1 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 2 // See https://llvm.org/LICENSE.txt for license information. 3 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 4 5 #include "../int_math.h" 6 #include "DD.h" 7 // Use DOUBLE_PRECISION because the soft-fp method we use is logb (on the upper 8 // half of the long doubles), even though this file defines complex division for 9 // 128-bit floats. 10 #define DOUBLE_PRECISION 11 #include "../fp_lib.h" 12 13 #if !defined(CRT_INFINITY) && defined(HUGE_VAL) 14 #define CRT_INFINITY HUGE_VAL 15 #endif // CRT_INFINITY 16 17 #define makeFinite(x) \ 18 { \ 19 (x).s.hi = crt_copysign(crt_isinf((x).s.hi) ? 1.0 : 0.0, (x).s.hi); \ 20 (x).s.lo = 0.0; \ 21 } 22 23 long double _Complex __divtc3(long double a, long double b, long double c, 24 long double d) { 25 DD cDD = {.ld = c}; 26 DD dDD = {.ld = d}; 27 28 int ilogbw = 0; 29 const double logbw = 30 __compiler_rt_logb(crt_fmax(crt_fabs(cDD.s.hi), crt_fabs(dDD.s.hi))); 31 32 if (crt_isfinite(logbw)) { 33 ilogbw = (int)logbw; 34 35 cDD.s.hi = crt_scalbn(cDD.s.hi, -ilogbw); 36 cDD.s.lo = crt_scalbn(cDD.s.lo, -ilogbw); 37 dDD.s.hi = crt_scalbn(dDD.s.hi, -ilogbw); 38 dDD.s.lo = crt_scalbn(dDD.s.lo, -ilogbw); 39 } 40 41 const long double denom = 42 __gcc_qadd(__gcc_qmul(cDD.ld, cDD.ld), __gcc_qmul(dDD.ld, dDD.ld)); 43 const long double realNumerator = 44 __gcc_qadd(__gcc_qmul(a, cDD.ld), __gcc_qmul(b, dDD.ld)); 45 const long double imagNumerator = 46 __gcc_qsub(__gcc_qmul(b, cDD.ld), __gcc_qmul(a, dDD.ld)); 47 48 DD real = {.ld = __gcc_qdiv(realNumerator, denom)}; 49 DD imag = {.ld = __gcc_qdiv(imagNumerator, denom)}; 50 51 real.s.hi = crt_scalbn(real.s.hi, -ilogbw); 52 real.s.lo = crt_scalbn(real.s.lo, -ilogbw); 53 imag.s.hi = crt_scalbn(imag.s.hi, -ilogbw); 54 imag.s.lo = crt_scalbn(imag.s.lo, -ilogbw); 55 56 if (crt_isnan(real.s.hi) && crt_isnan(imag.s.hi)) { 57 DD aDD = {.ld = a}; 58 DD bDD = {.ld = b}; 59 DD rDD = {.ld = denom}; 60 61 if ((rDD.s.hi == 0.0) && (!crt_isnan(aDD.s.hi) || !crt_isnan(bDD.s.hi))) { 62 real.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * aDD.s.hi; 63 real.s.lo = 0.0; 64 imag.s.hi = crt_copysign(CRT_INFINITY, cDD.s.hi) * bDD.s.hi; 65 imag.s.lo = 0.0; 66 } 67 68 else if ((crt_isinf(aDD.s.hi) || crt_isinf(bDD.s.hi)) && 69 crt_isfinite(cDD.s.hi) && crt_isfinite(dDD.s.hi)) { 70 makeFinite(aDD); 71 makeFinite(bDD); 72 real.s.hi = CRT_INFINITY * (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi); 73 real.s.lo = 0.0; 74 imag.s.hi = CRT_INFINITY * (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi); 75 imag.s.lo = 0.0; 76 } 77 78 else if ((crt_isinf(cDD.s.hi) || crt_isinf(dDD.s.hi)) && 79 crt_isfinite(aDD.s.hi) && crt_isfinite(bDD.s.hi)) { 80 makeFinite(cDD); 81 makeFinite(dDD); 82 real.s.hi = 83 crt_copysign(0.0, (aDD.s.hi * cDD.s.hi + bDD.s.hi * dDD.s.hi)); 84 real.s.lo = 0.0; 85 imag.s.hi = 86 crt_copysign(0.0, (bDD.s.hi * cDD.s.hi - aDD.s.hi * dDD.s.hi)); 87 imag.s.lo = 0.0; 88 } 89 } 90 91 long double _Complex z; 92 __real__ z = real.ld; 93 __imag__ z = imag.ld; 94 95 return z; 96 } 97