xref: /freebsd/contrib/llvm-project/compiler-rt/lib/dfsan/dfsan_allocator.cpp (revision 069ac18495ad8fde2748bc94b0f80a50250bb01d)
1 //===-- dfsan_allocator.cpp -------------------------- --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of DataflowSanitizer.
10 //
11 // DataflowSanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "dfsan_allocator.h"
15 
16 #include "dfsan.h"
17 #include "dfsan_flags.h"
18 #include "dfsan_thread.h"
19 #include "sanitizer_common/sanitizer_allocator.h"
20 #include "sanitizer_common/sanitizer_allocator_checks.h"
21 #include "sanitizer_common/sanitizer_allocator_interface.h"
22 #include "sanitizer_common/sanitizer_allocator_report.h"
23 #include "sanitizer_common/sanitizer_errno.h"
24 
25 namespace __dfsan {
26 
27 struct Metadata {
28   uptr requested_size;
29 };
30 
31 struct DFsanMapUnmapCallback {
32   void OnMap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
33   void OnMapSecondary(uptr p, uptr size, uptr user_begin,
34                       uptr user_size) const {
35     OnMap(p, size);
36   }
37   void OnUnmap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
38 };
39 
40 #if defined(__aarch64__)
41 const uptr kAllocatorSpace = 0xE00000000000ULL;
42 #else
43 const uptr kAllocatorSpace = 0x700000000000ULL;
44 #endif
45 const uptr kMaxAllowedMallocSize = 8UL << 30;
46 
47 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
48   static const uptr kSpaceBeg = kAllocatorSpace;
49   static const uptr kSpaceSize = 0x40000000000;  // 4T.
50   static const uptr kMetadataSize = sizeof(Metadata);
51   typedef DefaultSizeClassMap SizeClassMap;
52   typedef DFsanMapUnmapCallback MapUnmapCallback;
53   static const uptr kFlags = 0;
54   using AddressSpaceView = LocalAddressSpaceView;
55 };
56 
57 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
58 
59 typedef CombinedAllocator<PrimaryAllocator> Allocator;
60 typedef Allocator::AllocatorCache AllocatorCache;
61 
62 static Allocator allocator;
63 static AllocatorCache fallback_allocator_cache;
64 static StaticSpinMutex fallback_mutex;
65 
66 static uptr max_malloc_size;
67 
68 void dfsan_allocator_init() {
69   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
70   allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
71   if (common_flags()->max_allocation_size_mb)
72     max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
73                           kMaxAllowedMallocSize);
74   else
75     max_malloc_size = kMaxAllowedMallocSize;
76 }
77 
78 AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) {
79   CHECK(ms);
80   CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
81   return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
82 }
83 
84 void DFsanThreadLocalMallocStorage::CommitBack() {
85   allocator.SwallowCache(GetAllocatorCache(this));
86 }
87 
88 static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) {
89   if (size > max_malloc_size) {
90     if (AllocatorMayReturnNull()) {
91       Report("WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n",
92              size);
93       return nullptr;
94     }
95     BufferedStackTrace stack;
96     ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
97   }
98   if (UNLIKELY(IsRssLimitExceeded())) {
99     if (AllocatorMayReturnNull())
100       return nullptr;
101     BufferedStackTrace stack;
102     ReportRssLimitExceeded(&stack);
103   }
104   DFsanThread *t = GetCurrentThread();
105   void *allocated;
106   if (t) {
107     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
108     allocated = allocator.Allocate(cache, size, alignment);
109   } else {
110     SpinMutexLock l(&fallback_mutex);
111     AllocatorCache *cache = &fallback_allocator_cache;
112     allocated = allocator.Allocate(cache, size, alignment);
113   }
114   if (UNLIKELY(!allocated)) {
115     SetAllocatorOutOfMemory();
116     if (AllocatorMayReturnNull())
117       return nullptr;
118     BufferedStackTrace stack;
119     ReportOutOfMemory(size, &stack);
120   }
121   Metadata *meta =
122       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
123   meta->requested_size = size;
124   if (zeroise) {
125     internal_memset(allocated, 0, size);
126     dfsan_set_label(0, allocated, size);
127   } else if (flags().zero_in_malloc) {
128     dfsan_set_label(0, allocated, size);
129   }
130   return allocated;
131 }
132 
133 void dfsan_deallocate(void *p) {
134   CHECK(p);
135   Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
136   uptr size = meta->requested_size;
137   meta->requested_size = 0;
138   if (flags().zero_in_free)
139     dfsan_set_label(0, p, size);
140   DFsanThread *t = GetCurrentThread();
141   if (t) {
142     AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
143     allocator.Deallocate(cache, p);
144   } else {
145     SpinMutexLock l(&fallback_mutex);
146     AllocatorCache *cache = &fallback_allocator_cache;
147     allocator.Deallocate(cache, p);
148   }
149 }
150 
151 void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) {
152   Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(old_p));
153   uptr old_size = meta->requested_size;
154   uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
155   if (new_size <= actually_allocated_size) {
156     // We are not reallocating here.
157     meta->requested_size = new_size;
158     if (new_size > old_size && flags().zero_in_malloc)
159       dfsan_set_label(0, (char *)old_p + old_size, new_size - old_size);
160     return old_p;
161   }
162   uptr memcpy_size = Min(new_size, old_size);
163   void *new_p = DFsanAllocate(new_size, alignment, false /*zeroise*/);
164   if (new_p) {
165     dfsan_copy_memory(new_p, old_p, memcpy_size);
166     dfsan_deallocate(old_p);
167   }
168   return new_p;
169 }
170 
171 void *DFsanCalloc(uptr nmemb, uptr size) {
172   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
173     if (AllocatorMayReturnNull())
174       return nullptr;
175     BufferedStackTrace stack;
176     ReportCallocOverflow(nmemb, size, &stack);
177   }
178   return DFsanAllocate(nmemb * size, sizeof(u64), true /*zeroise*/);
179 }
180 
181 static const void *AllocationBegin(const void *p) {
182   if (!p)
183     return nullptr;
184   void *beg = allocator.GetBlockBegin(p);
185   if (!beg)
186     return nullptr;
187   Metadata *b = (Metadata *)allocator.GetMetaData(beg);
188   if (!b)
189     return nullptr;
190   if (b->requested_size == 0)
191     return nullptr;
192   return (const void *)beg;
193 }
194 
195 static uptr AllocationSize(const void *p) {
196   if (!p)
197     return 0;
198   const void *beg = allocator.GetBlockBegin(p);
199   if (beg != p)
200     return 0;
201   Metadata *b = (Metadata *)allocator.GetMetaData(p);
202   return b->requested_size;
203 }
204 
205 static uptr AllocationSizeFast(const void *p) {
206   return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
207 }
208 
209 void *dfsan_malloc(uptr size) {
210   return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
211 }
212 
213 void *dfsan_calloc(uptr nmemb, uptr size) {
214   return SetErrnoOnNull(DFsanCalloc(nmemb, size));
215 }
216 
217 void *dfsan_realloc(void *ptr, uptr size) {
218   if (!ptr)
219     return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
220   if (size == 0) {
221     dfsan_deallocate(ptr);
222     return nullptr;
223   }
224   return SetErrnoOnNull(DFsanReallocate(ptr, size, sizeof(u64)));
225 }
226 
227 void *dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) {
228   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
229     errno = errno_ENOMEM;
230     if (AllocatorMayReturnNull())
231       return nullptr;
232     BufferedStackTrace stack;
233     ReportReallocArrayOverflow(nmemb, size, &stack);
234   }
235   return dfsan_realloc(ptr, nmemb * size);
236 }
237 
238 void *dfsan_valloc(uptr size) {
239   return SetErrnoOnNull(
240       DFsanAllocate(size, GetPageSizeCached(), false /*zeroise*/));
241 }
242 
243 void *dfsan_pvalloc(uptr size) {
244   uptr PageSize = GetPageSizeCached();
245   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
246     errno = errno_ENOMEM;
247     if (AllocatorMayReturnNull())
248       return nullptr;
249     BufferedStackTrace stack;
250     ReportPvallocOverflow(size, &stack);
251   }
252   // pvalloc(0) should allocate one page.
253   size = size ? RoundUpTo(size, PageSize) : PageSize;
254   return SetErrnoOnNull(DFsanAllocate(size, PageSize, false /*zeroise*/));
255 }
256 
257 void *dfsan_aligned_alloc(uptr alignment, uptr size) {
258   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
259     errno = errno_EINVAL;
260     if (AllocatorMayReturnNull())
261       return nullptr;
262     BufferedStackTrace stack;
263     ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
264   }
265   return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
266 }
267 
268 void *dfsan_memalign(uptr alignment, uptr size) {
269   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
270     errno = errno_EINVAL;
271     if (AllocatorMayReturnNull())
272       return nullptr;
273     BufferedStackTrace stack;
274     ReportInvalidAllocationAlignment(alignment, &stack);
275   }
276   return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
277 }
278 
279 int dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) {
280   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
281     if (AllocatorMayReturnNull())
282       return errno_EINVAL;
283     BufferedStackTrace stack;
284     ReportInvalidPosixMemalignAlignment(alignment, &stack);
285   }
286   void *ptr = DFsanAllocate(size, alignment, false /*zeroise*/);
287   if (UNLIKELY(!ptr))
288     // OOM error is already taken care of by DFsanAllocate.
289     return errno_ENOMEM;
290   CHECK(IsAligned((uptr)ptr, alignment));
291   *memptr = ptr;
292   return 0;
293 }
294 
295 }  // namespace __dfsan
296 
297 using namespace __dfsan;
298 
299 uptr __sanitizer_get_current_allocated_bytes() {
300   uptr stats[AllocatorStatCount];
301   allocator.GetStats(stats);
302   return stats[AllocatorStatAllocated];
303 }
304 
305 uptr __sanitizer_get_heap_size() {
306   uptr stats[AllocatorStatCount];
307   allocator.GetStats(stats);
308   return stats[AllocatorStatMapped];
309 }
310 
311 uptr __sanitizer_get_free_bytes() { return 1; }
312 
313 uptr __sanitizer_get_unmapped_bytes() { return 1; }
314 
315 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
316 
317 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
318 
319 const void *__sanitizer_get_allocated_begin(const void *p) {
320   return AllocationBegin(p);
321 }
322 
323 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
324 
325 uptr __sanitizer_get_allocated_size_fast(const void *p) {
326   DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
327   uptr ret = AllocationSizeFast(p);
328   DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
329   return ret;
330 }
331