_ptr);
290   void *untagged_ptr = UntagPtr(tagged_ptr);
291 
292   if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr))
293     return;
294 
295   void *aligned_ptr = reinterpret_cast<void *>(
296       RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
297   tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
298   Metadata *meta =
299       reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
300   if (!meta) {
301     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
302     return;
303   }
304 
305   RunFreeHooks(tagged_ptr);
306 
307   uptr orig_size = meta->GetRequestedSize();
308   u32 free_context_id = StackDepotPut(*stack);
309   u32 alloc_context_id = meta->GetAllocStackId();
310   u32 alloc_thread_id = meta->GetAllocThreadId();
311 
312   bool in_taggable_region =
313       InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr));
314 
315   // Check tail magic.
316   uptr tagged_size = TaggedSize(orig_size);
317   if (flags()->free_checks_tail_magic && orig_size &&
318       tagged_size != orig_size) {
319     uptr tail_size = tagged_size - orig_size - 1;
320     CHECK_LT(tail_size, kShadowAlignment);
321     void *tail_beg = reinterpret_cast<void *>(
322         reinterpret_cast<uptr>(aligned_ptr) + orig_size);
323     tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>(
324         reinterpret_cast<uptr>(tail_beg) + tail_size));
325     if (tail_size &&
326         (internal_memcmp(tail_beg, tail_magic, tail_size) ||
327          (in_taggable_region && pointer_tag != short_granule_memtag)))
328       ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
329                             orig_size, tail_magic);
330   }
331 
332   // TODO(kstoimenov): consider meta->SetUnallocated(free_context_id).
333   meta->SetUnallocated();
334   // This memory will not be reused by anyone else, so we are free to keep it
335   // poisoned.
336   Thread *t = GetCurrentThread();
337   if (flags()->max_free_fill_size > 0) {
338     uptr fill_size =
339         Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
340     internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
341   }
342   if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) &&
343       atomic_load_relaxed(&hwasan_allocator_tagging_enabled) &&
344       allocator.FromPrimary(untagged_ptr) /* Secondary 0-tag and unmap.*/) {
345     // Always store full 8-bit tags on free to maximize UAF detection.
346     tag_t tag;
347     if (t) {
348       // Make sure we are not using a short granule tag as a poison tag. This
349       // would make us attempt to read the memory on a UaF.
350       // The tag can be zero if tagging is disabled on this thread.
351       do {
352         tag = t->GenerateRandomTag(/*num_bits=*/8);
353       } while (
354           UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0));
355     } else {
356       static_assert(kFallbackFreeTag >= kShadowAlignment,
357                     "fallback tag must not be a short granule tag.");
358       tag = kFallbackFreeTag;
359     }
360     TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
361                      tag);
362   }
363   if (t) {
364     allocator.Deallocate(t->allocator_cache(), aligned_ptr);
365     if (auto *ha = t->heap_allocations())
366       ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_thread_id,
367                 alloc_context_id, free_context_id,
368                 static_cast<u32>(orig_size)});
369   } else {
370     SpinMutexLock l(&fallback_mutex);
371     AllocatorCache *cache = &fallback_allocator_cache;
372     allocator.Deallocate(cache, aligned_ptr);
373   }
374 }
375 
376 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
377                               uptr new_size, uptr alignment) {
378   void *untagged_ptr_old = UntagPtr(tagged_ptr_old);
379   if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old))
380     return nullptr;
381   void *tagged_ptr_new =
382       HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
383   if (tagged_ptr_old && tagged_ptr_new) {
384     Metadata *meta =
385         reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
386     void *untagged_ptr_new = UntagPtr(tagged_ptr_new);
387     internal_memcpy(untagged_ptr_new, untagged_ptr_old,
388                     Min(new_size, static_cast<uptr>(meta->GetRequestedSize())));
389     HwasanDeallocate(stack, tagged_ptr_old);
390   }
391   return tagged_ptr_new;
392 }
393 
394 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
395   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
396     if (AllocatorMayReturnNull())
397       return nullptr;
398     ReportCallocOverflow(nmemb, size, stack);
399   }
400   return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
401 }
402 
403 HwasanChunkView FindHeapChunkByAddress(uptr address) {
404   if (!allocator.PointerIsMine(reinterpret_cast<void *>(address)))
405     return HwasanChunkView();
406   void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
407   if (!block)
408     return HwasanChunkView();
409   Metadata *metadata =
410       reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
411   return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
412 }
413 
414 static const void *AllocationBegin(const void *p) {
415   const void *untagged_ptr = UntagPtr(p);
416   if (!untagged_ptr)
417     return nullptr;
418 
419   const void *beg = allocator.GetBlockBegin(untagged_ptr);
420   if (!beg)
421     return nullptr;
422 
423   Metadata *b = (Metadata *)allocator.GetMetaData(beg);
424   if (b->GetRequestedSize() == 0)
425     return nullptr;
426 
427   tag_t tag = GetTagFromPointer((uptr)p);
428   return (const void *)AddTagToPointer((uptr)beg, tag);
429 }
430 
431 static uptr AllocationSize(const void *p) {
432   const void *untagged_ptr = UntagPtr(p);
433   if (!untagged_ptr) return 0;
434   const void *beg = allocator.GetBlockBegin(untagged_ptr);
435   if (!beg)
436     return 0;
437   Metadata *b = (Metadata *)allocator.GetMetaData(beg);
438   return b->GetRequestedSize();
439 }
440 
441 static uptr AllocationSizeFast(const void *p) {
442   const void *untagged_ptr = UntagPtr(p);
443   void *aligned_ptr = reinterpret_cast<void *>(
444       RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
445   Metadata *meta =
446       reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
447   return meta->GetRequestedSize();
448 }
449 
450 void *hwasan_malloc(uptr size, StackTrace *stack) {
451   return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
452 }
453 
454 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
455   return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
456 }
457 
458 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
459   if (!ptr)
460     return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
461   if (size == 0) {
462     HwasanDeallocate(stack, ptr);
463     return nullptr;
464   }
465   return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
466 }
467 
468 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
469   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
470     errno = errno_ENOMEM;
471     if (AllocatorMayReturnNull())
472       return nullptr;
473     ReportReallocArrayOverflow(nmemb, size, stack);
474   }
475   return hwasan_realloc(ptr, nmemb * size, stack);
476 }
477 
478 void *hwasan_valloc(uptr size, StackTrace *stack) {
479   return SetErrnoOnNull(
480       HwasanAllocate(stack, size, GetPageSizeCached(), false));
481 }
482 
483 void *hwasan_pvalloc(uptr size, StackTrace *stack) {
484   uptr PageSize = GetPageSizeCached();
485   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
486     errno = errno_ENOMEM;
487     if (AllocatorMayReturnNull())
488       return nullptr;
489     ReportPvallocOverflow(size, stack);
490   }
491   // pvalloc(0) should allocate one page.
492   size = size ? RoundUpTo(size, PageSize) : PageSize;
493   return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
494 }
495 
496 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
497   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
498     errno = errno_EINVAL;
499     if (AllocatorMayReturnNull())
500       return nullptr;
501     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
502   }
503   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
504 }
505 
506 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
507   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
508     errno = errno_EINVAL;
509     if (AllocatorMayReturnNull())
510       return nullptr;
511     ReportInvalidAllocationAlignment(alignment, stack);
512   }
513   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
514 }
515 
516 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
517                         StackTrace *stack) {
518   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
519     if (AllocatorMayReturnNull())
520       return errno_EINVAL;
521     ReportInvalidPosixMemalignAlignment(alignment, stack);
522   }
523   void *ptr = HwasanAllocate(stack, size, alignment, false);
524   if (UNLIKELY(!ptr))
525     // OOM error is already taken care of by HwasanAllocate.
526     return errno_ENOMEM;
527   CHECK(IsAligned((uptr)ptr, alignment));
528   *memptr = ptr;
529   return 0;
530 }
531 
532 void hwasan_free(void *ptr, StackTrace *stack) {
533   return HwasanDeallocate(stack, ptr);
534 }
535 
536 }  // namespace __hwasan
537 
538 // --- Implementation of LSan-specific functions --- {{{1
539 namespace __lsan {
540 
541 void LockAllocator() {
542   __hwasan::HwasanAllocatorLock();
543 }
544 
545 void UnlockAllocator() {
546   __hwasan::HwasanAllocatorUnlock();
547 }
548 
549 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
550   *begin = (uptr)&__hwasan::allocator;
551   *end = *begin + sizeof(__hwasan::allocator);
552 }
553 
554 uptr PointsIntoChunk(void *p) {
555   p = UntagPtr(p);
556   uptr addr = reinterpret_cast<uptr>(p);
557   uptr chunk =
558       reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p));
559   if (!chunk)
560     return 0;
561   __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
562       __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
563   if (!metadata || !metadata->IsAllocated())
564     return 0;
565   if (addr < chunk + metadata->GetRequestedSize())
566     return chunk;
567   if (IsSpecialCaseOfOperatorNew0(chunk, metadata->GetRequestedSize(), addr))
568     return chunk;
569   return 0;
570 }
571 
572 uptr GetUserBegin(uptr chunk) {
573   CHECK_EQ(UntagAddr(chunk), chunk);
574   void *block = __hwasan::allocator.GetBlockBeginFastLocked(
575       reinterpret_cast<void *>(chunk));
576   if (!block)
577     return 0;
578   __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
579       __hwasan::allocator.GetMetaData(block));
580   if (!metadata || !metadata->IsAllocated())
581     return 0;
582 
583   return reinterpret_cast<uptr>(block);
584 }
585 
586 uptr GetUserAddr(uptr chunk) {
587   if (!InTaggableRegion(chunk))
588     return chunk;
589   tag_t mem_tag = *(tag_t *)__hwasan::MemToShadow(chunk);
590   return AddTagToPointer(chunk, mem_tag);
591 }
592 
593 LsanMetadata::LsanMetadata(uptr chunk) {
594   CHECK_EQ(UntagAddr(chunk), chunk);
595   metadata_ =
596       chunk ? __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))
597             : nullptr;
598 }
599 
600 bool LsanMetadata::allocated() const {
601   if (!metadata_)
602     return false;
603   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
604   return m->IsAllocated();
605 }
606 
607 ChunkTag LsanMetadata::tag() const {
608   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
609   return m->GetLsanTag();
610 }
611 
612 void LsanMetadata::set_tag(ChunkTag value) {
613   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
614   m->SetLsanTag(value);
615 }
616 
617 uptr LsanMetadata::requested_size() const {
618   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
619   return m->GetRequestedSize();
620 }
621 
622 u32 LsanMetadata::stack_trace_id() const {
623   __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
624   return m->GetAllocStackId();
625 }
626 
627 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
628   __hwasan::allocator.ForEachChunk(callback, arg);
629 }
630 
631 IgnoreObjectResult IgnoreObject(const void *p) {
632   p = UntagPtr(p);
633   uptr addr = reinterpret_cast<uptr>(p);
634   uptr chunk = reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBegin(p));
635   if (!chunk)
636     return kIgnoreObjectInvalid;
637   __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
638       __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
639   if (!metadata || !metadata->IsAllocated())
640     return kIgnoreObjectInvalid;
641   if (addr >= chunk + metadata->GetRequestedSize())
642     return kIgnoreObjectInvalid;
643   if (metadata->GetLsanTag() == kIgnored)
644     return kIgnoreObjectAlreadyIgnored;
645 
646   metadata->SetLsanTag(kIgnored);
647   return kIgnoreObjectSuccess;
648 }
649 
650 }  // namespace __lsan
651 
652 using namespace __hwasan;
653 
654 void __hwasan_enable_allocator_tagging() {
655   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
656 }
657 
658 void __hwasan_disable_allocator_tagging() {
659   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
660 }
661 
662 uptr __sanitizer_get_current_allocated_bytes() {
663   uptr stats[AllocatorStatCount];
664   allocator.GetStats(stats);
665   return stats[AllocatorStatAllocated];
666 }
667 
668 uptr __sanitizer_get_heap_size() {
669   uptr stats[AllocatorStatCount];
670   allocator.GetStats(stats);
671   return stats[AllocatorStatMapped];
672 }
673 
674 uptr __sanitizer_get_free_bytes() { return 1; }
675 
676 uptr __sanitizer_get_unmapped_bytes() { return 1; }
677 
678 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
679 
680 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
681 
682 const void *__sanitizer_get_allocated_begin(const void *p) {
683   return AllocationBegin(p);
684 }
685 
686 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
687 
688 uptr __sanitizer_get_allocated_size_fast(const void *p) {
689   DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
690   uptr ret = AllocationSizeFast(p);
691   DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
692   return ret;
693 }
694 
695 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }
696