xref: /freebsd/contrib/llvm-project/compiler-rt/lib/builtins/fp_compare_impl.inc (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1//===-- lib/fp_compare_impl.inc - Floating-point comparison -------*- C -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "fp_lib.h"
10
11// GCC uses long (at least for x86_64) as the return type of the comparison
12// functions. We need to ensure that the return value is sign-extended in the
13// same way as GCC expects (since otherwise GCC-generated __builtin_isinf
14// returns true for finite 128-bit floating-point numbers).
15#ifdef __aarch64__
16// AArch64 GCC overrides libgcc_cmp_return to use int instead of long.
17typedef int CMP_RESULT;
18#elif __SIZEOF_POINTER__ == 8 && __SIZEOF_LONG__ == 4
19// LLP64 ABIs use long long instead of long.
20typedef long long CMP_RESULT;
21#elif __AVR__
22// AVR uses a single byte for the return value.
23typedef char CMP_RESULT;
24#else
25// Otherwise the comparison functions return long.
26typedef long CMP_RESULT;
27#endif
28
29#if !defined(__clang__) && defined(__GNUC__)
30// GCC uses a special __libgcc_cmp_return__ mode to define the return type, so
31// check that we are ABI-compatible when compiling the builtins with GCC.
32typedef int GCC_CMP_RESULT __attribute__((__mode__(__libgcc_cmp_return__)));
33_Static_assert(sizeof(GCC_CMP_RESULT) == sizeof(CMP_RESULT),
34               "SOFTFP ABI not compatible with GCC");
35#endif
36
37enum {
38  LE_LESS = -1,
39  LE_EQUAL = 0,
40  LE_GREATER = 1,
41  LE_UNORDERED = 1,
42};
43
44static inline CMP_RESULT __leXf2__(fp_t a, fp_t b) {
45  const srep_t aInt = toRep(a);
46  const srep_t bInt = toRep(b);
47  const rep_t aAbs = aInt & absMask;
48  const rep_t bAbs = bInt & absMask;
49
50  // If either a or b is NaN, they are unordered.
51  if (aAbs > infRep || bAbs > infRep)
52    return LE_UNORDERED;
53
54  // If a and b are both zeros, they are equal.
55  if ((aAbs | bAbs) == 0)
56    return LE_EQUAL;
57
58  // If at least one of a and b is positive, we get the same result comparing
59  // a and b as signed integers as we would with a floating-point compare.
60  if ((aInt & bInt) >= 0) {
61    if (aInt < bInt)
62      return LE_LESS;
63    else if (aInt == bInt)
64      return LE_EQUAL;
65    else
66      return LE_GREATER;
67  } else {
68    // Otherwise, both are negative, so we need to flip the sense of the
69    // comparison to get the correct result.  (This assumes a twos- or ones-
70    // complement integer representation; if integers are represented in a
71    // sign-magnitude representation, then this flip is incorrect).
72    if (aInt > bInt)
73      return LE_LESS;
74    else if (aInt == bInt)
75      return LE_EQUAL;
76    else
77      return LE_GREATER;
78  }
79}
80
81enum {
82  GE_LESS = -1,
83  GE_EQUAL = 0,
84  GE_GREATER = 1,
85  GE_UNORDERED = -1 // Note: different from LE_UNORDERED
86};
87
88static inline CMP_RESULT __geXf2__(fp_t a, fp_t b) {
89  const srep_t aInt = toRep(a);
90  const srep_t bInt = toRep(b);
91  const rep_t aAbs = aInt & absMask;
92  const rep_t bAbs = bInt & absMask;
93
94  if (aAbs > infRep || bAbs > infRep)
95    return GE_UNORDERED;
96  if ((aAbs | bAbs) == 0)
97    return GE_EQUAL;
98  if ((aInt & bInt) >= 0) {
99    if (aInt < bInt)
100      return GE_LESS;
101    else if (aInt == bInt)
102      return GE_EQUAL;
103    else
104      return GE_GREATER;
105  } else {
106    if (aInt > bInt)
107      return GE_LESS;
108    else if (aInt == bInt)
109      return GE_EQUAL;
110    else
111      return GE_GREATER;
112  }
113}
114
115static inline CMP_RESULT __unordXf2__(fp_t a, fp_t b) {
116  const rep_t aAbs = toRep(a) & absMask;
117  const rep_t bAbs = toRep(b) & absMask;
118  return aAbs > infRep || bAbs > infRep;
119}
120