1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is a configuration header for soft-float routines in compiler-rt. 10 // This file does not provide any part of the compiler-rt interface, but defines 11 // many useful constants and utility routines that are used in the 12 // implementation of the soft-float routines in compiler-rt. 13 // 14 // Assumes that float, double and long double correspond to the IEEE-754 15 // binary32, binary64 and binary 128 types, respectively, and that integer 16 // endianness matches floating point endianness on the target platform. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef FP_LIB_HEADER 21 #define FP_LIB_HEADER 22 23 #include "int_lib.h" 24 #include "int_math.h" 25 #include <limits.h> 26 #include <stdbool.h> 27 #include <stdint.h> 28 29 #if defined SINGLE_PRECISION 30 31 typedef uint16_t half_rep_t; 32 typedef uint32_t rep_t; 33 typedef uint64_t twice_rep_t; 34 typedef int32_t srep_t; 35 typedef float fp_t; 36 #define HALF_REP_C UINT16_C 37 #define REP_C UINT32_C 38 #define significandBits 23 39 40 static __inline int rep_clz(rep_t a) { return clzsi(a); } 41 42 // 32x32 --> 64 bit multiply 43 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 44 const uint64_t product = (uint64_t)a * b; 45 *hi = product >> 32; 46 *lo = product; 47 } 48 COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b); 49 50 #elif defined DOUBLE_PRECISION 51 52 typedef uint32_t half_rep_t; 53 typedef uint64_t rep_t; 54 typedef int64_t srep_t; 55 typedef double fp_t; 56 #define HALF_REP_C UINT32_C 57 #define REP_C UINT64_C 58 #define significandBits 52 59 60 static __inline int rep_clz(rep_t a) { 61 #if defined __LP64__ 62 return __builtin_clzl(a); 63 #else 64 if (a & REP_C(0xffffffff00000000)) 65 return clzsi(a >> 32); 66 else 67 return 32 + clzsi(a & REP_C(0xffffffff)); 68 #endif 69 } 70 71 #define loWord(a) (a & 0xffffffffU) 72 #define hiWord(a) (a >> 32) 73 74 // 64x64 -> 128 wide multiply for platforms that don't have such an operation; 75 // many 64-bit platforms have this operation, but they tend to have hardware 76 // floating-point, so we don't bother with a special case for them here. 77 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 78 // Each of the component 32x32 -> 64 products 79 const uint64_t plolo = loWord(a) * loWord(b); 80 const uint64_t plohi = loWord(a) * hiWord(b); 81 const uint64_t philo = hiWord(a) * loWord(b); 82 const uint64_t phihi = hiWord(a) * hiWord(b); 83 // Sum terms that contribute to lo in a way that allows us to get the carry 84 const uint64_t r0 = loWord(plolo); 85 const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo); 86 *lo = r0 + (r1 << 32); 87 // Sum terms contributing to hi with the carry from lo 88 *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi; 89 } 90 #undef loWord 91 #undef hiWord 92 93 COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b); 94 95 #elif defined QUAD_PRECISION 96 #if defined(CRT_HAS_TF_MODE) 97 typedef uint64_t half_rep_t; 98 typedef __uint128_t rep_t; 99 typedef __int128_t srep_t; 100 typedef tf_float fp_t; 101 #define HALF_REP_C UINT64_C 102 #define REP_C (__uint128_t) 103 // Note: Since there is no explicit way to tell compiler the constant is a 104 // 128-bit integer, we let the constant be casted to 128-bit integer 105 #define significandBits 112 106 #define TF_MANT_DIG (significandBits + 1) 107 108 static __inline int rep_clz(rep_t a) { 109 const union { 110 __uint128_t ll; 111 #if _YUGA_BIG_ENDIAN 112 struct { 113 uint64_t high, low; 114 } s; 115 #else 116 struct { 117 uint64_t low, high; 118 } s; 119 #endif 120 } uu = {.ll = a}; 121 122 uint64_t word; 123 uint64_t add; 124 125 if (uu.s.high) { 126 word = uu.s.high; 127 add = 0; 128 } else { 129 word = uu.s.low; 130 add = 64; 131 } 132 return __builtin_clzll(word) + add; 133 } 134 135 #define Word_LoMask UINT64_C(0x00000000ffffffff) 136 #define Word_HiMask UINT64_C(0xffffffff00000000) 137 #define Word_FullMask UINT64_C(0xffffffffffffffff) 138 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask) 139 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask) 140 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask) 141 #define Word_4(a) (uint64_t)(a & Word_LoMask) 142 143 // 128x128 -> 256 wide multiply for platforms that don't have such an operation; 144 // many 64-bit platforms have this operation, but they tend to have hardware 145 // floating-point, so we don't bother with a special case for them here. 146 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) { 147 148 const uint64_t product11 = Word_1(a) * Word_1(b); 149 const uint64_t product12 = Word_1(a) * Word_2(b); 150 const uint64_t product13 = Word_1(a) * Word_3(b); 151 const uint64_t product14 = Word_1(a) * Word_4(b); 152 const uint64_t product21 = Word_2(a) * Word_1(b); 153 const uint64_t product22 = Word_2(a) * Word_2(b); 154 const uint64_t product23 = Word_2(a) * Word_3(b); 155 const uint64_t product24 = Word_2(a) * Word_4(b); 156 const uint64_t product31 = Word_3(a) * Word_1(b); 157 const uint64_t product32 = Word_3(a) * Word_2(b); 158 const uint64_t product33 = Word_3(a) * Word_3(b); 159 const uint64_t product34 = Word_3(a) * Word_4(b); 160 const uint64_t product41 = Word_4(a) * Word_1(b); 161 const uint64_t product42 = Word_4(a) * Word_2(b); 162 const uint64_t product43 = Word_4(a) * Word_3(b); 163 const uint64_t product44 = Word_4(a) * Word_4(b); 164 165 const __uint128_t sum0 = (__uint128_t)product44; 166 const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43; 167 const __uint128_t sum2 = 168 (__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42; 169 const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 + 170 (__uint128_t)product32 + (__uint128_t)product41; 171 const __uint128_t sum4 = 172 (__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31; 173 const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21; 174 const __uint128_t sum6 = (__uint128_t)product11; 175 176 const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32); 177 const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) + 178 (sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask); 179 180 *lo = r0 + (r1 << 64); 181 *hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 + 182 (sum5 << 32) + (sum6 << 64); 183 } 184 #undef Word_1 185 #undef Word_2 186 #undef Word_3 187 #undef Word_4 188 #undef Word_HiMask 189 #undef Word_LoMask 190 #undef Word_FullMask 191 #endif // defined(CRT_HAS_TF_MODE) 192 #else 193 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined. 194 #endif 195 196 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \ 197 (defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE)) 198 #define typeWidth (sizeof(rep_t) * CHAR_BIT) 199 #define exponentBits (typeWidth - significandBits - 1) 200 #define maxExponent ((1 << exponentBits) - 1) 201 #define exponentBias (maxExponent >> 1) 202 203 #define implicitBit (REP_C(1) << significandBits) 204 #define significandMask (implicitBit - 1U) 205 #define signBit (REP_C(1) << (significandBits + exponentBits)) 206 #define absMask (signBit - 1U) 207 #define exponentMask (absMask ^ significandMask) 208 #define oneRep ((rep_t)exponentBias << significandBits) 209 #define infRep exponentMask 210 #define quietBit (implicitBit >> 1) 211 #define qnanRep (exponentMask | quietBit) 212 213 static __inline rep_t toRep(fp_t x) { 214 const union { 215 fp_t f; 216 rep_t i; 217 } rep = {.f = x}; 218 return rep.i; 219 } 220 221 static __inline fp_t fromRep(rep_t x) { 222 const union { 223 fp_t f; 224 rep_t i; 225 } rep = {.i = x}; 226 return rep.f; 227 } 228 229 static __inline int normalize(rep_t *significand) { 230 const int shift = rep_clz(*significand) - rep_clz(implicitBit); 231 *significand <<= shift; 232 return 1 - shift; 233 } 234 235 static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) { 236 *hi = *hi << count | *lo >> (typeWidth - count); 237 *lo = *lo << count; 238 } 239 240 static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, 241 unsigned int count) { 242 if (count < typeWidth) { 243 const bool sticky = (*lo << (typeWidth - count)) != 0; 244 *lo = *hi << (typeWidth - count) | *lo >> count | sticky; 245 *hi = *hi >> count; 246 } else if (count < 2 * typeWidth) { 247 const bool sticky = *hi << (2 * typeWidth - count) | *lo; 248 *lo = *hi >> (count - typeWidth) | sticky; 249 *hi = 0; 250 } else { 251 const bool sticky = *hi | *lo; 252 *lo = sticky; 253 *hi = 0; 254 } 255 } 256 257 // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids 258 // pulling in a libm dependency from compiler-rt, but is not meant to replace 259 // it (i.e. code calling logb() should get the one from libm, not this), hence 260 // the __compiler_rt prefix. 261 static __inline fp_t __compiler_rt_logbX(fp_t x) { 262 rep_t rep = toRep(x); 263 int exp = (rep & exponentMask) >> significandBits; 264 265 // Abnormal cases: 266 // 1) +/- inf returns +inf; NaN returns NaN 267 // 2) 0.0 returns -inf 268 if (exp == maxExponent) { 269 if (((rep & signBit) == 0) || (x != x)) { 270 return x; // NaN or +inf: return x 271 } else { 272 return -x; // -inf: return -x 273 } 274 } else if (x == 0.0) { 275 // 0.0: return -inf 276 return fromRep(infRep | signBit); 277 } 278 279 if (exp != 0) { 280 // Normal number 281 return exp - exponentBias; // Unbias exponent 282 } else { 283 // Subnormal number; normalize and repeat 284 rep &= absMask; 285 const int shift = 1 - normalize(&rep); 286 exp = (rep & exponentMask) >> significandBits; 287 return exp - exponentBias - shift; // Unbias exponent 288 } 289 } 290 291 // Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never 292 // sets errno on underflow/overflow. 293 static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) { 294 const rep_t rep = toRep(x); 295 int exp = (rep & exponentMask) >> significandBits; 296 297 if (x == 0.0 || exp == maxExponent) 298 return x; // +/- 0.0, NaN, or inf: return x 299 300 // Normalize subnormal input. 301 rep_t sig = rep & significandMask; 302 if (exp == 0) { 303 exp += normalize(&sig); 304 sig &= ~implicitBit; // clear the implicit bit again 305 } 306 307 if (__builtin_sadd_overflow(exp, y, &exp)) { 308 // Saturate the exponent, which will guarantee an underflow/overflow below. 309 exp = (y >= 0) ? INT_MAX : INT_MIN; 310 } 311 312 // Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias). 313 const rep_t sign = rep & signBit; 314 if (exp >= maxExponent) { 315 // Overflow, which could produce infinity or the largest-magnitude value, 316 // depending on the rounding mode. 317 return fromRep(sign | ((rep_t)(maxExponent - 1) << significandBits)) * 2.0f; 318 } else if (exp <= 0) { 319 // Subnormal or underflow. Use floating-point multiply to handle truncation 320 // correctly. 321 fp_t tmp = fromRep(sign | (REP_C(1) << significandBits) | sig); 322 exp += exponentBias - 1; 323 if (exp < 1) 324 exp = 1; 325 tmp *= fromRep((rep_t)exp << significandBits); 326 return tmp; 327 } else 328 return fromRep(sign | ((rep_t)exp << significandBits) | sig); 329 } 330 331 // Avoid using fmax from libm. 332 static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) { 333 // If either argument is NaN, return the other argument. If both are NaN, 334 // arbitrarily return the second one. Otherwise, if both arguments are +/-0, 335 // arbitrarily return the first one. 336 return (crt_isnan(x) || x < y) ? y : x; 337 } 338 339 #endif 340 341 #if defined(SINGLE_PRECISION) 342 343 static __inline fp_t __compiler_rt_logbf(fp_t x) { 344 return __compiler_rt_logbX(x); 345 } 346 static __inline fp_t __compiler_rt_scalbnf(fp_t x, int y) { 347 return __compiler_rt_scalbnX(x, y); 348 } 349 static __inline fp_t __compiler_rt_fmaxf(fp_t x, fp_t y) { 350 #if defined(__aarch64__) 351 // Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64. 352 return __builtin_fmaxf(x, y); 353 #else 354 // __builtin_fmaxf frequently turns into a libm call, so inline the function. 355 return __compiler_rt_fmaxX(x, y); 356 #endif 357 } 358 359 #elif defined(DOUBLE_PRECISION) 360 361 static __inline fp_t __compiler_rt_logb(fp_t x) { 362 return __compiler_rt_logbX(x); 363 } 364 static __inline fp_t __compiler_rt_scalbn(fp_t x, int y) { 365 return __compiler_rt_scalbnX(x, y); 366 } 367 static __inline fp_t __compiler_rt_fmax(fp_t x, fp_t y) { 368 #if defined(__aarch64__) 369 // Use __builtin_fmax which turns into an fmaxnm instruction on AArch64. 370 return __builtin_fmax(x, y); 371 #else 372 // __builtin_fmax frequently turns into a libm call, so inline the function. 373 return __compiler_rt_fmaxX(x, y); 374 #endif 375 } 376 377 #elif defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE) 378 // The generic implementation only works for ieee754 floating point. For other 379 // floating point types, continue to rely on the libm implementation for now. 380 #if defined(CRT_HAS_IEEE_TF) 381 static __inline tf_float __compiler_rt_logbtf(tf_float x) { 382 return __compiler_rt_logbX(x); 383 } 384 static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) { 385 return __compiler_rt_scalbnX(x, y); 386 } 387 static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) { 388 return __compiler_rt_fmaxX(x, y); 389 } 390 #define __compiler_rt_logbl __compiler_rt_logbtf 391 #define __compiler_rt_scalbnl __compiler_rt_scalbntf 392 #define __compiler_rt_fmaxl __compiler_rt_fmaxtf 393 #define crt_fabstf crt_fabsf128 394 #define crt_copysigntf crt_copysignf128 395 #elif defined(CRT_LDBL_128BIT) 396 static __inline tf_float __compiler_rt_logbtf(tf_float x) { 397 return crt_logbl(x); 398 } 399 static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) { 400 return crt_scalbnl(x, y); 401 } 402 static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) { 403 return crt_fmaxl(x, y); 404 } 405 #define __compiler_rt_logbl crt_logbl 406 #define __compiler_rt_scalbnl crt_scalbnl 407 #define __compiler_rt_fmaxl crt_fmaxl 408 #else 409 #error Unsupported TF mode type 410 #endif 411 412 #endif // *_PRECISION 413 414 #endif // FP_LIB_HEADER 415