xref: /freebsd/contrib/llvm-project/compiler-rt/lib/dfsan/dfsan.cpp (revision c203bd70b5957f85616424b6fa374479372d06e3)
1 //===-- dfsan.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of DataFlowSanitizer.
10 //
11 // DataFlowSanitizer runtime.  This file defines the public interface to
12 // DataFlowSanitizer as well as the definition of certain runtime functions
13 // called automatically by the compiler (specifically the instrumentation pass
14 // in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
15 //
16 // The public interface is defined in include/sanitizer/dfsan_interface.h whose
17 // functions are prefixed dfsan_ while the compiler interface functions are
18 // prefixed __dfsan_.
19 //===----------------------------------------------------------------------===//
20 
21 #include "sanitizer_common/sanitizer_atomic.h"
22 #include "sanitizer_common/sanitizer_common.h"
23 #include "sanitizer_common/sanitizer_file.h"
24 #include "sanitizer_common/sanitizer_flags.h"
25 #include "sanitizer_common/sanitizer_flag_parser.h"
26 #include "sanitizer_common/sanitizer_libc.h"
27 
28 #include "dfsan/dfsan.h"
29 
30 using namespace __dfsan;
31 
32 typedef atomic_uint16_t atomic_dfsan_label;
33 static const dfsan_label kInitializingLabel = -1;
34 
35 static const uptr kNumLabels = 1 << (sizeof(dfsan_label) * 8);
36 
37 static atomic_dfsan_label __dfsan_last_label;
38 static dfsan_label_info __dfsan_label_info[kNumLabels];
39 
40 Flags __dfsan::flags_data;
41 
42 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_retval_tls;
43 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL dfsan_label __dfsan_arg_tls[64];
44 
45 SANITIZER_INTERFACE_ATTRIBUTE uptr __dfsan_shadow_ptr_mask;
46 
47 // On Linux/x86_64, memory is laid out as follows:
48 //
49 // +--------------------+ 0x800000000000 (top of memory)
50 // | application memory |
51 // +--------------------+ 0x700000008000 (kAppAddr)
52 // |                    |
53 // |       unused       |
54 // |                    |
55 // +--------------------+ 0x200200000000 (kUnusedAddr)
56 // |    union table     |
57 // +--------------------+ 0x200000000000 (kUnionTableAddr)
58 // |   shadow memory    |
59 // +--------------------+ 0x000000010000 (kShadowAddr)
60 // | reserved by kernel |
61 // +--------------------+ 0x000000000000
62 //
63 // To derive a shadow memory address from an application memory address,
64 // bits 44-46 are cleared to bring the address into the range
65 // [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
66 // account for the double byte representation of shadow labels and move the
67 // address into the shadow memory range.  See the function shadow_for below.
68 
69 // On Linux/MIPS64, memory is laid out as follows:
70 //
71 // +--------------------+ 0x10000000000 (top of memory)
72 // | application memory |
73 // +--------------------+ 0xF000008000 (kAppAddr)
74 // |                    |
75 // |       unused       |
76 // |                    |
77 // +--------------------+ 0x2200000000 (kUnusedAddr)
78 // |    union table     |
79 // +--------------------+ 0x2000000000 (kUnionTableAddr)
80 // |   shadow memory    |
81 // +--------------------+ 0x0000010000 (kShadowAddr)
82 // | reserved by kernel |
83 // +--------------------+ 0x0000000000
84 
85 // On Linux/AArch64 (39-bit VMA), memory is laid out as follow:
86 //
87 // +--------------------+ 0x8000000000 (top of memory)
88 // | application memory |
89 // +--------------------+ 0x7000008000 (kAppAddr)
90 // |                    |
91 // |       unused       |
92 // |                    |
93 // +--------------------+ 0x1200000000 (kUnusedAddr)
94 // |    union table     |
95 // +--------------------+ 0x1000000000 (kUnionTableAddr)
96 // |   shadow memory    |
97 // +--------------------+ 0x0000010000 (kShadowAddr)
98 // | reserved by kernel |
99 // +--------------------+ 0x0000000000
100 
101 // On Linux/AArch64 (42-bit VMA), memory is laid out as follow:
102 //
103 // +--------------------+ 0x40000000000 (top of memory)
104 // | application memory |
105 // +--------------------+ 0x3ff00008000 (kAppAddr)
106 // |                    |
107 // |       unused       |
108 // |                    |
109 // +--------------------+ 0x1200000000 (kUnusedAddr)
110 // |    union table     |
111 // +--------------------+ 0x8000000000 (kUnionTableAddr)
112 // |   shadow memory    |
113 // +--------------------+ 0x0000010000 (kShadowAddr)
114 // | reserved by kernel |
115 // +--------------------+ 0x0000000000
116 
117 // On Linux/AArch64 (48-bit VMA), memory is laid out as follow:
118 //
119 // +--------------------+ 0x1000000000000 (top of memory)
120 // | application memory |
121 // +--------------------+ 0xffff00008000 (kAppAddr)
122 // |       unused       |
123 // +--------------------+ 0xaaaab0000000 (top of PIE address)
124 // | application PIE    |
125 // +--------------------+ 0xaaaaa0000000 (top of PIE address)
126 // |                    |
127 // |       unused       |
128 // |                    |
129 // +--------------------+ 0x1200000000 (kUnusedAddr)
130 // |    union table     |
131 // +--------------------+ 0x8000000000 (kUnionTableAddr)
132 // |   shadow memory    |
133 // +--------------------+ 0x0000010000 (kShadowAddr)
134 // | reserved by kernel |
135 // +--------------------+ 0x0000000000
136 
137 typedef atomic_dfsan_label dfsan_union_table_t[kNumLabels][kNumLabels];
138 
139 #ifdef DFSAN_RUNTIME_VMA
140 // Runtime detected VMA size.
141 int __dfsan::vmaSize;
142 #endif
143 
144 static uptr UnusedAddr() {
145   return MappingArchImpl<MAPPING_UNION_TABLE_ADDR>()
146          + sizeof(dfsan_union_table_t);
147 }
148 
149 static atomic_dfsan_label *union_table(dfsan_label l1, dfsan_label l2) {
150   return &(*(dfsan_union_table_t *) UnionTableAddr())[l1][l2];
151 }
152 
153 // Checks we do not run out of labels.
154 static void dfsan_check_label(dfsan_label label) {
155   if (label == kInitializingLabel) {
156     Report("FATAL: DataFlowSanitizer: out of labels\n");
157     Die();
158   }
159 }
160 
161 // Resolves the union of two unequal labels.  Nonequality is a precondition for
162 // this function (the instrumentation pass inlines the equality test).
163 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
164 dfsan_label __dfsan_union(dfsan_label l1, dfsan_label l2) {
165   if (flags().fast16labels)
166     return l1 | l2;
167   DCHECK_NE(l1, l2);
168 
169   if (l1 == 0)
170     return l2;
171   if (l2 == 0)
172     return l1;
173 
174   if (l1 > l2)
175     Swap(l1, l2);
176 
177   atomic_dfsan_label *table_ent = union_table(l1, l2);
178   // We need to deal with the case where two threads concurrently request
179   // a union of the same pair of labels.  If the table entry is uninitialized,
180   // (i.e. 0) use a compare-exchange to set the entry to kInitializingLabel
181   // (i.e. -1) to mark that we are initializing it.
182   dfsan_label label = 0;
183   if (atomic_compare_exchange_strong(table_ent, &label, kInitializingLabel,
184                                      memory_order_acquire)) {
185     // Check whether l2 subsumes l1.  We don't need to check whether l1
186     // subsumes l2 because we are guaranteed here that l1 < l2, and (at least
187     // in the cases we are interested in) a label may only subsume labels
188     // created earlier (i.e. with a lower numerical value).
189     if (__dfsan_label_info[l2].l1 == l1 ||
190         __dfsan_label_info[l2].l2 == l1) {
191       label = l2;
192     } else {
193       label =
194         atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
195       dfsan_check_label(label);
196       __dfsan_label_info[label].l1 = l1;
197       __dfsan_label_info[label].l2 = l2;
198     }
199     atomic_store(table_ent, label, memory_order_release);
200   } else if (label == kInitializingLabel) {
201     // Another thread is initializing the entry.  Wait until it is finished.
202     do {
203       internal_sched_yield();
204       label = atomic_load(table_ent, memory_order_acquire);
205     } while (label == kInitializingLabel);
206   }
207   return label;
208 }
209 
210 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
211 dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
212   dfsan_label label = ls[0];
213   for (uptr i = 1; i != n; ++i) {
214     dfsan_label next_label = ls[i];
215     if (label != next_label)
216       label = __dfsan_union(label, next_label);
217   }
218   return label;
219 }
220 
221 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
222 void __dfsan_unimplemented(char *fname) {
223   if (flags().warn_unimplemented)
224     Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
225            fname);
226 }
227 
228 // Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
229 // to try to figure out where labels are being introduced in a nominally
230 // label-free program.
231 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
232   if (flags().warn_nonzero_labels)
233     Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
234 }
235 
236 // Indirect call to an uninstrumented vararg function. We don't have a way of
237 // handling these at the moment.
238 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
239 __dfsan_vararg_wrapper(const char *fname) {
240   Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
241          "function %s\n", fname);
242   Die();
243 }
244 
245 // Like __dfsan_union, but for use from the client or custom functions.  Hence
246 // the equality comparison is done here before calling __dfsan_union.
247 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
248 dfsan_union(dfsan_label l1, dfsan_label l2) {
249   if (l1 == l2)
250     return l1;
251   return __dfsan_union(l1, l2);
252 }
253 
254 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
255 dfsan_label dfsan_create_label(const char *desc, void *userdata) {
256   dfsan_label label =
257     atomic_fetch_add(&__dfsan_last_label, 1, memory_order_relaxed) + 1;
258   dfsan_check_label(label);
259   __dfsan_label_info[label].l1 = __dfsan_label_info[label].l2 = 0;
260   __dfsan_label_info[label].desc = desc;
261   __dfsan_label_info[label].userdata = userdata;
262   return label;
263 }
264 
265 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
266 void __dfsan_set_label(dfsan_label label, void *addr, uptr size) {
267   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp) {
268     // Don't write the label if it is already the value we need it to be.
269     // In a program where most addresses are not labeled, it is common that
270     // a page of shadow memory is entirely zeroed.  The Linux copy-on-write
271     // implementation will share all of the zeroed pages, making a copy of a
272     // page when any value is written.  The un-sharing will happen even if
273     // the value written does not change the value in memory.  Avoiding the
274     // write when both |label| and |*labelp| are zero dramatically reduces
275     // the amount of real memory used by large programs.
276     if (label == *labelp)
277       continue;
278 
279     *labelp = label;
280   }
281 }
282 
283 SANITIZER_INTERFACE_ATTRIBUTE
284 void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
285   __dfsan_set_label(label, addr, size);
286 }
287 
288 SANITIZER_INTERFACE_ATTRIBUTE
289 void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
290   for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
291     if (*labelp != label)
292       *labelp = __dfsan_union(*labelp, label);
293 }
294 
295 // Unlike the other dfsan interface functions the behavior of this function
296 // depends on the label of one of its arguments.  Hence it is implemented as a
297 // custom function.
298 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
299 __dfsw_dfsan_get_label(long data, dfsan_label data_label,
300                        dfsan_label *ret_label) {
301   *ret_label = 0;
302   return data_label;
303 }
304 
305 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
306 dfsan_read_label(const void *addr, uptr size) {
307   if (size == 0)
308     return 0;
309   return __dfsan_union_load(shadow_for(addr), size);
310 }
311 
312 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
313 const struct dfsan_label_info *dfsan_get_label_info(dfsan_label label) {
314   return &__dfsan_label_info[label];
315 }
316 
317 extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
318 dfsan_has_label(dfsan_label label, dfsan_label elem) {
319   if (label == elem)
320     return true;
321   const dfsan_label_info *info = dfsan_get_label_info(label);
322   if (info->l1 != 0) {
323     return dfsan_has_label(info->l1, elem) || dfsan_has_label(info->l2, elem);
324   } else {
325     return false;
326   }
327 }
328 
329 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
330 dfsan_has_label_with_desc(dfsan_label label, const char *desc) {
331   const dfsan_label_info *info = dfsan_get_label_info(label);
332   if (info->l1 != 0) {
333     return dfsan_has_label_with_desc(info->l1, desc) ||
334            dfsan_has_label_with_desc(info->l2, desc);
335   } else {
336     return internal_strcmp(desc, info->desc) == 0;
337   }
338 }
339 
340 extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
341 dfsan_get_label_count(void) {
342   dfsan_label max_label_allocated =
343       atomic_load(&__dfsan_last_label, memory_order_relaxed);
344 
345   return static_cast<uptr>(max_label_allocated);
346 }
347 
348 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
349 dfsan_dump_labels(int fd) {
350   dfsan_label last_label =
351       atomic_load(&__dfsan_last_label, memory_order_relaxed);
352 
353   for (uptr l = 1; l <= last_label; ++l) {
354     char buf[64];
355     internal_snprintf(buf, sizeof(buf), "%u %u %u ", l,
356                       __dfsan_label_info[l].l1, __dfsan_label_info[l].l2);
357     WriteToFile(fd, buf, internal_strlen(buf));
358     if (__dfsan_label_info[l].l1 == 0 && __dfsan_label_info[l].desc) {
359       WriteToFile(fd, __dfsan_label_info[l].desc,
360                   internal_strlen(__dfsan_label_info[l].desc));
361     }
362     WriteToFile(fd, "\n", 1);
363   }
364 }
365 
366 void Flags::SetDefaults() {
367 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
368 #include "dfsan_flags.inc"
369 #undef DFSAN_FLAG
370 }
371 
372 static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
373 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
374   RegisterFlag(parser, #Name, Description, &f->Name);
375 #include "dfsan_flags.inc"
376 #undef DFSAN_FLAG
377 }
378 
379 static void InitializeFlags() {
380   SetCommonFlagsDefaults();
381   flags().SetDefaults();
382 
383   FlagParser parser;
384   RegisterCommonFlags(&parser);
385   RegisterDfsanFlags(&parser, &flags());
386   parser.ParseStringFromEnv("DFSAN_OPTIONS");
387   InitializeCommonFlags();
388   if (Verbosity()) ReportUnrecognizedFlags();
389   if (common_flags()->help) parser.PrintFlagDescriptions();
390 }
391 
392 static void InitializePlatformEarly() {
393   AvoidCVE_2016_2143();
394 #ifdef DFSAN_RUNTIME_VMA
395   __dfsan::vmaSize =
396     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
397   if (__dfsan::vmaSize == 39 || __dfsan::vmaSize == 42 ||
398       __dfsan::vmaSize == 48) {
399     __dfsan_shadow_ptr_mask = ShadowMask();
400   } else {
401     Printf("FATAL: DataFlowSanitizer: unsupported VMA range\n");
402     Printf("FATAL: Found %d - Supported 39, 42, and 48\n", __dfsan::vmaSize);
403     Die();
404   }
405 #endif
406 }
407 
408 static void dfsan_fini() {
409   if (internal_strcmp(flags().dump_labels_at_exit, "") != 0) {
410     fd_t fd = OpenFile(flags().dump_labels_at_exit, WrOnly);
411     if (fd == kInvalidFd) {
412       Report("WARNING: DataFlowSanitizer: unable to open output file %s\n",
413              flags().dump_labels_at_exit);
414       return;
415     }
416 
417     Report("INFO: DataFlowSanitizer: dumping labels to %s\n",
418            flags().dump_labels_at_exit);
419     dfsan_dump_labels(fd);
420     CloseFile(fd);
421   }
422 }
423 
424 extern "C" void dfsan_flush() {
425   UnmapOrDie((void*)ShadowAddr(), UnusedAddr() - ShadowAddr());
426   if (!MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr()))
427     Die();
428 }
429 
430 static void dfsan_init(int argc, char **argv, char **envp) {
431   InitializeFlags();
432 
433   ::InitializePlatformEarly();
434 
435   if (!MmapFixedNoReserve(ShadowAddr(), UnusedAddr() - ShadowAddr()))
436     Die();
437 
438   // Protect the region of memory we don't use, to preserve the one-to-one
439   // mapping from application to shadow memory. But if ASLR is disabled, Linux
440   // will load our executable in the middle of our unused region. This mostly
441   // works so long as the program doesn't use too much memory. We support this
442   // case by disabling memory protection when ASLR is disabled.
443   uptr init_addr = (uptr)&dfsan_init;
444   if (!(init_addr >= UnusedAddr() && init_addr < AppAddr()))
445     MmapFixedNoAccess(UnusedAddr(), AppAddr() - UnusedAddr());
446 
447   InitializeInterceptors();
448 
449   // Register the fini callback to run when the program terminates successfully
450   // or it is killed by the runtime.
451   Atexit(dfsan_fini);
452   AddDieCallback(dfsan_fini);
453 
454   __dfsan_label_info[kInitializingLabel].desc = "<init label>";
455 }
456 
457 #if SANITIZER_CAN_USE_PREINIT_ARRAY
458 __attribute__((section(".preinit_array"), used))
459 static void (*dfsan_init_ptr)(int, char **, char **) = dfsan_init;
460 #endif
461