1 //===-- floatundidf.c - Implement __floatundidf ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements __floatundidf for the compiler_rt library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 // Returns: convert a to a double, rounding toward even. 14 15 // Assumption: double is a IEEE 64 bit floating point type 16 // du_int is a 64 bit integral type 17 18 // seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm 19 // mmmm 20 21 #include "int_lib.h" 22 23 #ifndef __SOFT_FP__ 24 // Support for systems that have hardware floating-point; we'll set the inexact 25 // flag as a side-effect of this computation. 26 27 COMPILER_RT_ABI double __floatundidf(du_int a) { 28 static const double twop52 = 4503599627370496.0; // 0x1.0p52 29 static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84 30 static const double twop84_plus_twop52 = 31 19342813118337666422669312.0; // 0x1.00000001p84 32 33 union { 34 uint64_t x; 35 double d; 36 } high = {.d = twop84}; 37 union { 38 uint64_t x; 39 double d; 40 } low = {.d = twop52}; 41 42 high.x |= a >> 32; 43 low.x |= a & UINT64_C(0x00000000ffffffff); 44 45 const double result = (high.d - twop84_plus_twop52) + low.d; 46 return result; 47 } 48 49 #else 50 // Support for systems that don't have hardware floating-point; there are no 51 // flags to set, and we don't want to code-gen to an unknown soft-float 52 // implementation. 53 54 COMPILER_RT_ABI double __floatundidf(du_int a) { 55 if (a == 0) 56 return 0.0; 57 const unsigned N = sizeof(du_int) * CHAR_BIT; 58 int sd = N - __builtin_clzll(a); // number of significant digits 59 int e = sd - 1; // exponent 60 if (sd > DBL_MANT_DIG) { 61 // start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx 62 // finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR 63 // 12345678901234567890123456 64 // 1 = msb 1 bit 65 // P = bit DBL_MANT_DIG-1 bits to the right of 1 66 // Q = bit DBL_MANT_DIG bits to the right of 1 67 // R = "or" of all bits to the right of Q 68 switch (sd) { 69 case DBL_MANT_DIG + 1: 70 a <<= 1; 71 break; 72 case DBL_MANT_DIG + 2: 73 break; 74 default: 75 a = (a >> (sd - (DBL_MANT_DIG + 2))) | 76 ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0); 77 }; 78 // finish: 79 a |= (a & 4) != 0; // Or P into R 80 ++a; // round - this step may add a significant bit 81 a >>= 2; // dump Q and R 82 // a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits 83 if (a & ((du_int)1 << DBL_MANT_DIG)) { 84 a >>= 1; 85 ++e; 86 } 87 // a is now rounded to DBL_MANT_DIG bits 88 } else { 89 a <<= (DBL_MANT_DIG - sd); 90 // a is now rounded to DBL_MANT_DIG bits 91 } 92 double_bits fb; 93 fb.u.s.high = ((e + 1023) << 20) | // exponent 94 ((su_int)(a >> 32) & 0x000FFFFF); // mantissa-high 95 fb.u.s.low = (su_int)a; // mantissa-low 96 return fb.f; 97 } 98 #endif 99 100 #if defined(__ARM_EABI__) 101 #if defined(COMPILER_RT_ARMHF_TARGET) 102 AEABI_RTABI double __aeabi_ul2d(du_int a) { return __floatundidf(a); } 103 #else 104 COMPILER_RT_ALIAS(__floatundidf, __aeabi_ul2d) 105 #endif 106 #endif 107