1 //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements single-precision soft-float division 10 // with the IEEE-754 default rounding (to nearest, ties to even). 11 // 12 // For simplicity, this implementation currently flushes denormals to zero. 13 // It should be a fairly straightforward exercise to implement gradual 14 // underflow with correct rounding. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define SINGLE_PRECISION 19 #include "fp_lib.h" 20 21 COMPILER_RT_ABI fp_t __divsf3(fp_t a, fp_t b) { 22 23 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; 24 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; 25 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; 26 27 rep_t aSignificand = toRep(a) & significandMask; 28 rep_t bSignificand = toRep(b) & significandMask; 29 int scale = 0; 30 31 // Detect if a or b is zero, denormal, infinity, or NaN. 32 if (aExponent - 1U >= maxExponent - 1U || 33 bExponent - 1U >= maxExponent - 1U) { 34 35 const rep_t aAbs = toRep(a) & absMask; 36 const rep_t bAbs = toRep(b) & absMask; 37 38 // NaN / anything = qNaN 39 if (aAbs > infRep) 40 return fromRep(toRep(a) | quietBit); 41 // anything / NaN = qNaN 42 if (bAbs > infRep) 43 return fromRep(toRep(b) | quietBit); 44 45 if (aAbs == infRep) { 46 // infinity / infinity = NaN 47 if (bAbs == infRep) 48 return fromRep(qnanRep); 49 // infinity / anything else = +/- infinity 50 else 51 return fromRep(aAbs | quotientSign); 52 } 53 54 // anything else / infinity = +/- 0 55 if (bAbs == infRep) 56 return fromRep(quotientSign); 57 58 if (!aAbs) { 59 // zero / zero = NaN 60 if (!bAbs) 61 return fromRep(qnanRep); 62 // zero / anything else = +/- zero 63 else 64 return fromRep(quotientSign); 65 } 66 // anything else / zero = +/- infinity 67 if (!bAbs) 68 return fromRep(infRep | quotientSign); 69 70 // One or both of a or b is denormal. The other (if applicable) is a 71 // normal number. Renormalize one or both of a and b, and set scale to 72 // include the necessary exponent adjustment. 73 if (aAbs < implicitBit) 74 scale += normalize(&aSignificand); 75 if (bAbs < implicitBit) 76 scale -= normalize(&bSignificand); 77 } 78 79 // Set the implicit significand bit. If we fell through from the 80 // denormal path it was already set by normalize( ), but setting it twice 81 // won't hurt anything. 82 aSignificand |= implicitBit; 83 bSignificand |= implicitBit; 84 int quotientExponent = aExponent - bExponent + scale; 85 // 0x7504F333 / 2^32 + 1 = 3/4 + 1/sqrt(2) 86 87 // Align the significand of b as a Q31 fixed-point number in the range 88 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax 89 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This 90 // is accurate to about 3.5 binary digits. 91 uint32_t q31b = bSignificand << 8; 92 uint32_t reciprocal = UINT32_C(0x7504f333) - q31b; 93 94 // Now refine the reciprocal estimate using a Newton-Raphson iteration: 95 // 96 // x1 = x0 * (2 - x0 * b) 97 // 98 // This doubles the number of correct binary digits in the approximation 99 // with each iteration. 100 uint32_t correction; 101 correction = -((uint64_t)reciprocal * q31b >> 32); 102 reciprocal = (uint64_t)reciprocal * correction >> 31; 103 correction = -((uint64_t)reciprocal * q31b >> 32); 104 reciprocal = (uint64_t)reciprocal * correction >> 31; 105 correction = -((uint64_t)reciprocal * q31b >> 32); 106 reciprocal = (uint64_t)reciprocal * correction >> 31; 107 108 // Adust the final 32-bit reciprocal estimate downward to ensure that it is 109 // strictly smaller than the infinitely precise exact reciprocal. Because 110 // the computation of the Newton-Raphson step is truncating at every step, 111 // this adjustment is small; most of the work is already done. 112 reciprocal -= 2; 113 114 // The numerical reciprocal is accurate to within 2^-28, lies in the 115 // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller 116 // than the true reciprocal of b. Multiplying a by this reciprocal thus 117 // gives a numerical q = a/b in Q24 with the following properties: 118 // 119 // 1. q < a/b 120 // 2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0) 121 // 3. The error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes 122 // from the fact that we truncate the product, and the 2^27 term 123 // is the error in the reciprocal of b scaled by the maximum 124 // possible value of a. As a consequence of this error bound, 125 // either q or nextafter(q) is the correctly rounded. 126 rep_t quotient = (uint64_t)reciprocal * (aSignificand << 1) >> 32; 127 128 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). 129 // In either case, we are going to compute a residual of the form 130 // 131 // r = a - q*b 132 // 133 // We know from the construction of q that r satisfies: 134 // 135 // 0 <= r < ulp(q)*b 136 // 137 // If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we 138 // already have the correct result. The exact halfway case cannot occur. 139 // We also take this time to right shift quotient if it falls in the [1,2) 140 // range and adjust the exponent accordingly. 141 rep_t residual; 142 if (quotient < (implicitBit << 1)) { 143 residual = (aSignificand << 24) - quotient * bSignificand; 144 quotientExponent--; 145 } else { 146 quotient >>= 1; 147 residual = (aSignificand << 23) - quotient * bSignificand; 148 } 149 150 const int writtenExponent = quotientExponent + exponentBias; 151 152 if (writtenExponent >= maxExponent) { 153 // If we have overflowed the exponent, return infinity. 154 return fromRep(infRep | quotientSign); 155 } 156 157 else if (writtenExponent < 1) { 158 if (writtenExponent == 0) { 159 // Check whether the rounded result is normal. 160 const bool round = (residual << 1) > bSignificand; 161 // Clear the implicit bit. 162 rep_t absResult = quotient & significandMask; 163 // Round. 164 absResult += round; 165 if (absResult & ~significandMask) { 166 // The rounded result is normal; return it. 167 return fromRep(absResult | quotientSign); 168 } 169 } 170 // Flush denormals to zero. In the future, it would be nice to add 171 // code to round them correctly. 172 return fromRep(quotientSign); 173 } 174 175 else { 176 const bool round = (residual << 1) > bSignificand; 177 // Clear the implicit bit. 178 rep_t absResult = quotient & significandMask; 179 // Insert the exponent. 180 absResult |= (rep_t)writtenExponent << significandBits; 181 // Round. 182 absResult += round; 183 // Insert the sign and return. 184 return fromRep(absResult | quotientSign); 185 } 186 } 187 188 #if defined(__ARM_EABI__) 189 #if defined(COMPILER_RT_ARMHF_TARGET) 190 AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) { return __divsf3(a, b); } 191 #else 192 COMPILER_RT_ALIAS(__divsf3, __aeabi_fdiv) 193 #endif 194 #endif 195