1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of HWAddressSanitizer. 10 // 11 // HWAddressSanitizer allocator. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_common/sanitizer_atomic.h" 15 #include "sanitizer_common/sanitizer_errno.h" 16 #include "sanitizer_common/sanitizer_stackdepot.h" 17 #include "hwasan.h" 18 #include "hwasan_allocator.h" 19 #include "hwasan_checks.h" 20 #include "hwasan_mapping.h" 21 #include "hwasan_malloc_bisect.h" 22 #include "hwasan_thread.h" 23 #include "hwasan_report.h" 24 #include "lsan/lsan_common.h" 25 26 namespace __hwasan { 27 28 static Allocator allocator; 29 static AllocatorCache fallback_allocator_cache; 30 static SpinMutex fallback_mutex; 31 static atomic_uint8_t hwasan_allocator_tagging_enabled; 32 33 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask; 34 static constexpr tag_t kFallbackFreeTag = 0xBC; 35 36 enum { 37 // Either just allocated by underlying allocator, but AsanChunk is not yet 38 // ready, or almost returned to undelying allocator and AsanChunk is already 39 // meaningless. 40 CHUNK_INVALID = 0, 41 // The chunk is allocated and not yet freed. 42 CHUNK_ALLOCATED = 1, 43 }; 44 45 46 // Initialized in HwasanAllocatorInit, an never changed. 47 static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1]; 48 static uptr max_malloc_size; 49 50 bool HwasanChunkView::IsAllocated() const { 51 return metadata_ && metadata_->IsAllocated(); 52 } 53 54 uptr HwasanChunkView::Beg() const { 55 return block_; 56 } 57 uptr HwasanChunkView::End() const { 58 return Beg() + UsedSize(); 59 } 60 uptr HwasanChunkView::UsedSize() const { 61 return metadata_->GetRequestedSize(); 62 } 63 u32 HwasanChunkView::GetAllocStackId() const { 64 return metadata_->GetAllocStackId(); 65 } 66 67 u32 HwasanChunkView::GetAllocThreadId() const { 68 return metadata_->GetAllocThreadId(); 69 } 70 71 uptr HwasanChunkView::ActualSize() const { 72 return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_)); 73 } 74 75 bool HwasanChunkView::FromSmallHeap() const { 76 return allocator.FromPrimary(reinterpret_cast<void *>(block_)); 77 } 78 79 bool HwasanChunkView::AddrIsInside(uptr addr) const { 80 return (addr >= Beg()) && (addr < Beg() + UsedSize()); 81 } 82 83 inline void Metadata::SetAllocated(u32 stack, u64 size) { 84 Thread *t = GetCurrentThread(); 85 u64 context = t ? t->unique_id() : kMainTid; 86 context <<= 32; 87 context += stack; 88 requested_size_low = size & ((1ul << 32) - 1); 89 requested_size_high = size >> 32; 90 atomic_store(&alloc_context_id, context, memory_order_relaxed); 91 atomic_store(&chunk_state, CHUNK_ALLOCATED, memory_order_release); 92 } 93 94 inline void Metadata::SetUnallocated() { 95 atomic_store(&chunk_state, CHUNK_INVALID, memory_order_release); 96 requested_size_low = 0; 97 requested_size_high = 0; 98 atomic_store(&alloc_context_id, 0, memory_order_relaxed); 99 } 100 101 inline bool Metadata::IsAllocated() const { 102 return atomic_load(&chunk_state, memory_order_relaxed) == CHUNK_ALLOCATED; 103 } 104 105 inline u64 Metadata::GetRequestedSize() const { 106 return (static_cast<u64>(requested_size_high) << 32) + requested_size_low; 107 } 108 109 inline u32 Metadata::GetAllocStackId() const { 110 return atomic_load(&alloc_context_id, memory_order_relaxed); 111 } 112 113 inline u32 Metadata::GetAllocThreadId() const { 114 u64 context = atomic_load(&alloc_context_id, memory_order_relaxed); 115 u32 tid = context >> 32; 116 return tid; 117 } 118 119 void GetAllocatorStats(AllocatorStatCounters s) { 120 allocator.GetStats(s); 121 } 122 123 inline void Metadata::SetLsanTag(__lsan::ChunkTag tag) { 124 lsan_tag = tag; 125 } 126 127 inline __lsan::ChunkTag Metadata::GetLsanTag() const { 128 return static_cast<__lsan::ChunkTag>(lsan_tag); 129 } 130 131 uptr GetAliasRegionStart() { 132 #if defined(HWASAN_ALIASING_MODE) 133 constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1); 134 uptr AliasRegionStart = 135 __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset; 136 137 CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift, 138 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift); 139 CHECK_EQ( 140 (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift, 141 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift); 142 return AliasRegionStart; 143 #else 144 return 0; 145 #endif 146 } 147 148 void HwasanAllocatorInit() { 149 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 150 !flags()->disable_allocator_tagging); 151 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 152 allocator.InitLinkerInitialized( 153 common_flags()->allocator_release_to_os_interval_ms, 154 GetAliasRegionStart()); 155 for (uptr i = 0; i < sizeof(tail_magic); i++) 156 tail_magic[i] = GetCurrentThread()->GenerateRandomTag(); 157 if (common_flags()->max_allocation_size_mb) { 158 max_malloc_size = common_flags()->max_allocation_size_mb << 20; 159 max_malloc_size = Min(max_malloc_size, kMaxAllowedMallocSize); 160 } else { 161 max_malloc_size = kMaxAllowedMallocSize; 162 } 163 } 164 165 void HwasanAllocatorLock() { allocator.ForceLock(); } 166 167 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); } 168 169 void AllocatorThreadStart(AllocatorCache *cache) { allocator.InitCache(cache); } 170 171 void AllocatorThreadFinish(AllocatorCache *cache) { 172 allocator.SwallowCache(cache); 173 allocator.DestroyCache(cache); 174 } 175 176 static uptr TaggedSize(uptr size) { 177 if (!size) size = 1; 178 uptr new_size = RoundUpTo(size, kShadowAlignment); 179 CHECK_GE(new_size, size); 180 return new_size; 181 } 182 183 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment, 184 bool zeroise) { 185 // Keep this consistent with LSAN and ASAN behavior. 186 if (UNLIKELY(orig_size == 0)) 187 orig_size = 1; 188 if (UNLIKELY(orig_size > max_malloc_size)) { 189 if (AllocatorMayReturnNull()) { 190 Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n", 191 orig_size); 192 return nullptr; 193 } 194 ReportAllocationSizeTooBig(orig_size, max_malloc_size, stack); 195 } 196 if (UNLIKELY(IsRssLimitExceeded())) { 197 if (AllocatorMayReturnNull()) 198 return nullptr; 199 ReportRssLimitExceeded(stack); 200 } 201 202 alignment = Max(alignment, kShadowAlignment); 203 uptr size = TaggedSize(orig_size); 204 Thread *t = GetCurrentThread(); 205 void *allocated; 206 if (t) { 207 allocated = allocator.Allocate(t->allocator_cache(), size, alignment); 208 } else { 209 SpinMutexLock l(&fallback_mutex); 210 AllocatorCache *cache = &fallback_allocator_cache; 211 allocated = allocator.Allocate(cache, size, alignment); 212 } 213 if (UNLIKELY(!allocated)) { 214 SetAllocatorOutOfMemory(); 215 if (AllocatorMayReturnNull()) 216 return nullptr; 217 ReportOutOfMemory(size, stack); 218 } 219 if (zeroise) { 220 // The secondary allocator mmaps memory, which should be zero-inited so we 221 // don't need to explicitly clear it. 222 if (allocator.FromPrimary(allocated)) 223 internal_memset(allocated, 0, size); 224 } else if (flags()->max_malloc_fill_size > 0) { 225 uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size); 226 internal_memset(allocated, flags()->malloc_fill_byte, fill_size); 227 } 228 if (size != orig_size) { 229 u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size; 230 uptr tail_length = size - orig_size; 231 internal_memcpy(tail, tail_magic, tail_length - 1); 232 // Short granule is excluded from magic tail, so we explicitly untag. 233 tail[tail_length - 1] = 0; 234 } 235 236 void *user_ptr = allocated; 237 if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) && 238 atomic_load_relaxed(&hwasan_allocator_tagging_enabled) && 239 flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) { 240 tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag; 241 uptr tag_size = orig_size ? orig_size : 1; 242 uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment); 243 user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag); 244 if (full_granule_size != tag_size) { 245 u8 *short_granule = reinterpret_cast<u8 *>(allocated) + full_granule_size; 246 TagMemoryAligned((uptr)short_granule, kShadowAlignment, 247 tag_size % kShadowAlignment); 248 short_granule[kShadowAlignment - 1] = tag; 249 } 250 } else { 251 // Tagging can not be completely skipped. If it's disabled, we need to tag 252 // with zeros. 253 user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0); 254 } 255 256 Metadata *meta = 257 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated)); 258 #if CAN_SANITIZE_LEAKS 259 meta->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored 260 : __lsan::kDirectlyLeaked); 261 #endif 262 meta->SetAllocated(StackDepotPut(*stack), orig_size); 263 RunMallocHooks(user_ptr, orig_size); 264 return user_ptr; 265 } 266 267 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) { 268 CHECK(tagged_ptr); 269 uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr); 270 if (!InTaggableRegion(tagged_uptr)) 271 return true; 272 tag_t mem_tag = *reinterpret_cast<tag_t *>( 273 MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr)))); 274 return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1); 275 } 276 277 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr, 278 void *tagged_ptr) { 279 // This function can return true if halt_on_error is false. 280 if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) || 281 !PointerAndMemoryTagsMatch(tagged_ptr)) { 282 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr)); 283 return true; 284 } 285 return false; 286 } 287 288 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) { 289 CHECK(tagged_ptr); 290 void *untagged_ptr = UntagPtr(tagged_ptr); 291 292 if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr)) 293 return; 294 295 void *aligned_ptr = reinterpret_cast<void *>( 296 RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)); 297 tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr)); 298 Metadata *meta = 299 reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr)); 300 if (!meta) { 301 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr)); 302 return; 303 } 304 305 RunFreeHooks(tagged_ptr); 306 307 uptr orig_size = meta->GetRequestedSize(); 308 u32 free_context_id = StackDepotPut(*stack); 309 u32 alloc_context_id = meta->GetAllocStackId(); 310 u32 alloc_thread_id = meta->GetAllocThreadId(); 311 312 bool in_taggable_region = 313 InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr)); 314 315 // Check tail magic. 316 uptr tagged_size = TaggedSize(orig_size); 317 if (flags()->free_checks_tail_magic && orig_size && 318 tagged_size != orig_size) { 319 uptr tail_size = tagged_size - orig_size - 1; 320 CHECK_LT(tail_size, kShadowAlignment); 321 void *tail_beg = reinterpret_cast<void *>( 322 reinterpret_cast<uptr>(aligned_ptr) + orig_size); 323 tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>( 324 reinterpret_cast<uptr>(tail_beg) + tail_size)); 325 if (tail_size && 326 (internal_memcmp(tail_beg, tail_magic, tail_size) || 327 (in_taggable_region && pointer_tag != short_granule_memtag))) 328 ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr), 329 orig_size, tail_magic); 330 } 331 332 // TODO(kstoimenov): consider meta->SetUnallocated(free_context_id). 333 meta->SetUnallocated(); 334 // This memory will not be reused by anyone else, so we are free to keep it 335 // poisoned. 336 Thread *t = GetCurrentThread(); 337 if (flags()->max_free_fill_size > 0) { 338 uptr fill_size = 339 Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size); 340 internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size); 341 } 342 if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) && 343 atomic_load_relaxed(&hwasan_allocator_tagging_enabled) && 344 allocator.FromPrimary(untagged_ptr) /* Secondary 0-tag and unmap.*/) { 345 // Always store full 8-bit tags on free to maximize UAF detection. 346 tag_t tag; 347 if (t) { 348 // Make sure we are not using a short granule tag as a poison tag. This 349 // would make us attempt to read the memory on a UaF. 350 // The tag can be zero if tagging is disabled on this thread. 351 do { 352 tag = t->GenerateRandomTag(/*num_bits=*/8); 353 } while ( 354 UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0)); 355 } else { 356 static_assert(kFallbackFreeTag >= kShadowAlignment, 357 "fallback tag must not be a short granule tag."); 358 tag = kFallbackFreeTag; 359 } 360 TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size), 361 tag); 362 } 363 if (t) { 364 allocator.Deallocate(t->allocator_cache(), aligned_ptr); 365 if (auto *ha = t->heap_allocations()) 366 ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_thread_id, 367 alloc_context_id, free_context_id, 368 static_cast<u32>(orig_size)}); 369 } else { 370 SpinMutexLock l(&fallback_mutex); 371 AllocatorCache *cache = &fallback_allocator_cache; 372 allocator.Deallocate(cache, aligned_ptr); 373 } 374 } 375 376 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old, 377 uptr new_size, uptr alignment) { 378 void *untagged_ptr_old = UntagPtr(tagged_ptr_old); 379 if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old)) 380 return nullptr; 381 void *tagged_ptr_new = 382 HwasanAllocate(stack, new_size, alignment, false /*zeroise*/); 383 if (tagged_ptr_old && tagged_ptr_new) { 384 Metadata *meta = 385 reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old)); 386 void *untagged_ptr_new = UntagPtr(tagged_ptr_new); 387 internal_memcpy(untagged_ptr_new, untagged_ptr_old, 388 Min(new_size, static_cast<uptr>(meta->GetRequestedSize()))); 389 HwasanDeallocate(stack, tagged_ptr_old); 390 } 391 return tagged_ptr_new; 392 } 393 394 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) { 395 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 396 if (AllocatorMayReturnNull()) 397 return nullptr; 398 ReportCallocOverflow(nmemb, size, stack); 399 } 400 return HwasanAllocate(stack, nmemb * size, sizeof(u64), true); 401 } 402 403 HwasanChunkView FindHeapChunkByAddress(uptr address) { 404 if (!allocator.PointerIsMine(reinterpret_cast<void *>(address))) 405 return HwasanChunkView(); 406 void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address)); 407 if (!block) 408 return HwasanChunkView(); 409 Metadata *metadata = 410 reinterpret_cast<Metadata*>(allocator.GetMetaData(block)); 411 return HwasanChunkView(reinterpret_cast<uptr>(block), metadata); 412 } 413 414 static const void *AllocationBegin(const void *p) { 415 const void *untagged_ptr = UntagPtr(p); 416 if (!untagged_ptr) 417 return nullptr; 418 419 const void *beg = allocator.GetBlockBegin(untagged_ptr); 420 if (!beg) 421 return nullptr; 422 423 Metadata *b = (Metadata *)allocator.GetMetaData(beg); 424 if (b->GetRequestedSize() == 0) 425 return nullptr; 426 427 tag_t tag = GetTagFromPointer((uptr)p); 428 return (const void *)AddTagToPointer((uptr)beg, tag); 429 } 430 431 static uptr AllocationSize(const void *p) { 432 const void *untagged_ptr = UntagPtr(p); 433 if (!untagged_ptr) return 0; 434 const void *beg = allocator.GetBlockBegin(untagged_ptr); 435 if (!beg) 436 return 0; 437 Metadata *b = (Metadata *)allocator.GetMetaData(beg); 438 return b->GetRequestedSize(); 439 } 440 441 static uptr AllocationSizeFast(const void *p) { 442 const void *untagged_ptr = UntagPtr(p); 443 void *aligned_ptr = reinterpret_cast<void *>( 444 RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)); 445 Metadata *meta = 446 reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr)); 447 return meta->GetRequestedSize(); 448 } 449 450 void *hwasan_malloc(uptr size, StackTrace *stack) { 451 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false)); 452 } 453 454 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) { 455 return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size)); 456 } 457 458 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) { 459 if (!ptr) 460 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false)); 461 if (size == 0) { 462 HwasanDeallocate(stack, ptr); 463 return nullptr; 464 } 465 return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64))); 466 } 467 468 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) { 469 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 470 errno = errno_ENOMEM; 471 if (AllocatorMayReturnNull()) 472 return nullptr; 473 ReportReallocArrayOverflow(nmemb, size, stack); 474 } 475 return hwasan_realloc(ptr, nmemb * size, stack); 476 } 477 478 void *hwasan_valloc(uptr size, StackTrace *stack) { 479 return SetErrnoOnNull( 480 HwasanAllocate(stack, size, GetPageSizeCached(), false)); 481 } 482 483 void *hwasan_pvalloc(uptr size, StackTrace *stack) { 484 uptr PageSize = GetPageSizeCached(); 485 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 486 errno = errno_ENOMEM; 487 if (AllocatorMayReturnNull()) 488 return nullptr; 489 ReportPvallocOverflow(size, stack); 490 } 491 // pvalloc(0) should allocate one page. 492 size = size ? RoundUpTo(size, PageSize) : PageSize; 493 return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false)); 494 } 495 496 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) { 497 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 498 errno = errno_EINVAL; 499 if (AllocatorMayReturnNull()) 500 return nullptr; 501 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 502 } 503 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false)); 504 } 505 506 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) { 507 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 508 errno = errno_EINVAL; 509 if (AllocatorMayReturnNull()) 510 return nullptr; 511 ReportInvalidAllocationAlignment(alignment, stack); 512 } 513 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false)); 514 } 515 516 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size, 517 StackTrace *stack) { 518 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 519 if (AllocatorMayReturnNull()) 520 return errno_EINVAL; 521 ReportInvalidPosixMemalignAlignment(alignment, stack); 522 } 523 void *ptr = HwasanAllocate(stack, size, alignment, false); 524 if (UNLIKELY(!ptr)) 525 // OOM error is already taken care of by HwasanAllocate. 526 return errno_ENOMEM; 527 CHECK(IsAligned((uptr)ptr, alignment)); 528 *memptr = ptr; 529 return 0; 530 } 531 532 void hwasan_free(void *ptr, StackTrace *stack) { 533 return HwasanDeallocate(stack, ptr); 534 } 535 536 } // namespace __hwasan 537 538 // --- Implementation of LSan-specific functions --- {{{1 539 namespace __lsan { 540 541 void LockAllocator() { 542 __hwasan::HwasanAllocatorLock(); 543 } 544 545 void UnlockAllocator() { 546 __hwasan::HwasanAllocatorUnlock(); 547 } 548 549 void GetAllocatorGlobalRange(uptr *begin, uptr *end) { 550 *begin = (uptr)&__hwasan::allocator; 551 *end = *begin + sizeof(__hwasan::allocator); 552 } 553 554 uptr PointsIntoChunk(void *p) { 555 p = UntagPtr(p); 556 uptr addr = reinterpret_cast<uptr>(p); 557 uptr chunk = 558 reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p)); 559 if (!chunk) 560 return 0; 561 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 562 __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))); 563 if (!metadata || !metadata->IsAllocated()) 564 return 0; 565 if (addr < chunk + metadata->GetRequestedSize()) 566 return chunk; 567 if (IsSpecialCaseOfOperatorNew0(chunk, metadata->GetRequestedSize(), addr)) 568 return chunk; 569 return 0; 570 } 571 572 uptr GetUserBegin(uptr chunk) { 573 CHECK_EQ(UntagAddr(chunk), chunk); 574 void *block = __hwasan::allocator.GetBlockBeginFastLocked( 575 reinterpret_cast<void *>(chunk)); 576 if (!block) 577 return 0; 578 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 579 __hwasan::allocator.GetMetaData(block)); 580 if (!metadata || !metadata->IsAllocated()) 581 return 0; 582 583 return reinterpret_cast<uptr>(block); 584 } 585 586 uptr GetUserAddr(uptr chunk) { 587 if (!InTaggableRegion(chunk)) 588 return chunk; 589 tag_t mem_tag = *(tag_t *)__hwasan::MemToShadow(chunk); 590 return AddTagToPointer(chunk, mem_tag); 591 } 592 593 LsanMetadata::LsanMetadata(uptr chunk) { 594 CHECK_EQ(UntagAddr(chunk), chunk); 595 metadata_ = 596 chunk ? __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)) 597 : nullptr; 598 } 599 600 bool LsanMetadata::allocated() const { 601 if (!metadata_) 602 return false; 603 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 604 return m->IsAllocated(); 605 } 606 607 ChunkTag LsanMetadata::tag() const { 608 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 609 return m->GetLsanTag(); 610 } 611 612 void LsanMetadata::set_tag(ChunkTag value) { 613 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 614 m->SetLsanTag(value); 615 } 616 617 uptr LsanMetadata::requested_size() const { 618 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 619 return m->GetRequestedSize(); 620 } 621 622 u32 LsanMetadata::stack_trace_id() const { 623 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 624 return m->GetAllocStackId(); 625 } 626 627 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 628 __hwasan::allocator.ForEachChunk(callback, arg); 629 } 630 631 IgnoreObjectResult IgnoreObject(const void *p) { 632 p = UntagPtr(p); 633 uptr addr = reinterpret_cast<uptr>(p); 634 uptr chunk = reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBegin(p)); 635 if (!chunk) 636 return kIgnoreObjectInvalid; 637 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 638 __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))); 639 if (!metadata || !metadata->IsAllocated()) 640 return kIgnoreObjectInvalid; 641 if (addr >= chunk + metadata->GetRequestedSize()) 642 return kIgnoreObjectInvalid; 643 if (metadata->GetLsanTag() == kIgnored) 644 return kIgnoreObjectAlreadyIgnored; 645 646 metadata->SetLsanTag(kIgnored); 647 return kIgnoreObjectSuccess; 648 } 649 650 } // namespace __lsan 651 652 using namespace __hwasan; 653 654 void __hwasan_enable_allocator_tagging() { 655 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1); 656 } 657 658 void __hwasan_disable_allocator_tagging() { 659 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0); 660 } 661 662 uptr __sanitizer_get_current_allocated_bytes() { 663 uptr stats[AllocatorStatCount]; 664 allocator.GetStats(stats); 665 return stats[AllocatorStatAllocated]; 666 } 667 668 uptr __sanitizer_get_heap_size() { 669 uptr stats[AllocatorStatCount]; 670 allocator.GetStats(stats); 671 return stats[AllocatorStatMapped]; 672 } 673 674 uptr __sanitizer_get_free_bytes() { return 1; } 675 676 uptr __sanitizer_get_unmapped_bytes() { return 1; } 677 678 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 679 680 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } 681 682 const void *__sanitizer_get_allocated_begin(const void *p) { 683 return AllocationBegin(p); 684 } 685 686 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } 687 688 uptr __sanitizer_get_allocated_size_fast(const void *p) { 689 DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 690 uptr ret = AllocationSizeFast(p); 691 DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 692 return ret; 693 } 694 695 void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); } 696