1 //===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements double-precision soft-float division 10 // with the IEEE-754 default rounding (to nearest, ties to even). 11 // 12 // For simplicity, this implementation currently flushes denormals to zero. 13 // It should be a fairly straightforward exercise to implement gradual 14 // underflow with correct rounding. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define DOUBLE_PRECISION 19 #include "fp_lib.h" 20 21 COMPILER_RT_ABI fp_t __divdf3(fp_t a, fp_t b) { 22 23 const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; 24 const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; 25 const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; 26 27 rep_t aSignificand = toRep(a) & significandMask; 28 rep_t bSignificand = toRep(b) & significandMask; 29 int scale = 0; 30 31 // Detect if a or b is zero, denormal, infinity, or NaN. 32 if (aExponent - 1U >= maxExponent - 1U || 33 bExponent - 1U >= maxExponent - 1U) { 34 35 const rep_t aAbs = toRep(a) & absMask; 36 const rep_t bAbs = toRep(b) & absMask; 37 38 // NaN / anything = qNaN 39 if (aAbs > infRep) 40 return fromRep(toRep(a) | quietBit); 41 // anything / NaN = qNaN 42 if (bAbs > infRep) 43 return fromRep(toRep(b) | quietBit); 44 45 if (aAbs == infRep) { 46 // infinity / infinity = NaN 47 if (bAbs == infRep) 48 return fromRep(qnanRep); 49 // infinity / anything else = +/- infinity 50 else 51 return fromRep(aAbs | quotientSign); 52 } 53 54 // anything else / infinity = +/- 0 55 if (bAbs == infRep) 56 return fromRep(quotientSign); 57 58 if (!aAbs) { 59 // zero / zero = NaN 60 if (!bAbs) 61 return fromRep(qnanRep); 62 // zero / anything else = +/- zero 63 else 64 return fromRep(quotientSign); 65 } 66 // anything else / zero = +/- infinity 67 if (!bAbs) 68 return fromRep(infRep | quotientSign); 69 70 // One or both of a or b is denormal. The other (if applicable) is a 71 // normal number. Renormalize one or both of a and b, and set scale to 72 // include the necessary exponent adjustment. 73 if (aAbs < implicitBit) 74 scale += normalize(&aSignificand); 75 if (bAbs < implicitBit) 76 scale -= normalize(&bSignificand); 77 } 78 79 // Set the implicit significand bit. If we fell through from the 80 // denormal path it was already set by normalize( ), but setting it twice 81 // won't hurt anything. 82 aSignificand |= implicitBit; 83 bSignificand |= implicitBit; 84 int quotientExponent = aExponent - bExponent + scale; 85 86 // Align the significand of b as a Q31 fixed-point number in the range 87 // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax 88 // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This 89 // is accurate to about 3.5 binary digits. 90 const uint32_t q31b = bSignificand >> 21; 91 uint32_t recip32 = UINT32_C(0x7504f333) - q31b; 92 // 0x7504F333 / 2^32 + 1 = 3/4 + 1/sqrt(2) 93 94 // Now refine the reciprocal estimate using a Newton-Raphson iteration: 95 // 96 // x1 = x0 * (2 - x0 * b) 97 // 98 // This doubles the number of correct binary digits in the approximation 99 // with each iteration. 100 uint32_t correction32; 101 correction32 = -((uint64_t)recip32 * q31b >> 32); 102 recip32 = (uint64_t)recip32 * correction32 >> 31; 103 correction32 = -((uint64_t)recip32 * q31b >> 32); 104 recip32 = (uint64_t)recip32 * correction32 >> 31; 105 correction32 = -((uint64_t)recip32 * q31b >> 32); 106 recip32 = (uint64_t)recip32 * correction32 >> 31; 107 108 // The reciprocal may have overflowed to zero if the upper half of b is 109 // exactly 1.0. This would sabatoge the full-width final stage of the 110 // computation that follows, so we adjust the reciprocal down by one bit. 111 recip32--; 112 113 // We need to perform one more iteration to get us to 56 binary digits. 114 // The last iteration needs to happen with extra precision. 115 const uint32_t q63blo = bSignificand << 11; 116 uint64_t correction, reciprocal; 117 correction = -((uint64_t)recip32 * q31b + ((uint64_t)recip32 * q63blo >> 32)); 118 uint32_t cHi = correction >> 32; 119 uint32_t cLo = correction; 120 reciprocal = (uint64_t)recip32 * cHi + ((uint64_t)recip32 * cLo >> 32); 121 122 // Adjust the final 64-bit reciprocal estimate downward to ensure that it is 123 // strictly smaller than the infinitely precise exact reciprocal. Because 124 // the computation of the Newton-Raphson step is truncating at every step, 125 // this adjustment is small; most of the work is already done. 126 reciprocal -= 2; 127 128 // The numerical reciprocal is accurate to within 2^-56, lies in the 129 // interval [0.5, 1.0), and is strictly smaller than the true reciprocal 130 // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b 131 // in Q53 with the following properties: 132 // 133 // 1. q < a/b 134 // 2. q is in the interval [0.5, 2.0) 135 // 3. The error in q is bounded away from 2^-53 (actually, we have a 136 // couple of bits to spare, but this is all we need). 137 138 // We need a 64 x 64 multiply high to compute q, which isn't a basic 139 // operation in C, so we need to be a little bit fussy. 140 rep_t quotient, quotientLo; 141 wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); 142 143 // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). 144 // In either case, we are going to compute a residual of the form 145 // 146 // r = a - q*b 147 // 148 // We know from the construction of q that r satisfies: 149 // 150 // 0 <= r < ulp(q)*b 151 // 152 // If r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we 153 // already have the correct result. The exact halfway case cannot occur. 154 // We also take this time to right shift quotient if it falls in the [1,2) 155 // range and adjust the exponent accordingly. 156 rep_t residual; 157 if (quotient < (implicitBit << 1)) { 158 residual = (aSignificand << 53) - quotient * bSignificand; 159 quotientExponent--; 160 } else { 161 quotient >>= 1; 162 residual = (aSignificand << 52) - quotient * bSignificand; 163 } 164 165 const int writtenExponent = quotientExponent + exponentBias; 166 167 if (writtenExponent >= maxExponent) { 168 // If we have overflowed the exponent, return infinity. 169 return fromRep(infRep | quotientSign); 170 } 171 172 else if (writtenExponent < 1) { 173 if (writtenExponent == 0) { 174 // Check whether the rounded result is normal. 175 const bool round = (residual << 1) > bSignificand; 176 // Clear the implicit bit. 177 rep_t absResult = quotient & significandMask; 178 // Round. 179 absResult += round; 180 if (absResult & ~significandMask) { 181 // The rounded result is normal; return it. 182 return fromRep(absResult | quotientSign); 183 } 184 } 185 // Flush denormals to zero. In the future, it would be nice to add 186 // code to round them correctly. 187 return fromRep(quotientSign); 188 } 189 190 else { 191 const bool round = (residual << 1) > bSignificand; 192 // Clear the implicit bit. 193 rep_t absResult = quotient & significandMask; 194 // Insert the exponent. 195 absResult |= (rep_t)writtenExponent << significandBits; 196 // Round. 197 absResult += round; 198 // Insert the sign and return. 199 const double result = fromRep(absResult | quotientSign); 200 return result; 201 } 202 } 203 204 #if defined(__ARM_EABI__) 205 #if defined(COMPILER_RT_ARMHF_TARGET) 206 AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) { return __divdf3(a, b); } 207 #else 208 COMPILER_RT_ALIAS(__divdf3, __aeabi_ddiv) 209 #endif 210 #endif 211