xref: /freebsd/contrib/llvm-project/compiler-rt/lib/cfi/cfi.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===-------- cfi.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the runtime support for the cross-DSO CFI.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <assert.h>
14 #include <elf.h>
15 
16 #include "sanitizer_common/sanitizer_common.h"
17 #if SANITIZER_FREEBSD
18 #include <sys/link_elf.h>
19 #endif
20 #include <link.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <sys/mman.h>
24 
25 #if SANITIZER_LINUX
26 typedef ElfW(Phdr) Elf_Phdr;
27 typedef ElfW(Ehdr) Elf_Ehdr;
28 typedef ElfW(Addr) Elf_Addr;
29 typedef ElfW(Sym) Elf_Sym;
30 typedef ElfW(Dyn) Elf_Dyn;
31 #elif SANITIZER_FREEBSD
32 #if SANITIZER_WORDSIZE == 64
33 #define ElfW64_Dyn Elf_Dyn
34 #define ElfW64_Sym Elf_Sym
35 #else
36 #define ElfW32_Dyn Elf_Dyn
37 #define ElfW32_Sym Elf_Sym
38 #endif
39 #endif
40 
41 #include "interception/interception.h"
42 #include "sanitizer_common/sanitizer_flag_parser.h"
43 #include "ubsan/ubsan_init.h"
44 #include "ubsan/ubsan_flags.h"
45 
46 #ifdef CFI_ENABLE_DIAG
47 #include "ubsan/ubsan_handlers.h"
48 #endif
49 
50 using namespace __sanitizer;
51 
52 namespace __cfi {
53 
54 #if SANITIZER_LOONGARCH64
55 #define kCfiShadowLimitsStorageSize 16384 // 16KiB on loongarch64 per page
56 #else
57 #define kCfiShadowLimitsStorageSize 4096 // 1 page
58 #endif
59 // Lets hope that the data segment is mapped with 4K pages.
60 // The pointer to the cfi shadow region is stored at the start of this page.
61 // The rest of the page is unused and re-mapped read-only.
62 static union {
63   char space[kCfiShadowLimitsStorageSize];
64   struct {
65     uptr start;
66     uptr size;
67   } limits;
68 } cfi_shadow_limits_storage
69     __attribute__((aligned(kCfiShadowLimitsStorageSize)));
70 static constexpr uptr kShadowGranularity = 12;
71 static constexpr uptr kShadowAlign = 1UL << kShadowGranularity; // 4096
72 
73 static constexpr uint16_t kInvalidShadow = 0;
74 static constexpr uint16_t kUncheckedShadow = 0xFFFFU;
75 
76 // Get the start address of the CFI shadow region.
77 uptr GetShadow() {
78   return cfi_shadow_limits_storage.limits.start;
79 }
80 
81 uptr GetShadowSize() {
82   return cfi_shadow_limits_storage.limits.size;
83 }
84 
85 // This will only work while the shadow is not allocated.
86 void SetShadowSize(uptr size) {
87   cfi_shadow_limits_storage.limits.size = size;
88 }
89 
90 uptr MemToShadowOffset(uptr x) {
91   return (x >> kShadowGranularity) << 1;
92 }
93 
94 uint16_t *MemToShadow(uptr x, uptr shadow_base) {
95   return (uint16_t *)(shadow_base + MemToShadowOffset(x));
96 }
97 
98 typedef int (*CFICheckFn)(u64, void *, void *);
99 
100 // This class reads and decodes the shadow contents.
101 class ShadowValue {
102   uptr addr;
103   uint16_t v;
104   explicit ShadowValue(uptr addr, uint16_t v) : addr(addr), v(v) {}
105 
106 public:
107   bool is_invalid() const { return v == kInvalidShadow; }
108 
109   bool is_unchecked() const { return v == kUncheckedShadow; }
110 
111   CFICheckFn get_cfi_check() const {
112     assert(!is_invalid() && !is_unchecked());
113     uptr aligned_addr = addr & ~(kShadowAlign - 1);
114     uptr p = aligned_addr - (((uptr)v - 1) << kShadowGranularity);
115     return reinterpret_cast<CFICheckFn>(p);
116   }
117 
118   // Load a shadow value for the given application memory address.
119   static const ShadowValue load(uptr addr) {
120     uptr shadow_base = GetShadow();
121     uptr shadow_offset = MemToShadowOffset(addr);
122     if (shadow_offset > GetShadowSize())
123       return ShadowValue(addr, kInvalidShadow);
124     else
125       return ShadowValue(
126           addr, *reinterpret_cast<uint16_t *>(shadow_base + shadow_offset));
127   }
128 };
129 
130 class ShadowBuilder {
131   uptr shadow_;
132 
133 public:
134   // Allocate a new empty shadow (for the entire address space) on the side.
135   void Start();
136   // Mark the given address range as unchecked.
137   // This is used for uninstrumented libraries like libc.
138   // Any CFI check with a target in that range will pass.
139   void AddUnchecked(uptr begin, uptr end);
140   // Mark the given address range as belonging to a library with the given
141   // cfi_check function.
142   void Add(uptr begin, uptr end, uptr cfi_check);
143   // Finish shadow construction. Atomically switch the current active shadow
144   // region with the newly constructed one and deallocate the former.
145   void Install();
146 };
147 
148 void ShadowBuilder::Start() {
149   shadow_ = (uptr)MmapNoReserveOrDie(GetShadowSize(), "CFI shadow");
150   VReport(1, "CFI: shadow at %zx .. %zx\n", shadow_, shadow_ + GetShadowSize());
151 }
152 
153 void ShadowBuilder::AddUnchecked(uptr begin, uptr end) {
154   uint16_t *shadow_begin = MemToShadow(begin, shadow_);
155   uint16_t *shadow_end = MemToShadow(end - 1, shadow_) + 1;
156   // memset takes a byte, so our unchecked shadow value requires both bytes to
157   // be the same. Make sure we're ok during compilation.
158   static_assert((kUncheckedShadow & 0xff) == ((kUncheckedShadow >> 8) & 0xff),
159                 "Both bytes of the 16-bit value must be the same!");
160   memset(shadow_begin, kUncheckedShadow & 0xff,
161          (shadow_end - shadow_begin) * sizeof(*shadow_begin));
162 }
163 
164 void ShadowBuilder::Add(uptr begin, uptr end, uptr cfi_check) {
165   assert((cfi_check & (kShadowAlign - 1)) == 0);
166 
167   // Don't fill anything below cfi_check. We can not represent those addresses
168   // in the shadow, and must make sure at codegen to place all valid call
169   // targets above cfi_check.
170   begin = Max(begin, cfi_check);
171   uint16_t *s = MemToShadow(begin, shadow_);
172   uint16_t *s_end = MemToShadow(end - 1, shadow_) + 1;
173   uint16_t sv = ((begin - cfi_check) >> kShadowGranularity) + 1;
174   for (; s < s_end; s++, sv++)
175     *s = sv;
176 }
177 
178 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
179 void ShadowBuilder::Install() {
180   MprotectReadOnly(shadow_, GetShadowSize());
181   uptr main_shadow = GetShadow();
182   if (main_shadow) {
183     // Update.
184 #if SANITIZER_LINUX
185     void *res = mremap((void *)shadow_, GetShadowSize(), GetShadowSize(),
186                        MREMAP_MAYMOVE | MREMAP_FIXED, (void *)main_shadow);
187     CHECK(res != MAP_FAILED);
188 #elif SANITIZER_NETBSD
189     void *res = mremap((void *)shadow_, GetShadowSize(), (void *)main_shadow,
190                        GetShadowSize(), MAP_FIXED);
191     CHECK(res != MAP_FAILED);
192 #else
193     void *res = MmapFixedOrDie(shadow_, GetShadowSize(), "cfi shadow");
194     CHECK(res != MAP_FAILED);
195     ::memcpy(&shadow_, &main_shadow, GetShadowSize());
196 #endif
197   } else {
198     // Initial setup.
199     CHECK_EQ(kCfiShadowLimitsStorageSize, GetPageSizeCached());
200     CHECK_EQ(0, GetShadow());
201     cfi_shadow_limits_storage.limits.start = shadow_;
202     MprotectReadOnly((uptr)&cfi_shadow_limits_storage,
203                      sizeof(cfi_shadow_limits_storage));
204     CHECK_EQ(shadow_, GetShadow());
205   }
206 }
207 #else
208 #error not implemented
209 #endif
210 
211 // This is a workaround for a glibc bug:
212 // https://sourceware.org/bugzilla/show_bug.cgi?id=15199
213 // Other platforms can, hopefully, just do
214 //    dlopen(RTLD_NOLOAD | RTLD_LAZY)
215 //    dlsym("__cfi_check").
216 uptr find_cfi_check_in_dso(dl_phdr_info *info) {
217   const Elf_Dyn *dynamic = nullptr;
218   for (int i = 0; i < info->dlpi_phnum; ++i) {
219     if (info->dlpi_phdr[i].p_type == PT_DYNAMIC) {
220       dynamic =
221           (const Elf_Dyn *)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
222       break;
223     }
224   }
225   if (!dynamic) return 0;
226   uptr strtab = 0, symtab = 0, strsz = 0;
227   for (const Elf_Dyn *p = dynamic; p->d_tag != PT_NULL; ++p) {
228     if (p->d_tag == DT_SYMTAB)
229       symtab = p->d_un.d_ptr;
230     else if (p->d_tag == DT_STRTAB)
231       strtab = p->d_un.d_ptr;
232     else if (p->d_tag == DT_STRSZ)
233       strsz = p->d_un.d_ptr;
234   }
235 
236   if (symtab > strtab) {
237     VReport(1, "Can not handle: symtab > strtab (%zx > %zx)\n", symtab, strtab);
238     return 0;
239   }
240 
241   // Verify that strtab and symtab are inside of the same LOAD segment.
242   // This excludes VDSO, which has (very high) bogus strtab and symtab pointers.
243   int phdr_idx;
244   for (phdr_idx = 0; phdr_idx < info->dlpi_phnum; phdr_idx++) {
245     const Elf_Phdr *phdr = &info->dlpi_phdr[phdr_idx];
246     if (phdr->p_type == PT_LOAD) {
247       uptr beg = info->dlpi_addr + phdr->p_vaddr;
248       uptr end = beg + phdr->p_memsz;
249       if (strtab >= beg && strtab + strsz < end && symtab >= beg &&
250           symtab < end)
251         break;
252     }
253   }
254   if (phdr_idx == info->dlpi_phnum) {
255     // Nope, either different segments or just bogus pointers.
256     // Can not handle this.
257     VReport(1, "Can not handle: symtab %zx, strtab %zx\n", symtab, strtab);
258     return 0;
259   }
260 
261   for (const Elf_Sym *p = (const Elf_Sym *)symtab; (Elf_Addr)p < strtab;
262        ++p) {
263     // There is no reliable way to find the end of the symbol table. In
264     // lld-produces files, there are other sections between symtab and strtab.
265     // Stop looking when the symbol name is not inside strtab.
266     if (p->st_name >= strsz) break;
267     char *name = (char*)(strtab + p->st_name);
268     if (strcmp(name, "__cfi_check") == 0) {
269       assert(p->st_info == ELF32_ST_INFO(STB_GLOBAL, STT_FUNC) ||
270              p->st_info == ELF32_ST_INFO(STB_WEAK, STT_FUNC));
271       uptr addr = info->dlpi_addr + p->st_value;
272       return addr;
273     }
274   }
275   return 0;
276 }
277 
278 int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *data) {
279   uptr cfi_check = find_cfi_check_in_dso(info);
280   if (cfi_check)
281     VReport(1, "Module '%s' __cfi_check %zx\n", info->dlpi_name, cfi_check);
282 
283   ShadowBuilder *b = reinterpret_cast<ShadowBuilder *>(data);
284 
285   for (int i = 0; i < info->dlpi_phnum; i++) {
286     const Elf_Phdr *phdr = &info->dlpi_phdr[i];
287     if (phdr->p_type == PT_LOAD) {
288       // Jump tables are in the executable segment.
289       // VTables are in the non-executable one.
290       // Need to fill shadow for both.
291       // FIXME: reject writable if vtables are in the r/o segment. Depend on
292       // PT_RELRO?
293       uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
294       uptr cur_end = cur_beg + phdr->p_memsz;
295       if (cfi_check) {
296         VReport(1, "   %zx .. %zx\n", cur_beg, cur_end);
297         b->Add(cur_beg, cur_end, cfi_check);
298       } else {
299         b->AddUnchecked(cur_beg, cur_end);
300       }
301     }
302   }
303   return 0;
304 }
305 
306 // Init or update shadow for the current set of loaded libraries.
307 void UpdateShadow() {
308   ShadowBuilder b;
309   b.Start();
310   dl_iterate_phdr(dl_iterate_phdr_cb, &b);
311   b.Install();
312 }
313 
314 void InitShadow() {
315   CHECK_EQ(0, GetShadow());
316   CHECK_EQ(0, GetShadowSize());
317 
318   uptr vma = GetMaxUserVirtualAddress();
319   // Shadow is 2 -> 2**kShadowGranularity.
320   SetShadowSize((vma >> (kShadowGranularity - 1)) + 1);
321   VReport(1, "CFI: VMA size %zx, shadow size %zx\n", vma, GetShadowSize());
322 
323   UpdateShadow();
324 }
325 
326 THREADLOCAL int in_loader;
327 Mutex shadow_update_lock;
328 
329 void EnterLoader() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
330   if (in_loader == 0) {
331     shadow_update_lock.Lock();
332   }
333   ++in_loader;
334 }
335 
336 void ExitLoader() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
337   CHECK(in_loader > 0);
338   --in_loader;
339   UpdateShadow();
340   if (in_loader == 0) {
341     shadow_update_lock.Unlock();
342   }
343 }
344 
345 ALWAYS_INLINE void CfiSlowPathCommon(u64 CallSiteTypeId, void *Ptr,
346                                      void *DiagData) {
347   uptr Addr = (uptr)Ptr;
348   VReport(3, "__cfi_slowpath: %llx, %p\n", CallSiteTypeId, Ptr);
349   ShadowValue sv = ShadowValue::load(Addr);
350   if (sv.is_invalid()) {
351     VReport(1, "CFI: invalid memory region for a check target: %p\n", Ptr);
352 #ifdef CFI_ENABLE_DIAG
353     if (DiagData) {
354       __ubsan_handle_cfi_check_fail(
355           reinterpret_cast<__ubsan::CFICheckFailData *>(DiagData), Addr, false);
356       return;
357     }
358 #endif
359     Trap();
360   }
361   if (sv.is_unchecked()) {
362     VReport(2, "CFI: unchecked call (shadow=FFFF): %p\n", Ptr);
363     return;
364   }
365   CFICheckFn cfi_check = sv.get_cfi_check();
366   VReport(2, "__cfi_check at %p\n", (void *)cfi_check);
367   cfi_check(CallSiteTypeId, Ptr, DiagData);
368 }
369 
370 void InitializeFlags() {
371   SetCommonFlagsDefaults();
372 #ifdef CFI_ENABLE_DIAG
373   __ubsan::Flags *uf = __ubsan::flags();
374   uf->SetDefaults();
375 #endif
376 
377   FlagParser cfi_parser;
378   RegisterCommonFlags(&cfi_parser);
379   cfi_parser.ParseStringFromEnv("CFI_OPTIONS");
380 
381 #ifdef CFI_ENABLE_DIAG
382   FlagParser ubsan_parser;
383   __ubsan::RegisterUbsanFlags(&ubsan_parser, uf);
384   RegisterCommonFlags(&ubsan_parser);
385 
386   const char *ubsan_default_options = __ubsan_default_options();
387   ubsan_parser.ParseString(ubsan_default_options);
388   ubsan_parser.ParseStringFromEnv("UBSAN_OPTIONS");
389 #endif
390 
391   InitializeCommonFlags();
392 
393   if (Verbosity())
394     ReportUnrecognizedFlags();
395 
396   if (common_flags()->help) {
397     cfi_parser.PrintFlagDescriptions();
398   }
399 }
400 
401 } // namespace __cfi
402 
403 using namespace __cfi;
404 
405 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
406 __cfi_slowpath(u64 CallSiteTypeId, void *Ptr) {
407   CfiSlowPathCommon(CallSiteTypeId, Ptr, nullptr);
408 }
409 
410 #ifdef CFI_ENABLE_DIAG
411 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
412 __cfi_slowpath_diag(u64 CallSiteTypeId, void *Ptr, void *DiagData) {
413   CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData);
414 }
415 #endif
416 
417 static void EnsureInterceptorsInitialized();
418 
419 // Setup shadow for dlopen()ed libraries.
420 // The actual shadow setup happens after dlopen() returns, which means that
421 // a library can not be a target of any CFI checks while its constructors are
422 // running. It's unclear how to fix this without some extra help from libc.
423 // In glibc, mmap inside dlopen is not interceptable.
424 // Maybe a seccomp-bpf filter?
425 // We could insert a high-priority constructor into the library, but that would
426 // not help with the uninstrumented libraries.
427 INTERCEPTOR(void*, dlopen, const char *filename, int flag) {
428   EnsureInterceptorsInitialized();
429   EnterLoader();
430   void *handle = REAL(dlopen)(filename, flag);
431   ExitLoader();
432   return handle;
433 }
434 
435 INTERCEPTOR(int, dlclose, void *handle) {
436   EnsureInterceptorsInitialized();
437   EnterLoader();
438   int res = REAL(dlclose)(handle);
439   ExitLoader();
440   return res;
441 }
442 
443 static Mutex interceptor_init_lock;
444 static bool interceptors_inited = false;
445 
446 static void EnsureInterceptorsInitialized() {
447   Lock lock(&interceptor_init_lock);
448   if (interceptors_inited)
449     return;
450 
451   INTERCEPT_FUNCTION(dlopen);
452   INTERCEPT_FUNCTION(dlclose);
453 
454   interceptors_inited = true;
455 }
456 
457 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
458 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
459 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
460 __attribute__((constructor(0)))
461 #endif
462 void __cfi_init() {
463   SanitizerToolName = "CFI";
464   InitializeFlags();
465   InitShadow();
466 
467 #ifdef CFI_ENABLE_DIAG
468   __ubsan::InitAsPlugin();
469 #endif
470 }
471 
472 #if SANITIZER_CAN_USE_PREINIT_ARRAY
473 // On ELF platforms, run cfi initialization before any other constructors.
474 // On other platforms we use the constructor attribute to arrange to run our
475 // initialization early.
476 extern "C" {
477 __attribute__((section(".preinit_array"),
478                used)) void (*__cfi_preinit)(void) = __cfi_init;
479 }
480 #endif
481