xref: /freebsd/contrib/llvm-project/compiler-rt/lib/fuzzer/FuzzerCorpus.h (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 //===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // fuzzer::InputCorpus
9 //===----------------------------------------------------------------------===//
10 
11 #ifndef LLVM_FUZZER_CORPUS
12 #define LLVM_FUZZER_CORPUS
13 
14 #include "FuzzerDataFlowTrace.h"
15 #include "FuzzerDefs.h"
16 #include "FuzzerIO.h"
17 #include "FuzzerRandom.h"
18 #include "FuzzerSHA1.h"
19 #include "FuzzerTracePC.h"
20 #include <algorithm>
21 #include <chrono>
22 #include <numeric>
23 #include <random>
24 #include <unordered_set>
25 
26 namespace fuzzer {
27 
28 struct InputInfo {
29   Unit U;  // The actual input data.
30   std::chrono::microseconds TimeOfUnit;
31   uint8_t Sha1[kSHA1NumBytes];  // Checksum.
32   // Number of features that this input has and no smaller input has.
33   size_t NumFeatures = 0;
34   size_t Tmp = 0; // Used by ValidateFeatureSet.
35   // Stats.
36   size_t NumExecutedMutations = 0;
37   size_t NumSuccessfullMutations = 0;
38   bool NeverReduce = false;
39   bool MayDeleteFile = false;
40   bool Reduced = false;
41   bool HasFocusFunction = false;
42   std::vector<uint32_t> UniqFeatureSet;
43   std::vector<uint8_t> DataFlowTraceForFocusFunction;
44   // Power schedule.
45   bool NeedsEnergyUpdate = false;
46   double Energy = 0.0;
47   double SumIncidence = 0.0;
48   std::vector<std::pair<uint32_t, uint16_t>> FeatureFreqs;
49 
50   // Delete feature Idx and its frequency from FeatureFreqs.
51   bool DeleteFeatureFreq(uint32_t Idx) {
52     if (FeatureFreqs.empty())
53       return false;
54 
55     // Binary search over local feature frequencies sorted by index.
56     auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
57                                   std::pair<uint32_t, uint16_t>(Idx, 0));
58 
59     if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
60       FeatureFreqs.erase(Lower);
61       return true;
62     }
63     return false;
64   }
65 
66   // Assign more energy to a high-entropy seed, i.e., that reveals more
67   // information about the globally rare features in the neighborhood of the
68   // seed. Since we do not know the entropy of a seed that has never been
69   // executed we assign fresh seeds maximum entropy and let II->Energy approach
70   // the true entropy from above. If ScalePerExecTime is true, the computed
71   // entropy is scaled based on how fast this input executes compared to the
72   // average execution time of inputs. The faster an input executes, the more
73   // energy gets assigned to the input.
74   void UpdateEnergy(size_t GlobalNumberOfFeatures, bool ScalePerExecTime,
75                     std::chrono::microseconds AverageUnitExecutionTime) {
76     Energy = 0.0;
77     SumIncidence = 0.0;
78 
79     // Apply add-one smoothing to locally discovered features.
80     for (const auto &F : FeatureFreqs) {
81       double LocalIncidence = F.second + 1;
82       Energy -= LocalIncidence * log(LocalIncidence);
83       SumIncidence += LocalIncidence;
84     }
85 
86     // Apply add-one smoothing to locally undiscovered features.
87     //   PreciseEnergy -= 0; // since log(1.0) == 0)
88     SumIncidence +=
89         static_cast<double>(GlobalNumberOfFeatures - FeatureFreqs.size());
90 
91     // Add a single locally abundant feature apply add-one smoothing.
92     double AbdIncidence = static_cast<double>(NumExecutedMutations + 1);
93     Energy -= AbdIncidence * log(AbdIncidence);
94     SumIncidence += AbdIncidence;
95 
96     // Normalize.
97     if (SumIncidence != 0)
98       Energy = Energy / SumIncidence + log(SumIncidence);
99 
100     if (ScalePerExecTime) {
101       // Scaling to favor inputs with lower execution time.
102       uint32_t PerfScore = 100;
103       if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 10)
104         PerfScore = 10;
105       else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 4)
106         PerfScore = 25;
107       else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 2)
108         PerfScore = 50;
109       else if (TimeOfUnit.count() * 3 > AverageUnitExecutionTime.count() * 4)
110         PerfScore = 75;
111       else if (TimeOfUnit.count() * 4 < AverageUnitExecutionTime.count())
112         PerfScore = 300;
113       else if (TimeOfUnit.count() * 3 < AverageUnitExecutionTime.count())
114         PerfScore = 200;
115       else if (TimeOfUnit.count() * 2 < AverageUnitExecutionTime.count())
116         PerfScore = 150;
117 
118       Energy *= PerfScore;
119     }
120   }
121 
122   // Increment the frequency of the feature Idx.
123   void UpdateFeatureFrequency(uint32_t Idx) {
124     NeedsEnergyUpdate = true;
125 
126     // The local feature frequencies is an ordered vector of pairs.
127     // If there are no local feature frequencies, push_back preserves order.
128     // Set the feature frequency for feature Idx32 to 1.
129     if (FeatureFreqs.empty()) {
130       FeatureFreqs.push_back(std::pair<uint32_t, uint16_t>(Idx, 1));
131       return;
132     }
133 
134     // Binary search over local feature frequencies sorted by index.
135     auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
136                                   std::pair<uint32_t, uint16_t>(Idx, 0));
137 
138     // If feature Idx32 already exists, increment its frequency.
139     // Otherwise, insert a new pair right after the next lower index.
140     if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
141       Lower->second++;
142     } else {
143       FeatureFreqs.insert(Lower, std::pair<uint32_t, uint16_t>(Idx, 1));
144     }
145   }
146 };
147 
148 struct EntropicOptions {
149   bool Enabled;
150   size_t NumberOfRarestFeatures;
151   size_t FeatureFrequencyThreshold;
152   bool ScalePerExecTime;
153 };
154 
155 class InputCorpus {
156   static const uint32_t kFeatureSetSize = 1 << 21;
157   static const uint8_t kMaxMutationFactor = 20;
158   static const size_t kSparseEnergyUpdates = 100;
159 
160   size_t NumExecutedMutations = 0;
161 
162   EntropicOptions Entropic;
163 
164 public:
165   InputCorpus(const std::string &OutputCorpus, EntropicOptions Entropic)
166       : Entropic(Entropic), OutputCorpus(OutputCorpus) {
167     memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature));
168     memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature));
169   }
170   ~InputCorpus() {
171     for (auto II : Inputs)
172       delete II;
173   }
174   size_t size() const { return Inputs.size(); }
175   size_t SizeInBytes() const {
176     size_t Res = 0;
177     for (auto II : Inputs)
178       Res += II->U.size();
179     return Res;
180   }
181   size_t NumActiveUnits() const {
182     size_t Res = 0;
183     for (auto II : Inputs)
184       Res += !II->U.empty();
185     return Res;
186   }
187   size_t MaxInputSize() const {
188     size_t Res = 0;
189     for (auto II : Inputs)
190         Res = std::max(Res, II->U.size());
191     return Res;
192   }
193   void IncrementNumExecutedMutations() { NumExecutedMutations++; }
194 
195   size_t NumInputsThatTouchFocusFunction() {
196     return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
197       return II->HasFocusFunction;
198     });
199   }
200 
201   size_t NumInputsWithDataFlowTrace() {
202     return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
203       return !II->DataFlowTraceForFocusFunction.empty();
204     });
205   }
206 
207   bool empty() const { return Inputs.empty(); }
208   const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; }
209   InputInfo *AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile,
210                          bool HasFocusFunction, bool NeverReduce,
211                          std::chrono::microseconds TimeOfUnit,
212                          const std::vector<uint32_t> &FeatureSet,
213                          const DataFlowTrace &DFT, const InputInfo *BaseII) {
214     assert(!U.empty());
215     if (FeatureDebug)
216       Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures);
217     // Inputs.size() is cast to uint32_t below.
218     assert(Inputs.size() < std::numeric_limits<uint32_t>::max());
219     Inputs.push_back(new InputInfo());
220     InputInfo &II = *Inputs.back();
221     II.U = U;
222     II.NumFeatures = NumFeatures;
223     II.NeverReduce = NeverReduce;
224     II.TimeOfUnit = TimeOfUnit;
225     II.MayDeleteFile = MayDeleteFile;
226     II.UniqFeatureSet = FeatureSet;
227     II.HasFocusFunction = HasFocusFunction;
228     // Assign maximal energy to the new seed.
229     II.Energy = RareFeatures.empty() ? 1.0 : log(RareFeatures.size());
230     II.SumIncidence = static_cast<double>(RareFeatures.size());
231     II.NeedsEnergyUpdate = false;
232     std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end());
233     ComputeSHA1(U.data(), U.size(), II.Sha1);
234     auto Sha1Str = Sha1ToString(II.Sha1);
235     Hashes.insert(Sha1Str);
236     if (HasFocusFunction)
237       if (auto V = DFT.Get(Sha1Str))
238         II.DataFlowTraceForFocusFunction = *V;
239     // This is a gross heuristic.
240     // Ideally, when we add an element to a corpus we need to know its DFT.
241     // But if we don't, we'll use the DFT of its base input.
242     if (II.DataFlowTraceForFocusFunction.empty() && BaseII)
243       II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction;
244     DistributionNeedsUpdate = true;
245     PrintCorpus();
246     // ValidateFeatureSet();
247     return &II;
248   }
249 
250   // Debug-only
251   void PrintUnit(const Unit &U) {
252     if (!FeatureDebug) return;
253     for (uint8_t C : U) {
254       if (C != 'F' && C != 'U' && C != 'Z')
255         C = '.';
256       Printf("%c", C);
257     }
258   }
259 
260   // Debug-only
261   void PrintFeatureSet(const std::vector<uint32_t> &FeatureSet) {
262     if (!FeatureDebug) return;
263     Printf("{");
264     for (uint32_t Feature: FeatureSet)
265       Printf("%u,", Feature);
266     Printf("}");
267   }
268 
269   // Debug-only
270   void PrintCorpus() {
271     if (!FeatureDebug) return;
272     Printf("======= CORPUS:\n");
273     int i = 0;
274     for (auto II : Inputs) {
275       if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) {
276         Printf("[%2d] ", i);
277         Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size());
278         PrintUnit(II->U);
279         Printf(" ");
280         PrintFeatureSet(II->UniqFeatureSet);
281         Printf("\n");
282       }
283       i++;
284     }
285   }
286 
287   void Replace(InputInfo *II, const Unit &U,
288                std::chrono::microseconds TimeOfUnit) {
289     assert(II->U.size() > U.size());
290     Hashes.erase(Sha1ToString(II->Sha1));
291     DeleteFile(*II);
292     ComputeSHA1(U.data(), U.size(), II->Sha1);
293     Hashes.insert(Sha1ToString(II->Sha1));
294     II->U = U;
295     II->Reduced = true;
296     II->TimeOfUnit = TimeOfUnit;
297     DistributionNeedsUpdate = true;
298   }
299 
300   bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); }
301   bool HasUnit(const std::string &H) { return Hashes.count(H); }
302   InputInfo &ChooseUnitToMutate(Random &Rand) {
303     InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)];
304     assert(!II.U.empty());
305     return II;
306   }
307 
308   InputInfo &ChooseUnitToCrossOverWith(Random &Rand, bool UniformDist) {
309     if (!UniformDist) {
310       return ChooseUnitToMutate(Rand);
311     }
312     InputInfo &II = *Inputs[Rand(Inputs.size())];
313     assert(!II.U.empty());
314     return II;
315   }
316 
317   // Returns an index of random unit from the corpus to mutate.
318   size_t ChooseUnitIdxToMutate(Random &Rand) {
319     UpdateCorpusDistribution(Rand);
320     size_t Idx = static_cast<size_t>(CorpusDistribution(Rand));
321     assert(Idx < Inputs.size());
322     return Idx;
323   }
324 
325   void PrintStats() {
326     for (size_t i = 0; i < Inputs.size(); i++) {
327       const auto &II = *Inputs[i];
328       Printf("  [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i,
329              Sha1ToString(II.Sha1).c_str(), II.U.size(),
330              II.NumExecutedMutations, II.NumSuccessfullMutations,
331              II.HasFocusFunction);
332     }
333   }
334 
335   void PrintFeatureSet() {
336     for (size_t i = 0; i < kFeatureSetSize; i++) {
337       if(size_t Sz = GetFeature(i))
338         Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz);
339     }
340     Printf("\n\t");
341     for (size_t i = 0; i < Inputs.size(); i++)
342       if (size_t N = Inputs[i]->NumFeatures)
343         Printf(" %zd=>%zd ", i, N);
344     Printf("\n");
345   }
346 
347   void DeleteFile(const InputInfo &II) {
348     if (!OutputCorpus.empty() && II.MayDeleteFile)
349       RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1)));
350   }
351 
352   void DeleteInput(size_t Idx) {
353     InputInfo &II = *Inputs[Idx];
354     DeleteFile(II);
355     Unit().swap(II.U);
356     II.Energy = 0.0;
357     II.NeedsEnergyUpdate = false;
358     DistributionNeedsUpdate = true;
359     if (FeatureDebug)
360       Printf("EVICTED %zd\n", Idx);
361   }
362 
363   void AddRareFeature(uint32_t Idx) {
364     // Maintain *at least* TopXRarestFeatures many rare features
365     // and all features with a frequency below ConsideredRare.
366     // Remove all other features.
367     while (RareFeatures.size() > Entropic.NumberOfRarestFeatures &&
368            FreqOfMostAbundantRareFeature > Entropic.FeatureFrequencyThreshold) {
369 
370       // Find most and second most abbundant feature.
371       uint32_t MostAbundantRareFeatureIndices[2] = {RareFeatures[0],
372                                                     RareFeatures[0]};
373       size_t Delete = 0;
374       for (size_t i = 0; i < RareFeatures.size(); i++) {
375         uint32_t Idx2 = RareFeatures[i];
376         if (GlobalFeatureFreqs[Idx2] >=
377             GlobalFeatureFreqs[MostAbundantRareFeatureIndices[0]]) {
378           MostAbundantRareFeatureIndices[1] = MostAbundantRareFeatureIndices[0];
379           MostAbundantRareFeatureIndices[0] = Idx2;
380           Delete = i;
381         }
382       }
383 
384       // Remove most abundant rare feature.
385       RareFeatures[Delete] = RareFeatures.back();
386       RareFeatures.pop_back();
387 
388       for (auto II : Inputs) {
389         if (II->DeleteFeatureFreq(MostAbundantRareFeatureIndices[0]))
390           II->NeedsEnergyUpdate = true;
391       }
392 
393       // Set 2nd most abundant as the new most abundant feature count.
394       FreqOfMostAbundantRareFeature =
395           GlobalFeatureFreqs[MostAbundantRareFeatureIndices[1]];
396     }
397 
398     // Add rare feature, handle collisions, and update energy.
399     RareFeatures.push_back(Idx);
400     GlobalFeatureFreqs[Idx] = 0;
401     for (auto II : Inputs) {
402       II->DeleteFeatureFreq(Idx);
403 
404       // Apply add-one smoothing to this locally undiscovered feature.
405       // Zero energy seeds will never be fuzzed and remain zero energy.
406       if (II->Energy > 0.0) {
407         II->SumIncidence += 1;
408         II->Energy += log(II->SumIncidence) / II->SumIncidence;
409       }
410     }
411 
412     DistributionNeedsUpdate = true;
413   }
414 
415   bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) {
416     assert(NewSize);
417     Idx = Idx % kFeatureSetSize;
418     uint32_t OldSize = GetFeature(Idx);
419     if (OldSize == 0 || (Shrink && OldSize > NewSize)) {
420       if (OldSize > 0) {
421         size_t OldIdx = SmallestElementPerFeature[Idx];
422         InputInfo &II = *Inputs[OldIdx];
423         assert(II.NumFeatures > 0);
424         II.NumFeatures--;
425         if (II.NumFeatures == 0)
426           DeleteInput(OldIdx);
427       } else {
428         NumAddedFeatures++;
429         if (Entropic.Enabled)
430           AddRareFeature((uint32_t)Idx);
431       }
432       NumUpdatedFeatures++;
433       if (FeatureDebug)
434         Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize);
435       // Inputs.size() is guaranteed to be less than UINT32_MAX by AddToCorpus.
436       SmallestElementPerFeature[Idx] = static_cast<uint32_t>(Inputs.size());
437       InputSizesPerFeature[Idx] = NewSize;
438       return true;
439     }
440     return false;
441   }
442 
443   // Increment frequency of feature Idx globally and locally.
444   void UpdateFeatureFrequency(InputInfo *II, size_t Idx) {
445     uint32_t Idx32 = Idx % kFeatureSetSize;
446 
447     // Saturated increment.
448     if (GlobalFeatureFreqs[Idx32] == 0xFFFF)
449       return;
450     uint16_t Freq = GlobalFeatureFreqs[Idx32]++;
451 
452     // Skip if abundant.
453     if (Freq > FreqOfMostAbundantRareFeature ||
454         std::find(RareFeatures.begin(), RareFeatures.end(), Idx32) ==
455             RareFeatures.end())
456       return;
457 
458     // Update global frequencies.
459     if (Freq == FreqOfMostAbundantRareFeature)
460       FreqOfMostAbundantRareFeature++;
461 
462     // Update local frequencies.
463     if (II)
464       II->UpdateFeatureFrequency(Idx32);
465   }
466 
467   size_t NumFeatures() const { return NumAddedFeatures; }
468   size_t NumFeatureUpdates() const { return NumUpdatedFeatures; }
469 
470 private:
471 
472   static const bool FeatureDebug = false;
473 
474   uint32_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; }
475 
476   void ValidateFeatureSet() {
477     if (FeatureDebug)
478       PrintFeatureSet();
479     for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++)
480       if (GetFeature(Idx))
481         Inputs[SmallestElementPerFeature[Idx]]->Tmp++;
482     for (auto II: Inputs) {
483       if (II->Tmp != II->NumFeatures)
484         Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures);
485       assert(II->Tmp == II->NumFeatures);
486       II->Tmp = 0;
487     }
488   }
489 
490   // Updates the probability distribution for the units in the corpus.
491   // Must be called whenever the corpus or unit weights are changed.
492   //
493   // Hypothesis: inputs that maximize information about globally rare features
494   // are interesting.
495   void UpdateCorpusDistribution(Random &Rand) {
496     // Skip update if no seeds or rare features were added/deleted.
497     // Sparse updates for local change of feature frequencies,
498     // i.e., randomly do not skip.
499     if (!DistributionNeedsUpdate &&
500         (!Entropic.Enabled || Rand(kSparseEnergyUpdates)))
501       return;
502 
503     DistributionNeedsUpdate = false;
504 
505     size_t N = Inputs.size();
506     assert(N);
507     Intervals.resize(N + 1);
508     Weights.resize(N);
509     std::iota(Intervals.begin(), Intervals.end(), 0);
510 
511     std::chrono::microseconds AverageUnitExecutionTime(0);
512     for (auto II : Inputs) {
513       AverageUnitExecutionTime += II->TimeOfUnit;
514     }
515     AverageUnitExecutionTime /= N;
516 
517     bool VanillaSchedule = true;
518     if (Entropic.Enabled) {
519       for (auto II : Inputs) {
520         if (II->NeedsEnergyUpdate && II->Energy != 0.0) {
521           II->NeedsEnergyUpdate = false;
522           II->UpdateEnergy(RareFeatures.size(), Entropic.ScalePerExecTime,
523                            AverageUnitExecutionTime);
524         }
525       }
526 
527       for (size_t i = 0; i < N; i++) {
528 
529         if (Inputs[i]->NumFeatures == 0) {
530           // If the seed doesn't represent any features, assign zero energy.
531           Weights[i] = 0.;
532         } else if (Inputs[i]->NumExecutedMutations / kMaxMutationFactor >
533                    NumExecutedMutations / Inputs.size()) {
534           // If the seed was fuzzed a lot more than average, assign zero energy.
535           Weights[i] = 0.;
536         } else {
537           // Otherwise, simply assign the computed energy.
538           Weights[i] = Inputs[i]->Energy;
539         }
540 
541         // If energy for all seeds is zero, fall back to vanilla schedule.
542         if (Weights[i] > 0.0)
543           VanillaSchedule = false;
544       }
545     }
546 
547     if (VanillaSchedule) {
548       for (size_t i = 0; i < N; i++)
549         Weights[i] =
550             Inputs[i]->NumFeatures
551                 ? static_cast<double>((i + 1) *
552                                       (Inputs[i]->HasFocusFunction ? 1000 : 1))
553                 : 0.;
554     }
555 
556     if (FeatureDebug) {
557       for (size_t i = 0; i < N; i++)
558         Printf("%zd ", Inputs[i]->NumFeatures);
559       Printf("SCORE\n");
560       for (size_t i = 0; i < N; i++)
561         Printf("%f ", Weights[i]);
562       Printf("Weights\n");
563     }
564     CorpusDistribution = std::piecewise_constant_distribution<double>(
565         Intervals.begin(), Intervals.end(), Weights.begin());
566   }
567   std::piecewise_constant_distribution<double> CorpusDistribution;
568 
569   std::vector<double> Intervals;
570   std::vector<double> Weights;
571 
572   std::unordered_set<std::string> Hashes;
573   std::vector<InputInfo *> Inputs;
574 
575   size_t NumAddedFeatures = 0;
576   size_t NumUpdatedFeatures = 0;
577   uint32_t InputSizesPerFeature[kFeatureSetSize];
578   uint32_t SmallestElementPerFeature[kFeatureSetSize];
579 
580   bool DistributionNeedsUpdate = true;
581   uint16_t FreqOfMostAbundantRareFeature = 0;
582   uint16_t GlobalFeatureFreqs[kFeatureSetSize] = {};
583   std::vector<uint32_t> RareFeatures;
584 
585   std::string OutputCorpus;
586 };
587 
588 }  // namespace fuzzer
589 
590 #endif  // LLVM_FUZZER_CORPUS
591