1Compiler-RT 2================================ 3 4This directory and its subdirectories contain source code for the compiler 5support routines. 6 7Compiler-RT is open source software. You may freely distribute it under the 8terms of the license agreement found in LICENSE.txt. 9 10================================ 11 12This is a replacement library for libgcc. Each function is contained 13in its own file. Each function has a corresponding unit test under 14test/Unit. 15 16A rudimentary script to test each file is in the file called 17test/Unit/test. 18 19Here is the specification for this library: 20 21http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc 22 23Please note that the libgcc specification explicitly mentions actual types of 24arguments and returned values being expressed with machine modes. 25In some cases particular types such as "int", "unsigned", "long long", etc. 26may be specified just as examples there. 27 28Here is a synopsis of the contents of this library: 29 30typedef int32_t si_int; 31typedef uint32_t su_int; 32 33typedef int64_t di_int; 34typedef uint64_t du_int; 35 36// Integral bit manipulation 37 38di_int __ashldi3(di_int a, int b); // a << b 39ti_int __ashlti3(ti_int a, int b); // a << b 40 41di_int __ashrdi3(di_int a, int b); // a >> b arithmetic (sign fill) 42ti_int __ashrti3(ti_int a, int b); // a >> b arithmetic (sign fill) 43di_int __lshrdi3(di_int a, int b); // a >> b logical (zero fill) 44ti_int __lshrti3(ti_int a, int b); // a >> b logical (zero fill) 45 46int __clzsi2(si_int a); // count leading zeros 47int __clzdi2(di_int a); // count leading zeros 48int __clzti2(ti_int a); // count leading zeros 49int __ctzsi2(si_int a); // count trailing zeros 50int __ctzdi2(di_int a); // count trailing zeros 51int __ctzti2(ti_int a); // count trailing zeros 52 53int __ffssi2(si_int a); // find least significant 1 bit 54int __ffsdi2(di_int a); // find least significant 1 bit 55int __ffsti2(ti_int a); // find least significant 1 bit 56 57int __paritysi2(si_int a); // bit parity 58int __paritydi2(di_int a); // bit parity 59int __parityti2(ti_int a); // bit parity 60 61int __popcountsi2(si_int a); // bit population 62int __popcountdi2(di_int a); // bit population 63int __popcountti2(ti_int a); // bit population 64 65uint32_t __bswapsi2(uint32_t a); // a byteswapped 66uint64_t __bswapdi2(uint64_t a); // a byteswapped 67 68// Integral arithmetic 69 70di_int __negdi2 (di_int a); // -a 71ti_int __negti2 (ti_int a); // -a 72di_int __muldi3 (di_int a, di_int b); // a * b 73ti_int __multi3 (ti_int a, ti_int b); // a * b 74si_int __divsi3 (si_int a, si_int b); // a / b signed 75di_int __divdi3 (di_int a, di_int b); // a / b signed 76ti_int __divti3 (ti_int a, ti_int b); // a / b signed 77su_int __udivsi3 (su_int n, su_int d); // a / b unsigned 78du_int __udivdi3 (du_int a, du_int b); // a / b unsigned 79tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned 80si_int __modsi3 (si_int a, si_int b); // a % b signed 81di_int __moddi3 (di_int a, di_int b); // a % b signed 82ti_int __modti3 (ti_int a, ti_int b); // a % b signed 83su_int __umodsi3 (su_int a, su_int b); // a % b unsigned 84du_int __umoddi3 (du_int a, du_int b); // a % b unsigned 85tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned 86du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned 87tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned 88su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned 89si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed 90di_int __divmoddi4(di_int a, di_int b, di_int* rem); // a / b, *rem = a % b signed 91ti_int __divmodti4(ti_int a, ti_int b, ti_int* rem); // a / b, *rem = a % b signed 92 93 94 95// Integral arithmetic with trapping overflow 96 97si_int __absvsi2(si_int a); // abs(a) 98di_int __absvdi2(di_int a); // abs(a) 99ti_int __absvti2(ti_int a); // abs(a) 100 101si_int __negvsi2(si_int a); // -a 102di_int __negvdi2(di_int a); // -a 103ti_int __negvti2(ti_int a); // -a 104 105si_int __addvsi3(si_int a, si_int b); // a + b 106di_int __addvdi3(di_int a, di_int b); // a + b 107ti_int __addvti3(ti_int a, ti_int b); // a + b 108 109si_int __subvsi3(si_int a, si_int b); // a - b 110di_int __subvdi3(di_int a, di_int b); // a - b 111ti_int __subvti3(ti_int a, ti_int b); // a - b 112 113si_int __mulvsi3(si_int a, si_int b); // a * b 114di_int __mulvdi3(di_int a, di_int b); // a * b 115ti_int __mulvti3(ti_int a, ti_int b); // a * b 116 117 118// Integral arithmetic which returns if overflow 119 120si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range 121di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range 122ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to 123 one if result not in signed range 124 125 126// Integral comparison: a < b -> 0 127// a == b -> 1 128// a > b -> 2 129 130si_int __cmpdi2 (di_int a, di_int b); 131si_int __cmpti2 (ti_int a, ti_int b); 132si_int __ucmpdi2(du_int a, du_int b); 133si_int __ucmpti2(tu_int a, tu_int b); 134 135// Integral / floating point conversion 136 137di_int __fixsfdi( float a); 138di_int __fixdfdi( double a); 139di_int __fixxfdi(long double a); 140di_int __fixtfdi( tf_float a); 141 142ti_int __fixsfti( float a); 143ti_int __fixdfti( double a); 144ti_int __fixxfti(long double a); 145ti_int __fixtfti( tf_float a); 146 147su_int __fixunssfsi( float a); 148su_int __fixunsdfsi( double a); 149su_int __fixunsxfsi(long double a); 150su_int __fixunstfsi( tf_float a); 151 152du_int __fixunssfdi( float a); 153du_int __fixunsdfdi( double a); 154du_int __fixunsxfdi(long double a); 155du_int __fixunstfdi( tf_float a); 156 157tu_int __fixunssfti( float a); 158tu_int __fixunsdfti( double a); 159tu_int __fixunsxfti(long double a); 160tu_int __fixunstfti( tf_float a); 161 162float __floatdisf(di_int a); 163double __floatdidf(di_int a); 164long double __floatdixf(di_int a); 165tf_float __floatditf(int64_t a); 166 167float __floattisf(ti_int a); 168double __floattidf(ti_int a); 169long double __floattixf(ti_int a); 170tf_float __floattitf(ti_int a); 171 172float __floatundisf(du_int a); 173double __floatundidf(du_int a); 174long double __floatundixf(du_int a); 175tf_float __floatunditf(du_int a); 176 177float __floatuntisf(tu_int a); 178double __floatuntidf(tu_int a); 179long double __floatuntixf(tu_int a); 180tf_float __floatuntixf(tu_int a); 181 182// Floating point raised to integer power 183 184float __powisf2( float a, int b); // a ^ b 185double __powidf2( double a, int b); // a ^ b 186long double __powixf2(long double a, int b); // a ^ b 187tf_float __powitf2( tf_float a, int b); // a ^ b 188 189// Complex arithmetic 190 191// (a + ib) * (c + id) 192 193 float _Complex __mulsc3( float a, float b, float c, float d); 194 double _Complex __muldc3(double a, double b, double c, double d); 195long double _Complex __mulxc3(long double a, long double b, 196 long double c, long double d); 197 tf_float _Complex __multc3(tf_float a, tf_float b, tf_float c, tf_float d); 198 199// (a + ib) / (c + id) 200 201 float _Complex __divsc3( float a, float b, float c, float d); 202 double _Complex __divdc3(double a, double b, double c, double d); 203long double _Complex __divxc3(long double a, long double b, 204 long double c, long double d); 205 tf_float _Complex __divtc3(tf_float a, tf_float b, tf_float c, tf_float d); 206 207 208// Runtime support 209 210// __clear_cache() is used to tell process that new instructions have been 211// written to an address range. Necessary on processors that do not have 212// a unified instruction and data cache. 213void __clear_cache(void* start, void* end); 214 215// __enable_execute_stack() is used with nested functions when a trampoline 216// function is written onto the stack and that page range needs to be made 217// executable. 218void __enable_execute_stack(void* addr); 219 220// __gcc_personality_v0() is normally only called by the system unwinder. 221// C code (as opposed to C++) normally does not need a personality function 222// because there are no catch clauses or destructors to be run. But there 223// is a C language extension __attribute__((cleanup(func))) which marks local 224// variables as needing the cleanup function "func" to be run when the 225// variable goes out of scope. That includes when an exception is thrown, 226// so a personality handler is needed. 227_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions, 228 uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject, 229 _Unwind_Context_t context); 230 231// for use with some implementations of assert() in <assert.h> 232void __eprintf(const char* format, const char* assertion_expression, 233 const char* line, const char* file); 234 235// for systems with emulated thread local storage 236void* __emutls_get_address(struct __emutls_control*); 237 238 239// Power PC specific functions 240 241// There is no C interface to the saveFP/restFP functions. They are helper 242// functions called by the prolog and epilog of functions that need to save 243// a number of non-volatile float point registers. 244saveFP 245restFP 246 247// PowerPC has a standard template for trampoline functions. This function 248// generates a custom trampoline function with the specific realFunc 249// and localsPtr values. 250void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 251 const void* realFunc, void* localsPtr); 252 253// adds two 128-bit double-double precision values ( x + y ) 254long double __gcc_qadd(long double x, long double y); 255 256// subtracts two 128-bit double-double precision values ( x - y ) 257long double __gcc_qsub(long double x, long double y); 258 259// multiples two 128-bit double-double precision values ( x * y ) 260long double __gcc_qmul(long double x, long double y); 261 262// divides two 128-bit double-double precision values ( x / y ) 263long double __gcc_qdiv(long double a, long double b); 264 265 266// ARM specific functions 267 268// There is no C interface to the switch* functions. These helper functions 269// are only needed by Thumb1 code for efficient switch table generation. 270switch16 271switch32 272switch8 273switchu8 274 275// There is no C interface to the *_vfp_d8_d15_regs functions. There are 276// called in the prolog and epilog of Thumb1 functions. When the C++ ABI use 277// SJLJ for exceptions, each function with a catch clause or destructors needs 278// to save and restore all registers in it prolog and epilog. But there is 279// no way to access vector and high float registers from thumb1 code, so the 280// compiler must add call outs to these helper functions in the prolog and 281// epilog. 282restore_vfp_d8_d15_regs 283save_vfp_d8_d15_regs 284 285 286// Note: long ago ARM processors did not have floating point hardware support. 287// Floating point was done in software and floating point parameters were 288// passed in integer registers. When hardware support was added for floating 289// point, new *vfp functions were added to do the same operations but with 290// floating point parameters in floating point registers. 291 292// Undocumented functions 293 294float __addsf3vfp(float a, float b); // Appears to return a + b 295double __adddf3vfp(double a, double b); // Appears to return a + b 296float __divsf3vfp(float a, float b); // Appears to return a / b 297double __divdf3vfp(double a, double b); // Appears to return a / b 298int __eqsf2vfp(float a, float b); // Appears to return one 299 // iff a == b and neither is NaN. 300int __eqdf2vfp(double a, double b); // Appears to return one 301 // iff a == b and neither is NaN. 302double __extendsfdf2vfp(float a); // Appears to convert from 303 // float to double. 304int __fixdfsivfp(double a); // Appears to convert from 305 // double to int. 306int __fixsfsivfp(float a); // Appears to convert from 307 // float to int. 308unsigned int __fixunssfsivfp(float a); // Appears to convert from 309 // float to unsigned int. 310unsigned int __fixunsdfsivfp(double a); // Appears to convert from 311 // double to unsigned int. 312double __floatsidfvfp(int a); // Appears to convert from 313 // int to double. 314float __floatsisfvfp(int a); // Appears to convert from 315 // int to float. 316double __floatunssidfvfp(unsigned int a); // Appears to convert from 317 // unsigned int to double. 318float __floatunssisfvfp(unsigned int a); // Appears to convert from 319 // unsigned int to float. 320int __gedf2vfp(double a, double b); // Appears to return __gedf2 321 // (a >= b) 322int __gesf2vfp(float a, float b); // Appears to return __gesf2 323 // (a >= b) 324int __gtdf2vfp(double a, double b); // Appears to return __gtdf2 325 // (a > b) 326int __gtsf2vfp(float a, float b); // Appears to return __gtsf2 327 // (a > b) 328int __ledf2vfp(double a, double b); // Appears to return __ledf2 329 // (a <= b) 330int __lesf2vfp(float a, float b); // Appears to return __lesf2 331 // (a <= b) 332int __ltdf2vfp(double a, double b); // Appears to return __ltdf2 333 // (a < b) 334int __ltsf2vfp(float a, float b); // Appears to return __ltsf2 335 // (a < b) 336double __muldf3vfp(double a, double b); // Appears to return a * b 337float __mulsf3vfp(float a, float b); // Appears to return a * b 338int __nedf2vfp(double a, double b); // Appears to return __nedf2 339 // (a != b) 340double __negdf2vfp(double a); // Appears to return -a 341float __negsf2vfp(float a); // Appears to return -a 342float __negsf2vfp(float a); // Appears to return -a 343double __subdf3vfp(double a, double b); // Appears to return a - b 344float __subsf3vfp(float a, float b); // Appears to return a - b 345float __truncdfsf2vfp(double a); // Appears to convert from 346 // double to float. 347int __unorddf2vfp(double a, double b); // Appears to return __unorddf2 348int __unordsf2vfp(float a, float b); // Appears to return __unordsf2 349 350 351Preconditions are listed for each function at the definition when there are any. 352Any preconditions reflect the specification at 353http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc. 354 355Assumptions are listed in "int_lib.h", and in individual files. Where possible 356assumptions are checked at compile time. 357