xref: /freebsd/contrib/llvm-project/compiler-rt/lib/builtins/fp_add_impl.inc (revision f81cdf24ba5436367377f7c8e8f51f6df2a75ca7)
1//===----- lib/fp_add_impl.inc - floaing point addition -----------*- C -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements soft-float addition with the IEEE-754 default rounding
10// (to nearest, ties to even).
11//
12//===----------------------------------------------------------------------===//
13
14#include "fp_lib.h"
15#include "fp_mode.h"
16
17static __inline fp_t __addXf3__(fp_t a, fp_t b) {
18  rep_t aRep = toRep(a);
19  rep_t bRep = toRep(b);
20  const rep_t aAbs = aRep & absMask;
21  const rep_t bAbs = bRep & absMask;
22
23  // Detect if a or b is zero, infinity, or NaN.
24  if (aAbs - REP_C(1) >= infRep - REP_C(1) ||
25      bAbs - REP_C(1) >= infRep - REP_C(1)) {
26    // NaN + anything = qNaN
27    if (aAbs > infRep)
28      return fromRep(toRep(a) | quietBit);
29    // anything + NaN = qNaN
30    if (bAbs > infRep)
31      return fromRep(toRep(b) | quietBit);
32
33    if (aAbs == infRep) {
34      // +/-infinity + -/+infinity = qNaN
35      if ((toRep(a) ^ toRep(b)) == signBit)
36        return fromRep(qnanRep);
37      // +/-infinity + anything remaining = +/- infinity
38      else
39        return a;
40    }
41
42    // anything remaining + +/-infinity = +/-infinity
43    if (bAbs == infRep)
44      return b;
45
46    // zero + anything = anything
47    if (!aAbs) {
48      // We need to get the sign right for zero + zero.
49      if (!bAbs)
50        return fromRep(toRep(a) & toRep(b));
51      else
52        return b;
53    }
54
55    // anything + zero = anything
56    if (!bAbs)
57      return a;
58  }
59
60  // Swap a and b if necessary so that a has the larger absolute value.
61  if (bAbs > aAbs) {
62    const rep_t temp = aRep;
63    aRep = bRep;
64    bRep = temp;
65  }
66
67  // Extract the exponent and significand from the (possibly swapped) a and b.
68  int aExponent = aRep >> significandBits & maxExponent;
69  int bExponent = bRep >> significandBits & maxExponent;
70  rep_t aSignificand = aRep & significandMask;
71  rep_t bSignificand = bRep & significandMask;
72
73  // Normalize any denormals, and adjust the exponent accordingly.
74  if (aExponent == 0)
75    aExponent = normalize(&aSignificand);
76  if (bExponent == 0)
77    bExponent = normalize(&bSignificand);
78
79  // The sign of the result is the sign of the larger operand, a.  If they
80  // have opposite signs, we are performing a subtraction.  Otherwise, we
81  // perform addition.
82  const rep_t resultSign = aRep & signBit;
83  const bool subtraction = (aRep ^ bRep) & signBit;
84
85  // Shift the significands to give us round, guard and sticky, and set the
86  // implicit significand bit.  If we fell through from the denormal path it
87  // was already set by normalize( ), but setting it twice won't hurt
88  // anything.
89  aSignificand = (aSignificand | implicitBit) << 3;
90  bSignificand = (bSignificand | implicitBit) << 3;
91
92  // Shift the significand of b by the difference in exponents, with a sticky
93  // bottom bit to get rounding correct.
94  const unsigned int align = aExponent - bExponent;
95  if (align) {
96    if (align < typeWidth) {
97      const bool sticky = (bSignificand << (typeWidth - align)) != 0;
98      bSignificand = bSignificand >> align | sticky;
99    } else {
100      bSignificand = 1; // Set the sticky bit.  b is known to be non-zero.
101    }
102  }
103  if (subtraction) {
104    aSignificand -= bSignificand;
105    // If a == -b, return +zero.
106    if (aSignificand == 0)
107      return fromRep(0);
108
109    // If partial cancellation occured, we need to left-shift the result
110    // and adjust the exponent.
111    if (aSignificand < implicitBit << 3) {
112      const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
113      aSignificand <<= shift;
114      aExponent -= shift;
115    }
116  } else /* addition */ {
117    aSignificand += bSignificand;
118
119    // If the addition carried up, we need to right-shift the result and
120    // adjust the exponent.
121    if (aSignificand & implicitBit << 4) {
122      const bool sticky = aSignificand & 1;
123      aSignificand = aSignificand >> 1 | sticky;
124      aExponent += 1;
125    }
126  }
127
128  // If we have overflowed the type, return +/- infinity.
129  if (aExponent >= maxExponent)
130    return fromRep(infRep | resultSign);
131
132  if (aExponent <= 0) {
133    // The result is denormal before rounding.  The exponent is zero and we
134    // need to shift the significand.
135    const int shift = 1 - aExponent;
136    const bool sticky = (aSignificand << (typeWidth - shift)) != 0;
137    aSignificand = aSignificand >> shift | sticky;
138    aExponent = 0;
139  }
140
141  // Low three bits are round, guard, and sticky.
142  const int roundGuardSticky = aSignificand & 0x7;
143
144  // Shift the significand into place, and mask off the implicit bit.
145  rep_t result = aSignificand >> 3 & significandMask;
146
147  // Insert the exponent and sign.
148  result |= (rep_t)aExponent << significandBits;
149  result |= resultSign;
150
151  // Perform the final rounding.  The result may overflow to infinity, but
152  // that is the correct result in that case.
153  switch (__fe_getround()) {
154  case CRT_FE_TONEAREST:
155    if (roundGuardSticky > 0x4)
156      result++;
157    if (roundGuardSticky == 0x4)
158      result += result & 1;
159    break;
160  case CRT_FE_DOWNWARD:
161    if (resultSign && roundGuardSticky) result++;
162    break;
163  case CRT_FE_UPWARD:
164    if (!resultSign && roundGuardSticky) result++;
165    break;
166  case CRT_FE_TOWARDZERO:
167    break;
168  }
169  if (roundGuardSticky)
170    __fe_raise_inexact();
171  return fromRep(result);
172}
173