1Compiler-RT
2================================
3
4This directory and its subdirectories contain source code for the compiler
5support routines.
6
7Compiler-RT is open source software. You may freely distribute it under the
8terms of the license agreement found in LICENSE.txt.
9
10================================
11
12This is a replacement library for libgcc. Each function is contained
13in its own file. Each function has a corresponding unit test under
14test/Unit.
15
16A rudimentary script to test each file is in the file called
17test/Unit/test.
18
19Here is the specification for this library:
20
21http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
23Please note that the libgcc specification explicitly mentions actual types of
24arguments and returned values being expressed with machine modes.
25In some cases particular types such as "int", "unsigned", "long long", etc.
26may be specified just as examples there.
27
28Here is a synopsis of the contents of this library:
29
30typedef int32_t si_int;
31typedef uint32_t su_int;
32
33typedef int64_t di_int;
34typedef uint64_t du_int;
35
36// Integral bit manipulation
37
38di_int __ashldi3(di_int a, int b); // a << b
39ti_int __ashlti3(ti_int a, int b); // a << b
40
41di_int __ashrdi3(di_int a, int b); // a >> b arithmetic (sign fill)
42ti_int __ashrti3(ti_int a, int b); // a >> b arithmetic (sign fill)
43di_int __lshrdi3(di_int a, int b); // a >> b logical (zero fill)
44ti_int __lshrti3(ti_int a, int b); // a >> b logical (zero fill)
45
46int __clzsi2(si_int a); // count leading zeros
47int __clzdi2(di_int a); // count leading zeros
48int __clzti2(ti_int a); // count leading zeros
49int __ctzsi2(si_int a); // count trailing zeros
50int __ctzdi2(di_int a); // count trailing zeros
51int __ctzti2(ti_int a); // count trailing zeros
52
53int __ffssi2(si_int a); // find least significant 1 bit
54int __ffsdi2(di_int a); // find least significant 1 bit
55int __ffsti2(ti_int a); // find least significant 1 bit
56
57int __paritysi2(si_int a); // bit parity
58int __paritydi2(di_int a); // bit parity
59int __parityti2(ti_int a); // bit parity
60
61int __popcountsi2(si_int a); // bit population
62int __popcountdi2(di_int a); // bit population
63int __popcountti2(ti_int a); // bit population
64
65uint32_t __bswapsi2(uint32_t a); // a byteswapped
66uint64_t __bswapdi2(uint64_t a); // a byteswapped
67
68// Integral arithmetic
69
70di_int __negdi2 (di_int a); // -a
71ti_int __negti2 (ti_int a); // -a
72di_int __muldi3 (di_int a, di_int b); // a * b
73ti_int __multi3 (ti_int a, ti_int b); // a * b
74si_int __divsi3 (si_int a, si_int b); // a / b signed
75di_int __divdi3 (di_int a, di_int b); // a / b signed
76ti_int __divti3 (ti_int a, ti_int b); // a / b signed
77su_int __udivsi3 (su_int n, su_int d); // a / b unsigned
78du_int __udivdi3 (du_int a, du_int b); // a / b unsigned
79tu_int __udivti3 (tu_int a, tu_int b); // a / b unsigned
80si_int __modsi3 (si_int a, si_int b); // a % b signed
81di_int __moddi3 (di_int a, di_int b); // a % b signed
82ti_int __modti3 (ti_int a, ti_int b); // a % b signed
83su_int __umodsi3 (su_int a, su_int b); // a % b unsigned
84du_int __umoddi3 (du_int a, du_int b); // a % b unsigned
85tu_int __umodti3 (tu_int a, tu_int b); // a % b unsigned
86du_int __udivmoddi4(du_int a, du_int b, du_int* rem); // a / b, *rem = a % b unsigned
87tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem); // a / b, *rem = a % b unsigned
88su_int __udivmodsi4(su_int a, su_int b, su_int* rem); // a / b, *rem = a % b unsigned
89si_int __divmodsi4(si_int a, si_int b, si_int* rem); // a / b, *rem = a % b signed
90di_int __divmoddi4(di_int a, di_int b, di_int* rem); // a / b, *rem = a % b signed
91ti_int __divmodti4(ti_int a, ti_int b, ti_int* rem); // a / b, *rem = a % b signed
92
93
94
95// Integral arithmetic with trapping overflow
96
97si_int __absvsi2(si_int a); // abs(a)
98di_int __absvdi2(di_int a); // abs(a)
99ti_int __absvti2(ti_int a); // abs(a)
100
101si_int __negvsi2(si_int a); // -a
102di_int __negvdi2(di_int a); // -a
103ti_int __negvti2(ti_int a); // -a
104
105si_int __addvsi3(si_int a, si_int b); // a + b
106di_int __addvdi3(di_int a, di_int b); // a + b
107ti_int __addvti3(ti_int a, ti_int b); // a + b
108
109si_int __subvsi3(si_int a, si_int b); // a - b
110di_int __subvdi3(di_int a, di_int b); // a - b
111ti_int __subvti3(ti_int a, ti_int b); // a - b
112
113si_int __mulvsi3(si_int a, si_int b); // a * b
114di_int __mulvdi3(di_int a, di_int b); // a * b
115ti_int __mulvti3(ti_int a, ti_int b); // a * b
116
117
118// Integral arithmetic which returns if overflow
119
120si_int __mulosi4(si_int a, si_int b, int* overflow); // a * b, overflow set to one if result not in signed range
121di_int __mulodi4(di_int a, di_int b, int* overflow); // a * b, overflow set to one if result not in signed range
122ti_int __muloti4(ti_int a, ti_int b, int* overflow); // a * b, overflow set to
123 one if result not in signed range
124
125
126// Integral comparison: a < b -> 0
127// a == b -> 1
128// a > b -> 2
129
130si_int __cmpdi2 (di_int a, di_int b);
131si_int __cmpti2 (ti_int a, ti_int b);
132si_int __ucmpdi2(du_int a, du_int b);
133si_int __ucmpti2(tu_int a, tu_int b);
134
135// Integral / floating point conversion
136
137di_int __fixsfdi( float a);
138di_int __fixdfdi( double a);
139di_int __fixxfdi(long double a);
140di_int __fixtfdi( tf_float a);
141
142ti_int __fixsfti( float a);
143ti_int __fixdfti( double a);
144ti_int __fixxfti(long double a);
145ti_int __fixtfti( tf_float a);
146
147su_int __fixunssfsi( float a);
148su_int __fixunsdfsi( double a);
149su_int __fixunsxfsi(long double a);
150su_int __fixunstfsi( tf_float a);
151
152du_int __fixunssfdi( float a);
153du_int __fixunsdfdi( double a);
154du_int __fixunsxfdi(long double a);
155du_int __fixunstfdi( tf_float a);
156
157tu_int __fixunssfti( float a);
158tu_int __fixunsdfti( double a);
159tu_int __fixunsxfti(long double a);
160tu_int __fixunstfti( tf_float a);
161
162float __floatdisf(di_int a);
163double __floatdidf(di_int a);
164long double __floatdixf(di_int a);
165tf_float __floatditf(int64_t a);
166
167float __floattisf(ti_int a);
168double __floattidf(ti_int a);
169long double __floattixf(ti_int a);
170tf_float __floattitf(ti_int a);
171
172float __floatundisf(du_int a);
173double __floatundidf(du_int a);
174long double __floatundixf(du_int a);
175tf_float __floatunditf(du_int a);
176
177float __floatuntisf(tu_int a);
178double __floatuntidf(tu_int a);
179long double __floatuntixf(tu_int a);
180tf_float __floatuntixf(tu_int a);
181
182// Floating point raised to integer power
183
184float __powisf2( float a, int b); // a ^ b
185double __powidf2( double a, int b); // a ^ b
186long double __powixf2(long double a, int b); // a ^ b
187tf_float __powitf2( tf_float a, int b); // a ^ b
188
189// Complex arithmetic
190
191// (a + ib) * (c + id)
192
193 float _Complex __mulsc3( float a, float b, float c, float d);
194 double _Complex __muldc3(double a, double b, double c, double d);
195long double _Complex __mulxc3(long double a, long double b,
196 long double c, long double d);
197 tf_float _Complex __multc3(tf_float a, tf_float b, tf_float c, tf_float d);
198
199// (a + ib) / (c + id)
200
201 float _Complex __divsc3( float a, float b, float c, float d);
202 double _Complex __divdc3(double a, double b, double c, double d);
203long double _Complex __divxc3(long double a, long double b,
204 long double c, long double d);
205 tf_float _Complex __divtc3(tf_float a, tf_float b, tf_float c, tf_float d);
206
207
208// Runtime support
209
210// __clear_cache() is used to tell process that new instructions have been
211// written to an address range. Necessary on processors that do not have
212// a unified instruction and data cache.
213void __clear_cache(void* start, void* end);
214
215// __enable_execute_stack() is used with nested functions when a trampoline
216// function is written onto the stack and that page range needs to be made
217// executable.
218void __enable_execute_stack(void* addr);
219
220// __gcc_personality_v0() is normally only called by the system unwinder.
221// C code (as opposed to C++) normally does not need a personality function
222// because there are no catch clauses or destructors to be run. But there
223// is a C language extension __attribute__((cleanup(func))) which marks local
224// variables as needing the cleanup function "func" to be run when the
225// variable goes out of scope. That includes when an exception is thrown,
226// so a personality handler is needed.
227_Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
228 uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
229 _Unwind_Context_t context);
230
231// for use with some implementations of assert() in <assert.h>
232void __eprintf(const char* format, const char* assertion_expression,
233 const char* line, const char* file);
234
235// for systems with emulated thread local storage
236void* __emutls_get_address(struct __emutls_control*);
237
238
239// Power PC specific functions
240
241// There is no C interface to the saveFP/restFP functions. They are helper
242// functions called by the prolog and epilog of functions that need to save
243// a number of non-volatile float point registers.
244saveFP
245restFP
246
247// PowerPC has a standard template for trampoline functions. This function
248// generates a custom trampoline function with the specific realFunc
249// and localsPtr values.
250void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
251 const void* realFunc, void* localsPtr);
252
253// adds two 128-bit double-double precision values ( x + y )
254long double __gcc_qadd(long double x, long double y);
255
256// subtracts two 128-bit double-double precision values ( x - y )
257long double __gcc_qsub(long double x, long double y);
258
259// multiples two 128-bit double-double precision values ( x * y )
260long double __gcc_qmul(long double x, long double y);
261
262// divides two 128-bit double-double precision values ( x / y )
263long double __gcc_qdiv(long double a, long double b);
264
265
266// ARM specific functions
267
268// There is no C interface to the switch* functions. These helper functions
269// are only needed by Thumb1 code for efficient switch table generation.
270switch16
271switch32
272switch8
273switchu8
274
275// This function generates a custom trampoline function with the specific
276// realFunc and localsPtr values.
277void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated,
278 const void* realFunc, void* localsPtr);
279
280// There is no C interface to the *_vfp_d8_d15_regs functions. There are
281// called in the prolog and epilog of Thumb1 functions. When the C++ ABI use
282// SJLJ for exceptions, each function with a catch clause or destructors needs
283// to save and restore all registers in it prolog and epilog. But there is
284// no way to access vector and high float registers from thumb1 code, so the
285// compiler must add call outs to these helper functions in the prolog and
286// epilog.
287restore_vfp_d8_d15_regs
288save_vfp_d8_d15_regs
289
290
291// Note: long ago ARM processors did not have floating point hardware support.
292// Floating point was done in software and floating point parameters were
293// passed in integer registers. When hardware support was added for floating
294// point, new *vfp functions were added to do the same operations but with
295// floating point parameters in floating point registers.
296
297// Undocumented functions
298
299float __addsf3vfp(float a, float b); // Appears to return a + b
300double __adddf3vfp(double a, double b); // Appears to return a + b
301float __divsf3vfp(float a, float b); // Appears to return a / b
302double __divdf3vfp(double a, double b); // Appears to return a / b
303int __eqsf2vfp(float a, float b); // Appears to return one
304 // iff a == b and neither is NaN.
305int __eqdf2vfp(double a, double b); // Appears to return one
306 // iff a == b and neither is NaN.
307double __extendsfdf2vfp(float a); // Appears to convert from
308 // float to double.
309int __fixdfsivfp(double a); // Appears to convert from
310 // double to int.
311int __fixsfsivfp(float a); // Appears to convert from
312 // float to int.
313unsigned int __fixunssfsivfp(float a); // Appears to convert from
314 // float to unsigned int.
315unsigned int __fixunsdfsivfp(double a); // Appears to convert from
316 // double to unsigned int.
317double __floatsidfvfp(int a); // Appears to convert from
318 // int to double.
319float __floatsisfvfp(int a); // Appears to convert from
320 // int to float.
321double __floatunssidfvfp(unsigned int a); // Appears to convert from
322 // unsigned int to double.
323float __floatunssisfvfp(unsigned int a); // Appears to convert from
324 // unsigned int to float.
325int __gedf2vfp(double a, double b); // Appears to return __gedf2
326 // (a >= b)
327int __gesf2vfp(float a, float b); // Appears to return __gesf2
328 // (a >= b)
329int __gtdf2vfp(double a, double b); // Appears to return __gtdf2
330 // (a > b)
331int __gtsf2vfp(float a, float b); // Appears to return __gtsf2
332 // (a > b)
333int __ledf2vfp(double a, double b); // Appears to return __ledf2
334 // (a <= b)
335int __lesf2vfp(float a, float b); // Appears to return __lesf2
336 // (a <= b)
337int __ltdf2vfp(double a, double b); // Appears to return __ltdf2
338 // (a < b)
339int __ltsf2vfp(float a, float b); // Appears to return __ltsf2
340 // (a < b)
341double __muldf3vfp(double a, double b); // Appears to return a * b
342float __mulsf3vfp(float a, float b); // Appears to return a * b
343int __nedf2vfp(double a, double b); // Appears to return __nedf2
344 // (a != b)
345double __negdf2vfp(double a); // Appears to return -a
346float __negsf2vfp(float a); // Appears to return -a
347float __negsf2vfp(float a); // Appears to return -a
348double __subdf3vfp(double a, double b); // Appears to return a - b
349float __subsf3vfp(float a, float b); // Appears to return a - b
350float __truncdfsf2vfp(double a); // Appears to convert from
351 // double to float.
352int __unorddf2vfp(double a, double b); // Appears to return __unorddf2
353int __unordsf2vfp(float a, float b); // Appears to return __unordsf2
354
355
356Preconditions are listed for each function at the definition when there are any.
357Any preconditions reflect the specification at
358http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
359
360Assumptions are listed in "int_lib.h", and in individual files. Where possible
361assumptions are checked at compile time.
362