1 //===-------- cfi.cpp -----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the runtime support for the cross-DSO CFI. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <assert.h> 14 #include <elf.h> 15 16 #include "sanitizer_common/sanitizer_common.h" 17 #if SANITIZER_FREEBSD 18 #include <sys/link_elf.h> 19 #endif 20 #include <link.h> 21 #include <string.h> 22 #include <stdlib.h> 23 #include <sys/mman.h> 24 25 #if SANITIZER_LINUX 26 typedef ElfW(Phdr) Elf_Phdr; 27 typedef ElfW(Ehdr) Elf_Ehdr; 28 typedef ElfW(Addr) Elf_Addr; 29 typedef ElfW(Sym) Elf_Sym; 30 typedef ElfW(Dyn) Elf_Dyn; 31 #elif SANITIZER_FREEBSD 32 #if SANITIZER_WORDSIZE == 64 33 #define ElfW64_Dyn Elf_Dyn 34 #define ElfW64_Sym Elf_Sym 35 #else 36 #define ElfW32_Dyn Elf_Dyn 37 #define ElfW32_Sym Elf_Sym 38 #endif 39 #endif 40 41 #include "interception/interception.h" 42 #include "sanitizer_common/sanitizer_flag_parser.h" 43 #include "ubsan/ubsan_init.h" 44 #include "ubsan/ubsan_flags.h" 45 46 #ifdef CFI_ENABLE_DIAG 47 #include "ubsan/ubsan_handlers.h" 48 #endif 49 50 using namespace __sanitizer; 51 52 namespace __cfi { 53 54 #define kCfiShadowLimitsStorageSize 4096 // 1 page 55 // Lets hope that the data segment is mapped with 4K pages. 56 // The pointer to the cfi shadow region is stored at the start of this page. 57 // The rest of the page is unused and re-mapped read-only. 58 static union { 59 char space[kCfiShadowLimitsStorageSize]; 60 struct { 61 uptr start; 62 uptr size; 63 } limits; 64 } cfi_shadow_limits_storage 65 __attribute__((aligned(kCfiShadowLimitsStorageSize))); 66 static constexpr uptr kShadowGranularity = 12; 67 static constexpr uptr kShadowAlign = 1UL << kShadowGranularity; // 4096 68 69 static constexpr uint16_t kInvalidShadow = 0; 70 static constexpr uint16_t kUncheckedShadow = 0xFFFFU; 71 72 // Get the start address of the CFI shadow region. 73 uptr GetShadow() { 74 return cfi_shadow_limits_storage.limits.start; 75 } 76 77 uptr GetShadowSize() { 78 return cfi_shadow_limits_storage.limits.size; 79 } 80 81 // This will only work while the shadow is not allocated. 82 void SetShadowSize(uptr size) { 83 cfi_shadow_limits_storage.limits.size = size; 84 } 85 86 uptr MemToShadowOffset(uptr x) { 87 return (x >> kShadowGranularity) << 1; 88 } 89 90 uint16_t *MemToShadow(uptr x, uptr shadow_base) { 91 return (uint16_t *)(shadow_base + MemToShadowOffset(x)); 92 } 93 94 typedef int (*CFICheckFn)(u64, void *, void *); 95 96 // This class reads and decodes the shadow contents. 97 class ShadowValue { 98 uptr addr; 99 uint16_t v; 100 explicit ShadowValue(uptr addr, uint16_t v) : addr(addr), v(v) {} 101 102 public: 103 bool is_invalid() const { return v == kInvalidShadow; } 104 105 bool is_unchecked() const { return v == kUncheckedShadow; } 106 107 CFICheckFn get_cfi_check() const { 108 assert(!is_invalid() && !is_unchecked()); 109 uptr aligned_addr = addr & ~(kShadowAlign - 1); 110 uptr p = aligned_addr - (((uptr)v - 1) << kShadowGranularity); 111 return reinterpret_cast<CFICheckFn>(p); 112 } 113 114 // Load a shadow value for the given application memory address. 115 static const ShadowValue load(uptr addr) { 116 uptr shadow_base = GetShadow(); 117 uptr shadow_offset = MemToShadowOffset(addr); 118 if (shadow_offset > GetShadowSize()) 119 return ShadowValue(addr, kInvalidShadow); 120 else 121 return ShadowValue( 122 addr, *reinterpret_cast<uint16_t *>(shadow_base + shadow_offset)); 123 } 124 }; 125 126 class ShadowBuilder { 127 uptr shadow_; 128 129 public: 130 // Allocate a new empty shadow (for the entire address space) on the side. 131 void Start(); 132 // Mark the given address range as unchecked. 133 // This is used for uninstrumented libraries like libc. 134 // Any CFI check with a target in that range will pass. 135 void AddUnchecked(uptr begin, uptr end); 136 // Mark the given address range as belonging to a library with the given 137 // cfi_check function. 138 void Add(uptr begin, uptr end, uptr cfi_check); 139 // Finish shadow construction. Atomically switch the current active shadow 140 // region with the newly constructed one and deallocate the former. 141 void Install(); 142 }; 143 144 void ShadowBuilder::Start() { 145 shadow_ = (uptr)MmapNoReserveOrDie(GetShadowSize(), "CFI shadow"); 146 VReport(1, "CFI: shadow at %zx .. %zx\n", shadow_, shadow_ + GetShadowSize()); 147 } 148 149 void ShadowBuilder::AddUnchecked(uptr begin, uptr end) { 150 uint16_t *shadow_begin = MemToShadow(begin, shadow_); 151 uint16_t *shadow_end = MemToShadow(end - 1, shadow_) + 1; 152 // memset takes a byte, so our unchecked shadow value requires both bytes to 153 // be the same. Make sure we're ok during compilation. 154 static_assert((kUncheckedShadow & 0xff) == ((kUncheckedShadow >> 8) & 0xff), 155 "Both bytes of the 16-bit value must be the same!"); 156 memset(shadow_begin, kUncheckedShadow & 0xff, 157 (shadow_end - shadow_begin) * sizeof(*shadow_begin)); 158 } 159 160 void ShadowBuilder::Add(uptr begin, uptr end, uptr cfi_check) { 161 assert((cfi_check & (kShadowAlign - 1)) == 0); 162 163 // Don't fill anything below cfi_check. We can not represent those addresses 164 // in the shadow, and must make sure at codegen to place all valid call 165 // targets above cfi_check. 166 begin = Max(begin, cfi_check); 167 uint16_t *s = MemToShadow(begin, shadow_); 168 uint16_t *s_end = MemToShadow(end - 1, shadow_) + 1; 169 uint16_t sv = ((begin - cfi_check) >> kShadowGranularity) + 1; 170 for (; s < s_end; s++, sv++) 171 *s = sv; 172 } 173 174 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD 175 void ShadowBuilder::Install() { 176 MprotectReadOnly(shadow_, GetShadowSize()); 177 uptr main_shadow = GetShadow(); 178 if (main_shadow) { 179 // Update. 180 #if SANITIZER_LINUX 181 void *res = mremap((void *)shadow_, GetShadowSize(), GetShadowSize(), 182 MREMAP_MAYMOVE | MREMAP_FIXED, (void *)main_shadow); 183 CHECK(res != MAP_FAILED); 184 #elif SANITIZER_NETBSD 185 void *res = mremap((void *)shadow_, GetShadowSize(), (void *)main_shadow, 186 GetShadowSize(), MAP_FIXED); 187 CHECK(res != MAP_FAILED); 188 #else 189 void *res = MmapFixedOrDie(shadow_, GetShadowSize(), "cfi shadow"); 190 CHECK(res != MAP_FAILED); 191 ::memcpy(&shadow_, &main_shadow, GetShadowSize()); 192 #endif 193 } else { 194 // Initial setup. 195 CHECK_EQ(kCfiShadowLimitsStorageSize, GetPageSizeCached()); 196 CHECK_EQ(0, GetShadow()); 197 cfi_shadow_limits_storage.limits.start = shadow_; 198 MprotectReadOnly((uptr)&cfi_shadow_limits_storage, 199 sizeof(cfi_shadow_limits_storage)); 200 CHECK_EQ(shadow_, GetShadow()); 201 } 202 } 203 #else 204 #error not implemented 205 #endif 206 207 // This is a workaround for a glibc bug: 208 // https://sourceware.org/bugzilla/show_bug.cgi?id=15199 209 // Other platforms can, hopefully, just do 210 // dlopen(RTLD_NOLOAD | RTLD_LAZY) 211 // dlsym("__cfi_check"). 212 uptr find_cfi_check_in_dso(dl_phdr_info *info) { 213 const Elf_Dyn *dynamic = nullptr; 214 for (int i = 0; i < info->dlpi_phnum; ++i) { 215 if (info->dlpi_phdr[i].p_type == PT_DYNAMIC) { 216 dynamic = 217 (const Elf_Dyn *)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr); 218 break; 219 } 220 } 221 if (!dynamic) return 0; 222 uptr strtab = 0, symtab = 0, strsz = 0; 223 for (const Elf_Dyn *p = dynamic; p->d_tag != PT_NULL; ++p) { 224 if (p->d_tag == DT_SYMTAB) 225 symtab = p->d_un.d_ptr; 226 else if (p->d_tag == DT_STRTAB) 227 strtab = p->d_un.d_ptr; 228 else if (p->d_tag == DT_STRSZ) 229 strsz = p->d_un.d_ptr; 230 } 231 232 if (symtab > strtab) { 233 VReport(1, "Can not handle: symtab > strtab (%p > %zx)\n", symtab, strtab); 234 return 0; 235 } 236 237 // Verify that strtab and symtab are inside of the same LOAD segment. 238 // This excludes VDSO, which has (very high) bogus strtab and symtab pointers. 239 int phdr_idx; 240 for (phdr_idx = 0; phdr_idx < info->dlpi_phnum; phdr_idx++) { 241 const Elf_Phdr *phdr = &info->dlpi_phdr[phdr_idx]; 242 if (phdr->p_type == PT_LOAD) { 243 uptr beg = info->dlpi_addr + phdr->p_vaddr; 244 uptr end = beg + phdr->p_memsz; 245 if (strtab >= beg && strtab + strsz < end && symtab >= beg && 246 symtab < end) 247 break; 248 } 249 } 250 if (phdr_idx == info->dlpi_phnum) { 251 // Nope, either different segments or just bogus pointers. 252 // Can not handle this. 253 VReport(1, "Can not handle: symtab %p, strtab %zx\n", symtab, strtab); 254 return 0; 255 } 256 257 for (const Elf_Sym *p = (const Elf_Sym *)symtab; (Elf_Addr)p < strtab; 258 ++p) { 259 // There is no reliable way to find the end of the symbol table. In 260 // lld-produces files, there are other sections between symtab and strtab. 261 // Stop looking when the symbol name is not inside strtab. 262 if (p->st_name >= strsz) break; 263 char *name = (char*)(strtab + p->st_name); 264 if (strcmp(name, "__cfi_check") == 0) { 265 assert(p->st_info == ELF32_ST_INFO(STB_GLOBAL, STT_FUNC) || 266 p->st_info == ELF32_ST_INFO(STB_WEAK, STT_FUNC)); 267 uptr addr = info->dlpi_addr + p->st_value; 268 return addr; 269 } 270 } 271 return 0; 272 } 273 274 int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *data) { 275 uptr cfi_check = find_cfi_check_in_dso(info); 276 if (cfi_check) 277 VReport(1, "Module '%s' __cfi_check %zx\n", info->dlpi_name, cfi_check); 278 279 ShadowBuilder *b = reinterpret_cast<ShadowBuilder *>(data); 280 281 for (int i = 0; i < info->dlpi_phnum; i++) { 282 const Elf_Phdr *phdr = &info->dlpi_phdr[i]; 283 if (phdr->p_type == PT_LOAD) { 284 // Jump tables are in the executable segment. 285 // VTables are in the non-executable one. 286 // Need to fill shadow for both. 287 // FIXME: reject writable if vtables are in the r/o segment. Depend on 288 // PT_RELRO? 289 uptr cur_beg = info->dlpi_addr + phdr->p_vaddr; 290 uptr cur_end = cur_beg + phdr->p_memsz; 291 if (cfi_check) { 292 VReport(1, " %zx .. %zx\n", cur_beg, cur_end); 293 b->Add(cur_beg, cur_end, cfi_check); 294 } else { 295 b->AddUnchecked(cur_beg, cur_end); 296 } 297 } 298 } 299 return 0; 300 } 301 302 // Init or update shadow for the current set of loaded libraries. 303 void UpdateShadow() { 304 ShadowBuilder b; 305 b.Start(); 306 dl_iterate_phdr(dl_iterate_phdr_cb, &b); 307 b.Install(); 308 } 309 310 void InitShadow() { 311 CHECK_EQ(0, GetShadow()); 312 CHECK_EQ(0, GetShadowSize()); 313 314 uptr vma = GetMaxUserVirtualAddress(); 315 // Shadow is 2 -> 2**kShadowGranularity. 316 SetShadowSize((vma >> (kShadowGranularity - 1)) + 1); 317 VReport(1, "CFI: VMA size %zx, shadow size %zx\n", vma, GetShadowSize()); 318 319 UpdateShadow(); 320 } 321 322 THREADLOCAL int in_loader; 323 BlockingMutex shadow_update_lock(LINKER_INITIALIZED); 324 325 void EnterLoader() NO_THREAD_SAFETY_ANALYSIS { 326 if (in_loader == 0) { 327 shadow_update_lock.Lock(); 328 } 329 ++in_loader; 330 } 331 332 void ExitLoader() NO_THREAD_SAFETY_ANALYSIS { 333 CHECK(in_loader > 0); 334 --in_loader; 335 UpdateShadow(); 336 if (in_loader == 0) { 337 shadow_update_lock.Unlock(); 338 } 339 } 340 341 ALWAYS_INLINE void CfiSlowPathCommon(u64 CallSiteTypeId, void *Ptr, 342 void *DiagData) { 343 uptr Addr = (uptr)Ptr; 344 VReport(3, "__cfi_slowpath: %llx, %p\n", CallSiteTypeId, Ptr); 345 ShadowValue sv = ShadowValue::load(Addr); 346 if (sv.is_invalid()) { 347 VReport(1, "CFI: invalid memory region for a check target: %p\n", Ptr); 348 #ifdef CFI_ENABLE_DIAG 349 if (DiagData) { 350 __ubsan_handle_cfi_check_fail( 351 reinterpret_cast<__ubsan::CFICheckFailData *>(DiagData), Addr, false); 352 return; 353 } 354 #endif 355 Trap(); 356 } 357 if (sv.is_unchecked()) { 358 VReport(2, "CFI: unchecked call (shadow=FFFF): %p\n", Ptr); 359 return; 360 } 361 CFICheckFn cfi_check = sv.get_cfi_check(); 362 VReport(2, "__cfi_check at %p\n", cfi_check); 363 cfi_check(CallSiteTypeId, Ptr, DiagData); 364 } 365 366 void InitializeFlags() { 367 SetCommonFlagsDefaults(); 368 #ifdef CFI_ENABLE_DIAG 369 __ubsan::Flags *uf = __ubsan::flags(); 370 uf->SetDefaults(); 371 #endif 372 373 FlagParser cfi_parser; 374 RegisterCommonFlags(&cfi_parser); 375 cfi_parser.ParseStringFromEnv("CFI_OPTIONS"); 376 377 #ifdef CFI_ENABLE_DIAG 378 FlagParser ubsan_parser; 379 __ubsan::RegisterUbsanFlags(&ubsan_parser, uf); 380 RegisterCommonFlags(&ubsan_parser); 381 382 const char *ubsan_default_options = __ubsan_default_options(); 383 ubsan_parser.ParseString(ubsan_default_options); 384 ubsan_parser.ParseStringFromEnv("UBSAN_OPTIONS"); 385 #endif 386 387 InitializeCommonFlags(); 388 389 if (Verbosity()) 390 ReportUnrecognizedFlags(); 391 392 if (common_flags()->help) { 393 cfi_parser.PrintFlagDescriptions(); 394 } 395 } 396 397 } // namespace __cfi 398 399 using namespace __cfi; 400 401 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void 402 __cfi_slowpath(u64 CallSiteTypeId, void *Ptr) { 403 CfiSlowPathCommon(CallSiteTypeId, Ptr, nullptr); 404 } 405 406 #ifdef CFI_ENABLE_DIAG 407 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void 408 __cfi_slowpath_diag(u64 CallSiteTypeId, void *Ptr, void *DiagData) { 409 CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData); 410 } 411 #endif 412 413 static void EnsureInterceptorsInitialized(); 414 415 // Setup shadow for dlopen()ed libraries. 416 // The actual shadow setup happens after dlopen() returns, which means that 417 // a library can not be a target of any CFI checks while its constructors are 418 // running. It's unclear how to fix this without some extra help from libc. 419 // In glibc, mmap inside dlopen is not interceptable. 420 // Maybe a seccomp-bpf filter? 421 // We could insert a high-priority constructor into the library, but that would 422 // not help with the uninstrumented libraries. 423 INTERCEPTOR(void*, dlopen, const char *filename, int flag) { 424 EnsureInterceptorsInitialized(); 425 EnterLoader(); 426 void *handle = REAL(dlopen)(filename, flag); 427 ExitLoader(); 428 return handle; 429 } 430 431 INTERCEPTOR(int, dlclose, void *handle) { 432 EnsureInterceptorsInitialized(); 433 EnterLoader(); 434 int res = REAL(dlclose)(handle); 435 ExitLoader(); 436 return res; 437 } 438 439 static BlockingMutex interceptor_init_lock(LINKER_INITIALIZED); 440 static bool interceptors_inited = false; 441 442 static void EnsureInterceptorsInitialized() { 443 BlockingMutexLock lock(&interceptor_init_lock); 444 if (interceptors_inited) 445 return; 446 447 INTERCEPT_FUNCTION(dlopen); 448 INTERCEPT_FUNCTION(dlclose); 449 450 interceptors_inited = true; 451 } 452 453 extern "C" SANITIZER_INTERFACE_ATTRIBUTE 454 #if !SANITIZER_CAN_USE_PREINIT_ARRAY 455 // On ELF platforms, the constructor is invoked using .preinit_array (see below) 456 __attribute__((constructor(0))) 457 #endif 458 void __cfi_init() { 459 SanitizerToolName = "CFI"; 460 InitializeFlags(); 461 InitShadow(); 462 463 #ifdef CFI_ENABLE_DIAG 464 __ubsan::InitAsPlugin(); 465 #endif 466 } 467 468 #if SANITIZER_CAN_USE_PREINIT_ARRAY 469 // On ELF platforms, run cfi initialization before any other constructors. 470 // On other platforms we use the constructor attribute to arrange to run our 471 // initialization early. 472 extern "C" { 473 __attribute__((section(".preinit_array"), 474 used)) void (*__cfi_preinit)(void) = __cfi_init; 475 } 476 #endif 477