1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a configuration header for soft-float routines in compiler-rt. 10 // This file does not provide any part of the compiler-rt interface, but defines 11 // many useful constants and utility routines that are used in the 12 // implementation of the soft-float routines in compiler-rt. 13 // 14 // Assumes that float, double and long double correspond to the IEEE-754 15 // binary32, binary64 and binary 128 types, respectively, and that integer 16 // endianness matches floating point endianness on the target platform. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef FP_LIB_HEADER 21 #define FP_LIB_HEADER 22 23 #include "int_lib.h" 24 #include "int_math.h" 25 #include <limits.h> 26 #include <stdbool.h> 27 #include <stdint.h> 28 29 // x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in 30 // 32-bit mode. 31 #if defined(__FreeBSD__) && defined(__i386__) 32 #include <sys/param.h> 33 #if __FreeBSD_version < 903000 // v9.3 34 #define uint64_t unsigned long long 35 #define int64_t long long 36 #undef UINT64_C 37 #define UINT64_C(c) (c##ULL) 38 #endif 39 #endif 40 41 #if defined SINGLE_PRECISION 42 43 typedef uint16_t half_rep_t; 44 typedef uint32_t rep_t; 45 typedef uint64_t twice_rep_t; 46 typedef int32_t srep_t; 47 typedef float fp_t; 48 #define HALF_REP_C UINT16_C 49 #define REP_C UINT32_C 50 #define significandBits 23 51 52 static __inline int rep_clz(rep_t a) { return clzsi(a); } 53 54 // 32x32 --> 64 bit multiply 55 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 56 const uint64_t product = (uint64_t)a * b; 57 *hi = product >> 32; 58 *lo = product; 59 } 60 COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b); 61 62 #elif defined DOUBLE_PRECISION 63 64 typedef uint32_t half_rep_t; 65 typedef uint64_t rep_t; 66 typedef int64_t srep_t; 67 typedef double fp_t; 68 #define HALF_REP_C UINT32_C 69 #define REP_C UINT64_C 70 #define significandBits 52 71 72 static __inline int rep_clz(rep_t a) { 73 #if defined __LP64__ 74 return __builtin_clzl(a); 75 #else 76 if (a & REP_C(0xffffffff00000000)) 77 return clzsi(a >> 32); 78 else 79 return 32 + clzsi(a & REP_C(0xffffffff)); 80 #endif 81 } 82 83 #define loWord(a) (a & 0xffffffffU) 84 #define hiWord(a) (a >> 32) 85 86 // 64x64 -> 128 wide multiply for platforms that don't have such an operation; 87 // many 64-bit platforms have this operation, but they tend to have hardware 88 // floating-point, so we don't bother with a special case for them here. 89 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 90 // Each of the component 32x32 -> 64 products 91 const uint64_t plolo = loWord(a) * loWord(b); 92 const uint64_t plohi = loWord(a) * hiWord(b); 93 const uint64_t philo = hiWord(a) * loWord(b); 94 const uint64_t phihi = hiWord(a) * hiWord(b); 95 // Sum terms that contribute to lo in a way that allows us to get the carry 96 const uint64_t r0 = loWord(plolo); 97 const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo); 98 *lo = r0 + (r1 << 32); 99 // Sum terms contributing to hi with the carry from lo 100 *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi; 101 } 102 #undef loWord 103 #undef hiWord 104 105 COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b); 106 107 #elif defined QUAD_PRECISION 108 #if __LDBL_MANT_DIG__ == 113 && defined(__SIZEOF_INT128__) 109 // TODO: Availability of the *tf functions should not depend on long double 110 // being IEEE 128, but instead on being able to use a 128-bit floating-point 111 // type, which includes __float128. 112 // Right now this (incorrectly) stops the builtins from being used for x86. 113 #define CRT_LDBL_128BIT 114 #define CRT_HAS_TF_MODE 115 #define TF_C(c) c##L 116 typedef uint64_t half_rep_t; 117 typedef __uint128_t rep_t; 118 typedef __int128_t srep_t; 119 typedef long double fp_t; 120 #define HALF_REP_C UINT64_C 121 #define REP_C (__uint128_t) 122 // Note: Since there is no explicit way to tell compiler the constant is a 123 // 128-bit integer, we let the constant be casted to 128-bit integer 124 #define significandBits 112 125 #define TF_MANT_DIG (significandBits + 1) 126 127 static __inline int rep_clz(rep_t a) { 128 const union { 129 __uint128_t ll; 130 #if _YUGA_BIG_ENDIAN 131 struct { 132 uint64_t high, low; 133 } s; 134 #else 135 struct { 136 uint64_t low, high; 137 } s; 138 #endif 139 } uu = {.ll = a}; 140 141 uint64_t word; 142 uint64_t add; 143 144 if (uu.s.high) { 145 word = uu.s.high; 146 add = 0; 147 } else { 148 word = uu.s.low; 149 add = 64; 150 } 151 return __builtin_clzll(word) + add; 152 } 153 154 #define Word_LoMask UINT64_C(0x00000000ffffffff) 155 #define Word_HiMask UINT64_C(0xffffffff00000000) 156 #define Word_FullMask UINT64_C(0xffffffffffffffff) 157 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask) 158 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask) 159 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask) 160 #define Word_4(a) (uint64_t)(a & Word_LoMask) 161 162 // 128x128 -> 256 wide multiply for platforms that don't have such an operation; 163 // many 64-bit platforms have this operation, but they tend to have hardware 164 // floating-point, so we don't bother with a special case for them here. 165 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 166 167 const uint64_t product11 = Word_1(a) * Word_1(b); 168 const uint64_t product12 = Word_1(a) * Word_2(b); 169 const uint64_t product13 = Word_1(a) * Word_3(b); 170 const uint64_t product14 = Word_1(a) * Word_4(b); 171 const uint64_t product21 = Word_2(a) * Word_1(b); 172 const uint64_t product22 = Word_2(a) * Word_2(b); 173 const uint64_t product23 = Word_2(a) * Word_3(b); 174 const uint64_t product24 = Word_2(a) * Word_4(b); 175 const uint64_t product31 = Word_3(a) * Word_1(b); 176 const uint64_t product32 = Word_3(a) * Word_2(b); 177 const uint64_t product33 = Word_3(a) * Word_3(b); 178 const uint64_t product34 = Word_3(a) * Word_4(b); 179 const uint64_t product41 = Word_4(a) * Word_1(b); 180 const uint64_t product42 = Word_4(a) * Word_2(b); 181 const uint64_t product43 = Word_4(a) * Word_3(b); 182 const uint64_t product44 = Word_4(a) * Word_4(b); 183 184 const __uint128_t sum0 = (__uint128_t)product44; 185 const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43; 186 const __uint128_t sum2 = 187 (__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42; 188 const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 + 189 (__uint128_t)product32 + (__uint128_t)product41; 190 const __uint128_t sum4 = 191 (__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31; 192 const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21; 193 const __uint128_t sum6 = (__uint128_t)product11; 194 195 const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32); 196 const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) + 197 (sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask); 198 199 *lo = r0 + (r1 << 64); 200 *hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 + 201 (sum5 << 32) + (sum6 << 64); 202 } 203 #undef Word_1 204 #undef Word_2 205 #undef Word_3 206 #undef Word_4 207 #undef Word_HiMask 208 #undef Word_LoMask 209 #undef Word_FullMask 210 #endif // __LDBL_MANT_DIG__ == 113 && __SIZEOF_INT128__ 211 #else 212 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined. 213 #endif 214 215 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \ 216 defined(CRT_LDBL_128BIT) 217 #define typeWidth (sizeof(rep_t) * CHAR_BIT) 218 #define exponentBits (typeWidth - significandBits - 1) 219 #define maxExponent ((1 << exponentBits) - 1) 220 #define exponentBias (maxExponent >> 1) 221 222 #define implicitBit (REP_C(1) << significandBits) 223 #define significandMask (implicitBit - 1U) 224 #define signBit (REP_C(1) << (significandBits + exponentBits)) 225 #define absMask (signBit - 1U) 226 #define exponentMask (absMask ^ significandMask) 227 #define oneRep ((rep_t)exponentBias << significandBits) 228 #define infRep exponentMask 229 #define quietBit (implicitBit >> 1) 230 #define qnanRep (exponentMask | quietBit) 231 232 static __inline rep_t toRep(fp_t x) { 233 const union { 234 fp_t f; 235 rep_t i; 236 } rep = {.f = x}; 237 return rep.i; 238 } 239 240 static __inline fp_t fromRep(rep_t x) { 241 const union { 242 fp_t f; 243 rep_t i; 244 } rep = {.i = x}; 245 return rep.f; 246 } 247 248 static __inline int normalize(rep_t *significand) { 249 const int shift = rep_clz(*significand) - rep_clz(implicitBit); 250 *significand <<= shift; 251 return 1 - shift; 252 } 253 254 static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) { 255 *hi = *hi << count | *lo >> (typeWidth - count); 256 *lo = *lo << count; 257 } 258 259 static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, 260 unsigned int count) { 261 if (count < typeWidth) { 262 const bool sticky = (*lo << (typeWidth - count)) != 0; 263 *lo = *hi << (typeWidth - count) | *lo >> count | sticky; 264 *hi = *hi >> count; 265 } else if (count < 2 * typeWidth) { 266 const bool sticky = *hi << (2 * typeWidth - count) | *lo; 267 *lo = *hi >> (count - typeWidth) | sticky; 268 *hi = 0; 269 } else { 270 const bool sticky = *hi | *lo; 271 *lo = sticky; 272 *hi = 0; 273 } 274 } 275 276 // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids 277 // pulling in a libm dependency from compiler-rt, but is not meant to replace 278 // it (i.e. code calling logb() should get the one from libm, not this), hence 279 // the __compiler_rt prefix. 280 static __inline fp_t __compiler_rt_logbX(fp_t x) { 281 rep_t rep = toRep(x); 282 int exp = (rep & exponentMask) >> significandBits; 283 284 // Abnormal cases: 285 // 1) +/- inf returns +inf; NaN returns NaN 286 // 2) 0.0 returns -inf 287 if (exp == maxExponent) { 288 if (((rep & signBit) == 0) || (x != x)) { 289 return x; // NaN or +inf: return x 290 } else { 291 return -x; // -inf: return -x 292 } 293 } else if (x == 0.0) { 294 // 0.0: return -inf 295 return fromRep(infRep | signBit); 296 } 297 298 if (exp != 0) { 299 // Normal number 300 return exp - exponentBias; // Unbias exponent 301 } else { 302 // Subnormal number; normalize and repeat 303 rep &= absMask; 304 const int shift = 1 - normalize(&rep); 305 exp = (rep & exponentMask) >> significandBits; 306 return exp - exponentBias - shift; // Unbias exponent 307 } 308 } 309 310 // Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never 311 // sets errno on underflow/overflow. 312 static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) { 313 const rep_t rep = toRep(x); 314 int exp = (rep & exponentMask) >> significandBits; 315 316 if (x == 0.0 || exp == maxExponent) 317 return x; // +/- 0.0, NaN, or inf: return x 318 319 // Normalize subnormal input. 320 rep_t sig = rep & significandMask; 321 if (exp == 0) { 322 exp += normalize(&sig); 323 sig &= ~implicitBit; // clear the implicit bit again 324 } 325 326 if (__builtin_sadd_overflow(exp, y, &exp)) { 327 // Saturate the exponent, which will guarantee an underflow/overflow below. 328 exp = (y >= 0) ? INT_MAX : INT_MIN; 329 } 330 331 // Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias). 332 const rep_t sign = rep & signBit; 333 if (exp >= maxExponent) { 334 // Overflow, which could produce infinity or the largest-magnitude value, 335 // depending on the rounding mode. 336 return fromRep(sign | ((rep_t)(maxExponent - 1) << significandBits)) * 2.0f; 337 } else if (exp <= 0) { 338 // Subnormal or underflow. Use floating-point multiply to handle truncation 339 // correctly. 340 fp_t tmp = fromRep(sign | (REP_C(1) << significandBits) | sig); 341 exp += exponentBias - 1; 342 if (exp < 1) 343 exp = 1; 344 tmp *= fromRep((rep_t)exp << significandBits); 345 return tmp; 346 } else 347 return fromRep(sign | ((rep_t)exp << significandBits) | sig); 348 } 349 350 // Avoid using fmax from libm. 351 static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) { 352 // If either argument is NaN, return the other argument. If both are NaN, 353 // arbitrarily return the second one. Otherwise, if both arguments are +/-0, 354 // arbitrarily return the first one. 355 return (crt_isnan(x) || x < y) ? y : x; 356 } 357 358 #endif 359 360 #if defined(SINGLE_PRECISION) 361 362 static __inline fp_t __compiler_rt_logbf(fp_t x) { 363 return __compiler_rt_logbX(x); 364 } 365 static __inline fp_t __compiler_rt_scalbnf(fp_t x, int y) { 366 return __compiler_rt_scalbnX(x, y); 367 } 368 static __inline fp_t __compiler_rt_fmaxf(fp_t x, fp_t y) { 369 #if defined(__aarch64__) 370 // Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64. 371 return __builtin_fmaxf(x, y); 372 #else 373 // __builtin_fmaxf frequently turns into a libm call, so inline the function. 374 return __compiler_rt_fmaxX(x, y); 375 #endif 376 } 377 378 #elif defined(DOUBLE_PRECISION) 379 380 static __inline fp_t __compiler_rt_logb(fp_t x) { 381 return __compiler_rt_logbX(x); 382 } 383 static __inline fp_t __compiler_rt_scalbn(fp_t x, int y) { 384 return __compiler_rt_scalbnX(x, y); 385 } 386 static __inline fp_t __compiler_rt_fmax(fp_t x, fp_t y) { 387 #if defined(__aarch64__) 388 // Use __builtin_fmax which turns into an fmaxnm instruction on AArch64. 389 return __builtin_fmax(x, y); 390 #else 391 // __builtin_fmax frequently turns into a libm call, so inline the function. 392 return __compiler_rt_fmaxX(x, y); 393 #endif 394 } 395 396 #elif defined(QUAD_PRECISION) 397 398 #if defined(CRT_LDBL_128BIT) 399 static __inline fp_t __compiler_rt_logbl(fp_t x) { 400 return __compiler_rt_logbX(x); 401 } 402 static __inline fp_t __compiler_rt_scalbnl(fp_t x, int y) { 403 return __compiler_rt_scalbnX(x, y); 404 } 405 static __inline fp_t __compiler_rt_fmaxl(fp_t x, fp_t y) { 406 return __compiler_rt_fmaxX(x, y); 407 } 408 #else 409 // The generic implementation only works for ieee754 floating point. For other 410 // floating point types, continue to rely on the libm implementation for now. 411 static __inline long double __compiler_rt_logbl(long double x) { 412 return crt_logbl(x); 413 } 414 static __inline long double __compiler_rt_scalbnl(long double x, int y) { 415 return crt_scalbnl(x, y); 416 } 417 static __inline long double __compiler_rt_fmaxl(long double x, long double y) { 418 return crt_fmaxl(x, y); 419 } 420 #endif // CRT_LDBL_128BIT 421 422 #endif // *_PRECISION 423 424 #endif // FP_LIB_HEADER 425