1 //===-- lib/divtf3.c - Quad-precision division --------------------*- C -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements quad-precision soft-float division 10 // with the IEEE-754 default rounding (to nearest, ties to even). 11 // 12 // For simplicity, this implementation currently flushes denormals to zero. 13 // It should be a fairly straightforward exercise to implement gradual 14 // underflow with correct rounding. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define QUAD_PRECISION 19 #include "fp_lib.h" 20 21 #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT) 22 COMPILER_RT_ABI fp_t __divtf3(fp_t a, fp_t b) { 23 24 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; 25 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; 26 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; 27 28 rep_t aSignificand = toRep(a) & significandMask; 29 rep_t bSignificand = toRep(b) & significandMask; 30 int scale = 0; 31 32 // Detect if a or b is zero, denormal, infinity, or NaN. 33 if (aExponent - 1U >= maxExponent - 1U || 34 bExponent - 1U >= maxExponent - 1U) { 35 36 const rep_t aAbs = toRep(a) & absMask; 37 const rep_t bAbs = toRep(b) & absMask; 38 39 // NaN / anything = qNaN 40 if (aAbs > infRep) 41 return fromRep(toRep(a) | quietBit); 42 // anything / NaN = qNaN 43 if (bAbs > infRep) 44 return fromRep(toRep(b) | quietBit); 45 46 if (aAbs == infRep) { 47 // infinity / infinity = NaN 48 if (bAbs == infRep) 49 return fromRep(qnanRep); 50 // infinity / anything else = +/- infinity 51 else 52 return fromRep(aAbs | quotientSign); 53 } 54 55 // anything else / infinity = +/- 0 56 if (bAbs == infRep) 57 return fromRep(quotientSign); 58 59 if (!aAbs) { 60 // zero / zero = NaN 61 if (!bAbs) 62 return fromRep(qnanRep); 63 // zero / anything else = +/- zero 64 else 65 return fromRep(quotientSign); 66 } 67 // anything else / zero = +/- infinity 68 if (!bAbs) 69 return fromRep(infRep | quotientSign); 70 71 // One or both of a or b is denormal. The other (if applicable) is a 72 // normal number. Renormalize one or both of a and b, and set scale to 73 // include the necessary exponent adjustment. 74 if (aAbs < implicitBit) 75 scale += normalize(&aSignificand); 76 if (bAbs < implicitBit) 77 scale -= normalize(&bSignificand); 78 } 79 80 // Set the implicit significand bit. If we fell through from the 81 // denormal path it was already set by normalize( ), but setting it twice 82 // won't hurt anything. 83 aSignificand |= implicitBit; 84 bSignificand |= implicitBit; 85 int quotientExponent = aExponent - bExponent + scale; 86 87 // Align the significand of b as a Q63 fixed-point number in the range 88 // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax 89 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This 90 // is accurate to about 3.5 binary digits. 91 const uint64_t q63b = bSignificand >> 49; 92 uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b; 93 // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2) 94 95 // Now refine the reciprocal estimate using a Newton-Raphson iteration: 96 // 97 // x1 = x0 * (2 - x0 * b) 98 // 99 // This doubles the number of correct binary digits in the approximation 100 // with each iteration. 101 uint64_t correction64; 102 correction64 = -((rep_t)recip64 * q63b >> 64); 103 recip64 = (rep_t)recip64 * correction64 >> 63; 104 correction64 = -((rep_t)recip64 * q63b >> 64); 105 recip64 = (rep_t)recip64 * correction64 >> 63; 106 correction64 = -((rep_t)recip64 * q63b >> 64); 107 recip64 = (rep_t)recip64 * correction64 >> 63; 108 correction64 = -((rep_t)recip64 * q63b >> 64); 109 recip64 = (rep_t)recip64 * correction64 >> 63; 110 correction64 = -((rep_t)recip64 * q63b >> 64); 111 recip64 = (rep_t)recip64 * correction64 >> 63; 112 113 // The reciprocal may have overflowed to zero if the upper half of b is 114 // exactly 1.0. This would sabatoge the full-width final stage of the 115 // computation that follows, so we adjust the reciprocal down by one bit. 116 recip64--; 117 118 // We need to perform one more iteration to get us to 112 binary digits; 119 // The last iteration needs to happen with extra precision. 120 const uint64_t q127blo = bSignificand << 15; 121 rep_t correction, reciprocal; 122 123 // NOTE: This operation is equivalent to __multi3, which is not implemented 124 // in some architechure 125 rep_t r64q63, r64q127, r64cH, r64cL, dummy; 126 wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63); 127 wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127); 128 129 correction = -(r64q63 + (r64q127 >> 64)); 130 131 uint64_t cHi = correction >> 64; 132 uint64_t cLo = correction; 133 134 wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH); 135 wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL); 136 137 reciprocal = r64cH + (r64cL >> 64); 138 139 // Adjust the final 128-bit reciprocal estimate downward to ensure that it 140 // is strictly smaller than the infinitely precise exact reciprocal. Because 141 // the computation of the Newton-Raphson step is truncating at every step, 142 // this adjustment is small; most of the work is already done. 143 reciprocal -= 2; 144 145 // The numerical reciprocal is accurate to within 2^-112, lies in the 146 // interval [0.5, 1.0), and is strictly smaller than the true reciprocal 147 // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b 148 // in Q127 with the following properties: 149 // 150 // 1. q < a/b 151 // 2. q is in the interval [0.5, 2.0) 152 // 3. The error in q is bounded away from 2^-113 (actually, we have a 153 // couple of bits to spare, but this is all we need). 154 155 // We need a 128 x 128 multiply high to compute q, which isn't a basic 156 // operation in C, so we need to be a little bit fussy. 157 rep_t quotient, quotientLo; 158 wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); 159 160 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). 161 // In either case, we are going to compute a residual of the form 162 // 163 // r = a - q*b 164 // 165 // We know from the construction of q that r satisfies: 166 // 167 // 0 <= r < ulp(q)*b 168 // 169 // If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we 170 // already have the correct result. The exact halfway case cannot occur. 171 // We also take this time to right shift quotient if it falls in the [1,2) 172 // range and adjust the exponent accordingly. 173 rep_t residual; 174 rep_t qb; 175 176 if (quotient < (implicitBit << 1)) { 177 wideMultiply(quotient, bSignificand, &dummy, &qb); 178 residual = (aSignificand << 113) - qb; 179 quotientExponent--; 180 } else { 181 quotient >>= 1; 182 wideMultiply(quotient, bSignificand, &dummy, &qb); 183 residual = (aSignificand << 112) - qb; 184 } 185 186 const int writtenExponent = quotientExponent + exponentBias; 187 188 if (writtenExponent >= maxExponent) { 189 // If we have overflowed the exponent, return infinity. 190 return fromRep(infRep | quotientSign); 191 } else if (writtenExponent < 1) { 192 if (writtenExponent == 0) { 193 // Check whether the rounded result is normal. 194 const bool round = (residual << 1) > bSignificand; 195 // Clear the implicit bit. 196 rep_t absResult = quotient & significandMask; 197 // Round. 198 absResult += round; 199 if (absResult & ~significandMask) { 200 // The rounded result is normal; return it. 201 return fromRep(absResult | quotientSign); 202 } 203 } 204 // Flush denormals to zero. In the future, it would be nice to add 205 // code to round them correctly. 206 return fromRep(quotientSign); 207 } else { 208 const bool round = (residual << 1) >= bSignificand; 209 // Clear the implicit bit. 210 rep_t absResult = quotient & significandMask; 211 // Insert the exponent. 212 absResult |= (rep_t)writtenExponent << significandBits; 213 // Round. 214 absResult += round; 215 // Insert the sign and return. 216 const fp_t result = fromRep(absResult | quotientSign); 217 return result; 218 } 219 } 220 221 #endif 222