1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a part of HWAddressSanitizer. 10 // 11 // HWAddressSanitizer allocator. 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_common/sanitizer_atomic.h" 15 #include "sanitizer_common/sanitizer_errno.h" 16 #include "sanitizer_common/sanitizer_stackdepot.h" 17 #include "hwasan.h" 18 #include "hwasan_allocator.h" 19 #include "hwasan_checks.h" 20 #include "hwasan_mapping.h" 21 #include "hwasan_malloc_bisect.h" 22 #include "hwasan_thread.h" 23 #include "hwasan_report.h" 24 #include "lsan/lsan_common.h" 25 26 namespace __hwasan { 27 28 static Allocator allocator; 29 static AllocatorCache fallback_allocator_cache; 30 static SpinMutex fallback_mutex; 31 static atomic_uint8_t hwasan_allocator_tagging_enabled; 32 33 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask; 34 static constexpr tag_t kFallbackFreeTag = 0xBC; 35 36 enum { 37 // Either just allocated by underlying allocator, but AsanChunk is not yet 38 // ready, or almost returned to undelying allocator and AsanChunk is already 39 // meaningless. 40 CHUNK_INVALID = 0, 41 // The chunk is allocated and not yet freed. 42 CHUNK_ALLOCATED = 1, 43 }; 44 45 46 // Initialized in HwasanAllocatorInit, an never changed. 47 static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1]; 48 49 bool HwasanChunkView::IsAllocated() const { 50 return metadata_ && metadata_->IsAllocated(); 51 } 52 53 uptr HwasanChunkView::Beg() const { 54 return block_; 55 } 56 uptr HwasanChunkView::End() const { 57 return Beg() + UsedSize(); 58 } 59 uptr HwasanChunkView::UsedSize() const { 60 return metadata_->GetRequestedSize(); 61 } 62 u32 HwasanChunkView::GetAllocStackId() const { 63 return metadata_->GetAllocStackId(); 64 } 65 66 uptr HwasanChunkView::ActualSize() const { 67 return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_)); 68 } 69 70 bool HwasanChunkView::FromSmallHeap() const { 71 return allocator.FromPrimary(reinterpret_cast<void *>(block_)); 72 } 73 74 bool HwasanChunkView::AddrIsInside(uptr addr) const { 75 return (addr >= Beg()) && (addr < Beg() + UsedSize()); 76 } 77 78 inline void Metadata::SetAllocated(u32 stack, u64 size) { 79 Thread *t = GetCurrentThread(); 80 u64 context = t ? t->unique_id() : kMainTid; 81 context <<= 32; 82 context += stack; 83 requested_size_low = size & ((1ul << 32) - 1); 84 requested_size_high = size >> 32; 85 atomic_store(&alloc_context_id, context, memory_order_relaxed); 86 atomic_store(&chunk_state, CHUNK_ALLOCATED, memory_order_release); 87 } 88 89 inline void Metadata::SetUnallocated() { 90 atomic_store(&chunk_state, CHUNK_INVALID, memory_order_release); 91 requested_size_low = 0; 92 requested_size_high = 0; 93 atomic_store(&alloc_context_id, 0, memory_order_relaxed); 94 } 95 96 inline bool Metadata::IsAllocated() const { 97 return atomic_load(&chunk_state, memory_order_relaxed) == CHUNK_ALLOCATED && 98 GetRequestedSize(); 99 } 100 101 inline u64 Metadata::GetRequestedSize() const { 102 return (static_cast<u64>(requested_size_high) << 32) + requested_size_low; 103 } 104 105 inline u32 Metadata::GetAllocStackId() const { 106 return atomic_load(&alloc_context_id, memory_order_relaxed); 107 } 108 109 void GetAllocatorStats(AllocatorStatCounters s) { 110 allocator.GetStats(s); 111 } 112 113 inline void Metadata::SetLsanTag(__lsan::ChunkTag tag) { 114 lsan_tag = tag; 115 } 116 117 inline __lsan::ChunkTag Metadata::GetLsanTag() const { 118 return static_cast<__lsan::ChunkTag>(lsan_tag); 119 } 120 121 uptr GetAliasRegionStart() { 122 #if defined(HWASAN_ALIASING_MODE) 123 constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1); 124 uptr AliasRegionStart = 125 __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset; 126 127 CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift, 128 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift); 129 CHECK_EQ( 130 (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift, 131 __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift); 132 return AliasRegionStart; 133 #else 134 return 0; 135 #endif 136 } 137 138 void HwasanAllocatorInit() { 139 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 140 !flags()->disable_allocator_tagging); 141 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 142 allocator.Init(common_flags()->allocator_release_to_os_interval_ms, 143 GetAliasRegionStart()); 144 for (uptr i = 0; i < sizeof(tail_magic); i++) 145 tail_magic[i] = GetCurrentThread()->GenerateRandomTag(); 146 } 147 148 void HwasanAllocatorLock() { allocator.ForceLock(); } 149 150 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); } 151 152 void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) { 153 allocator.SwallowCache(cache); 154 } 155 156 static uptr TaggedSize(uptr size) { 157 if (!size) size = 1; 158 uptr new_size = RoundUpTo(size, kShadowAlignment); 159 CHECK_GE(new_size, size); 160 return new_size; 161 } 162 163 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment, 164 bool zeroise) { 165 if (orig_size > kMaxAllowedMallocSize) { 166 if (AllocatorMayReturnNull()) { 167 Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n", 168 orig_size); 169 return nullptr; 170 } 171 ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack); 172 } 173 if (UNLIKELY(IsRssLimitExceeded())) { 174 if (AllocatorMayReturnNull()) 175 return nullptr; 176 ReportRssLimitExceeded(stack); 177 } 178 179 alignment = Max(alignment, kShadowAlignment); 180 uptr size = TaggedSize(orig_size); 181 Thread *t = GetCurrentThread(); 182 void *allocated; 183 if (t) { 184 allocated = allocator.Allocate(t->allocator_cache(), size, alignment); 185 } else { 186 SpinMutexLock l(&fallback_mutex); 187 AllocatorCache *cache = &fallback_allocator_cache; 188 allocated = allocator.Allocate(cache, size, alignment); 189 } 190 if (UNLIKELY(!allocated)) { 191 SetAllocatorOutOfMemory(); 192 if (AllocatorMayReturnNull()) 193 return nullptr; 194 ReportOutOfMemory(size, stack); 195 } 196 if (zeroise) { 197 internal_memset(allocated, 0, size); 198 } else if (flags()->max_malloc_fill_size > 0) { 199 uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size); 200 internal_memset(allocated, flags()->malloc_fill_byte, fill_size); 201 } 202 if (size != orig_size) { 203 u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size; 204 uptr tail_length = size - orig_size; 205 internal_memcpy(tail, tail_magic, tail_length - 1); 206 // Short granule is excluded from magic tail, so we explicitly untag. 207 tail[tail_length - 1] = 0; 208 } 209 210 void *user_ptr = allocated; 211 // Tagging can only be skipped when both tag_in_malloc and tag_in_free are 212 // false. When tag_in_malloc = false and tag_in_free = true malloc needs to 213 // retag to 0. 214 if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) && 215 (flags()->tag_in_malloc || flags()->tag_in_free) && 216 atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) { 217 if (flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) { 218 tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag; 219 uptr tag_size = orig_size ? orig_size : 1; 220 uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment); 221 user_ptr = 222 (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag); 223 if (full_granule_size != tag_size) { 224 u8 *short_granule = 225 reinterpret_cast<u8 *>(allocated) + full_granule_size; 226 TagMemoryAligned((uptr)short_granule, kShadowAlignment, 227 tag_size % kShadowAlignment); 228 short_granule[kShadowAlignment - 1] = tag; 229 } 230 } else { 231 user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0); 232 } 233 } 234 235 Metadata *meta = 236 reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated)); 237 #if CAN_SANITIZE_LEAKS 238 meta->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored 239 : __lsan::kDirectlyLeaked); 240 #endif 241 meta->SetAllocated(StackDepotPut(*stack), orig_size); 242 RunMallocHooks(user_ptr, size); 243 return user_ptr; 244 } 245 246 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) { 247 CHECK(tagged_ptr); 248 uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr); 249 if (!InTaggableRegion(tagged_uptr)) 250 return true; 251 tag_t mem_tag = *reinterpret_cast<tag_t *>( 252 MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr)))); 253 return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1); 254 } 255 256 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr, 257 void *tagged_ptr) { 258 // This function can return true if halt_on_error is false. 259 if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) || 260 !PointerAndMemoryTagsMatch(tagged_ptr)) { 261 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr)); 262 return true; 263 } 264 return false; 265 } 266 267 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) { 268 CHECK(tagged_ptr); 269 RunFreeHooks(tagged_ptr); 270 271 bool in_taggable_region = 272 InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr)); 273 void *untagged_ptr = in_taggable_region ? UntagPtr(tagged_ptr) : tagged_ptr; 274 275 if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr)) 276 return; 277 278 void *aligned_ptr = reinterpret_cast<void *>( 279 RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)); 280 tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr)); 281 Metadata *meta = 282 reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr)); 283 if (!meta) { 284 ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr)); 285 return; 286 } 287 uptr orig_size = meta->GetRequestedSize(); 288 u32 free_context_id = StackDepotPut(*stack); 289 u32 alloc_context_id = meta->GetAllocStackId(); 290 291 // Check tail magic. 292 uptr tagged_size = TaggedSize(orig_size); 293 if (flags()->free_checks_tail_magic && orig_size && 294 tagged_size != orig_size) { 295 uptr tail_size = tagged_size - orig_size - 1; 296 CHECK_LT(tail_size, kShadowAlignment); 297 void *tail_beg = reinterpret_cast<void *>( 298 reinterpret_cast<uptr>(aligned_ptr) + orig_size); 299 tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>( 300 reinterpret_cast<uptr>(tail_beg) + tail_size)); 301 if (tail_size && 302 (internal_memcmp(tail_beg, tail_magic, tail_size) || 303 (in_taggable_region && pointer_tag != short_granule_memtag))) 304 ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr), 305 orig_size, tail_magic); 306 } 307 308 // TODO(kstoimenov): consider meta->SetUnallocated(free_context_id). 309 meta->SetUnallocated(); 310 // This memory will not be reused by anyone else, so we are free to keep it 311 // poisoned. 312 Thread *t = GetCurrentThread(); 313 if (flags()->max_free_fill_size > 0) { 314 uptr fill_size = 315 Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size); 316 internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size); 317 } 318 if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) && 319 atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) { 320 // Always store full 8-bit tags on free to maximize UAF detection. 321 tag_t tag; 322 if (t) { 323 // Make sure we are not using a short granule tag as a poison tag. This 324 // would make us attempt to read the memory on a UaF. 325 // The tag can be zero if tagging is disabled on this thread. 326 do { 327 tag = t->GenerateRandomTag(/*num_bits=*/8); 328 } while ( 329 UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0)); 330 } else { 331 static_assert(kFallbackFreeTag >= kShadowAlignment, 332 "fallback tag must not be a short granule tag."); 333 tag = kFallbackFreeTag; 334 } 335 TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size), 336 tag); 337 } 338 if (t) { 339 allocator.Deallocate(t->allocator_cache(), aligned_ptr); 340 if (auto *ha = t->heap_allocations()) 341 ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id, 342 free_context_id, static_cast<u32>(orig_size)}); 343 } else { 344 SpinMutexLock l(&fallback_mutex); 345 AllocatorCache *cache = &fallback_allocator_cache; 346 allocator.Deallocate(cache, aligned_ptr); 347 } 348 } 349 350 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old, 351 uptr new_size, uptr alignment) { 352 void *untagged_ptr_old = 353 InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr_old)) 354 ? UntagPtr(tagged_ptr_old) 355 : tagged_ptr_old; 356 if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old)) 357 return nullptr; 358 void *tagged_ptr_new = 359 HwasanAllocate(stack, new_size, alignment, false /*zeroise*/); 360 if (tagged_ptr_old && tagged_ptr_new) { 361 Metadata *meta = 362 reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old)); 363 internal_memcpy( 364 UntagPtr(tagged_ptr_new), untagged_ptr_old, 365 Min(new_size, static_cast<uptr>(meta->GetRequestedSize()))); 366 HwasanDeallocate(stack, tagged_ptr_old); 367 } 368 return tagged_ptr_new; 369 } 370 371 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) { 372 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 373 if (AllocatorMayReturnNull()) 374 return nullptr; 375 ReportCallocOverflow(nmemb, size, stack); 376 } 377 return HwasanAllocate(stack, nmemb * size, sizeof(u64), true); 378 } 379 380 HwasanChunkView FindHeapChunkByAddress(uptr address) { 381 if (!allocator.PointerIsMine(reinterpret_cast<void *>(address))) 382 return HwasanChunkView(); 383 void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address)); 384 if (!block) 385 return HwasanChunkView(); 386 Metadata *metadata = 387 reinterpret_cast<Metadata*>(allocator.GetMetaData(block)); 388 return HwasanChunkView(reinterpret_cast<uptr>(block), metadata); 389 } 390 391 static uptr AllocationSize(const void *tagged_ptr) { 392 const void *untagged_ptr = UntagPtr(tagged_ptr); 393 if (!untagged_ptr) return 0; 394 const void *beg = allocator.GetBlockBegin(untagged_ptr); 395 Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr); 396 if (beg != untagged_ptr) return 0; 397 return b->GetRequestedSize(); 398 } 399 400 void *hwasan_malloc(uptr size, StackTrace *stack) { 401 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false)); 402 } 403 404 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) { 405 return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size)); 406 } 407 408 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) { 409 if (!ptr) 410 return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false)); 411 if (size == 0) { 412 HwasanDeallocate(stack, ptr); 413 return nullptr; 414 } 415 return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64))); 416 } 417 418 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) { 419 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 420 errno = errno_ENOMEM; 421 if (AllocatorMayReturnNull()) 422 return nullptr; 423 ReportReallocArrayOverflow(nmemb, size, stack); 424 } 425 return hwasan_realloc(ptr, nmemb * size, stack); 426 } 427 428 void *hwasan_valloc(uptr size, StackTrace *stack) { 429 return SetErrnoOnNull( 430 HwasanAllocate(stack, size, GetPageSizeCached(), false)); 431 } 432 433 void *hwasan_pvalloc(uptr size, StackTrace *stack) { 434 uptr PageSize = GetPageSizeCached(); 435 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 436 errno = errno_ENOMEM; 437 if (AllocatorMayReturnNull()) 438 return nullptr; 439 ReportPvallocOverflow(size, stack); 440 } 441 // pvalloc(0) should allocate one page. 442 size = size ? RoundUpTo(size, PageSize) : PageSize; 443 return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false)); 444 } 445 446 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) { 447 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 448 errno = errno_EINVAL; 449 if (AllocatorMayReturnNull()) 450 return nullptr; 451 ReportInvalidAlignedAllocAlignment(size, alignment, stack); 452 } 453 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false)); 454 } 455 456 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) { 457 if (UNLIKELY(!IsPowerOfTwo(alignment))) { 458 errno = errno_EINVAL; 459 if (AllocatorMayReturnNull()) 460 return nullptr; 461 ReportInvalidAllocationAlignment(alignment, stack); 462 } 463 return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false)); 464 } 465 466 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size, 467 StackTrace *stack) { 468 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 469 if (AllocatorMayReturnNull()) 470 return errno_EINVAL; 471 ReportInvalidPosixMemalignAlignment(alignment, stack); 472 } 473 void *ptr = HwasanAllocate(stack, size, alignment, false); 474 if (UNLIKELY(!ptr)) 475 // OOM error is already taken care of by HwasanAllocate. 476 return errno_ENOMEM; 477 CHECK(IsAligned((uptr)ptr, alignment)); 478 *memptr = ptr; 479 return 0; 480 } 481 482 void hwasan_free(void *ptr, StackTrace *stack) { 483 return HwasanDeallocate(stack, ptr); 484 } 485 486 } // namespace __hwasan 487 488 // --- Implementation of LSan-specific functions --- {{{1 489 namespace __lsan { 490 491 void LockAllocator() { 492 __hwasan::HwasanAllocatorLock(); 493 } 494 495 void UnlockAllocator() { 496 __hwasan::HwasanAllocatorUnlock(); 497 } 498 499 void GetAllocatorGlobalRange(uptr *begin, uptr *end) { 500 *begin = (uptr)&__hwasan::allocator; 501 *end = *begin + sizeof(__hwasan::allocator); 502 } 503 504 uptr PointsIntoChunk(void *p) { 505 p = __hwasan::InTaggableRegion(reinterpret_cast<uptr>(p)) ? UntagPtr(p) : p; 506 uptr addr = reinterpret_cast<uptr>(p); 507 uptr chunk = 508 reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p)); 509 if (!chunk) 510 return 0; 511 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 512 __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))); 513 if (!metadata || !metadata->IsAllocated()) 514 return 0; 515 if (addr < chunk + metadata->GetRequestedSize()) 516 return chunk; 517 if (IsSpecialCaseOfOperatorNew0(chunk, metadata->GetRequestedSize(), addr)) 518 return chunk; 519 return 0; 520 } 521 522 uptr GetUserBegin(uptr chunk) { 523 if (__hwasan::InTaggableRegion(chunk)) 524 CHECK_EQ(UntagAddr(chunk), chunk); 525 void *block = __hwasan::allocator.GetBlockBeginFastLocked( 526 reinterpret_cast<void *>(chunk)); 527 if (!block) 528 return 0; 529 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 530 __hwasan::allocator.GetMetaData(block)); 531 if (!metadata || !metadata->IsAllocated()) 532 return 0; 533 534 return reinterpret_cast<uptr>(block); 535 } 536 537 LsanMetadata::LsanMetadata(uptr chunk) { 538 if (__hwasan::InTaggableRegion(chunk)) 539 CHECK_EQ(UntagAddr(chunk), chunk); 540 metadata_ = 541 chunk ? __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)) 542 : nullptr; 543 } 544 545 bool LsanMetadata::allocated() const { 546 if (!metadata_) 547 return false; 548 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 549 return m->IsAllocated(); 550 } 551 552 ChunkTag LsanMetadata::tag() const { 553 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 554 return m->GetLsanTag(); 555 } 556 557 void LsanMetadata::set_tag(ChunkTag value) { 558 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 559 m->SetLsanTag(value); 560 } 561 562 uptr LsanMetadata::requested_size() const { 563 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 564 return m->GetRequestedSize(); 565 } 566 567 u32 LsanMetadata::stack_trace_id() const { 568 __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_); 569 return m->GetAllocStackId(); 570 } 571 572 void ForEachChunk(ForEachChunkCallback callback, void *arg) { 573 __hwasan::allocator.ForEachChunk(callback, arg); 574 } 575 576 IgnoreObjectResult IgnoreObjectLocked(const void *p) { 577 p = __hwasan::InTaggableRegion(reinterpret_cast<uptr>(p)) ? UntagPtr(p) : p; 578 uptr addr = reinterpret_cast<uptr>(p); 579 uptr chunk = 580 reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p)); 581 if (!chunk) 582 return kIgnoreObjectInvalid; 583 __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>( 584 __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))); 585 if (!metadata || !metadata->IsAllocated()) 586 return kIgnoreObjectInvalid; 587 if (addr >= chunk + metadata->GetRequestedSize()) 588 return kIgnoreObjectInvalid; 589 if (metadata->GetLsanTag() == kIgnored) 590 return kIgnoreObjectAlreadyIgnored; 591 592 metadata->SetLsanTag(kIgnored); 593 return kIgnoreObjectSuccess; 594 } 595 596 } // namespace __lsan 597 598 using namespace __hwasan; 599 600 void __hwasan_enable_allocator_tagging() { 601 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1); 602 } 603 604 void __hwasan_disable_allocator_tagging() { 605 atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0); 606 } 607 608 uptr __sanitizer_get_current_allocated_bytes() { 609 uptr stats[AllocatorStatCount]; 610 allocator.GetStats(stats); 611 return stats[AllocatorStatAllocated]; 612 } 613 614 uptr __sanitizer_get_heap_size() { 615 uptr stats[AllocatorStatCount]; 616 allocator.GetStats(stats); 617 return stats[AllocatorStatMapped]; 618 } 619 620 uptr __sanitizer_get_free_bytes() { return 1; } 621 622 uptr __sanitizer_get_unmapped_bytes() { return 1; } 623 624 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 625 626 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } 627 628 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } 629